Noninterference for Free

William J. Bowman and Amal Ahmed

|_et's write a secure program

* Want to write a component e
(browser)

* Manages high-security data
(passwords) -

|_et's write a secure program

* Want to write a component e
(browser) 0
* Manages high-security data

(passwords)

e |Links with untrusted context C
(plugins)

| anguage-based security!

Using language-based security,
we statically rule out attacks

| anguage-based security!

Passwords
please

Using language-based security,
we statically rule out attacks

Noninterference

Noninterference is an equivalence property
of any well-typed term e:

Given same low-level (public) inputs,

Noninterference

Noninterference is an equivalence property
of any well-typed term e:

Given same low-level (public) inputs,

and different high-level (private) inputs

0. %L 8

Ce

Noninterference

Noninterference is an equivalence property
of any well-typed term e:

Given same low-level (public) inputs,

and different high-level (private) inputs

0. %L 8
A

low-level outputs are indistinguishable

Ce

Noninterference

Noninterference is an equivalence property

~fF Arvs waiAll vimaAA FfArmA A

Given same

vate) inputs
Security Solved!

Ce

low-level outputs are indistinguishable

WRONG

O = I
\Lk &
&
S
N

Because compllers

Because compllers

Passwords
please
C
Passwords
please
C

rrrrr

‘Correct”

Even if the compiler is proven “correct”...

—*

Cquivalence Preserving

It may not preserve equivalences, e.g., noninterference.

HOwW dO We preserve
noninterference”

HOW dO We preserve
noninterference”

Folklore suggests noninterference can be

~L

e 8 captured by parametricity
Vo

-0

HOW dO We preserve
noninterference”

Folklore suggests noninterference can be

~L

0 8 captured by parametricity
Vo

0-9

[1] Tse & Zdancewic, Translating Dependency into Parametricity, ICFP 2004

[2] Shikuma & Igarashi, Proving Noninterference by a Fully Complete ..., ASIAN 2006

| anguages
Source: DCC 1] I:{> Target: System Fw

« Captures dependency analyses Parametricity

* e.g. Information-flow security Type constructors, i.e

 STLC + Lattice of monads higher-order polymorphism

[1] Abadi et al., The Core Calculus of Dependency, POPL 1999

Source Language

DCC (Core Calculus of Dependency)

Monad protects
data based on label

rFeltTg{

Source Language

DCC (Core Calculus of Dependency)

Ny true =~ ny false : Ty bool

Monad protects
data based on label

rFeltTg{

Source Language

DCC (Core Calculus of Dependency)

r|—eltTg51 r,X251|—62:SQ

Fl—bindx:el iHGQZSQ

Term containing /

private data Continuation using private data

Source Language

DCC (Core Calculus of Dependency)

Promise that result is protected

A\

r|—eltTg51 r,X251|—62:SQ ngQ

Fl—bindx:el ine2:52

Source Language

DCC (Core Calculus of Dependency)

Promise that result is protected

4 For example... \\

| L £ bool H=<1 %52

N /

Source Language

DCC (Core Calculus of Dependency)

Promise that result is protected

4 For example... \\

| L £ bool H=<1 %52

L<Ts HATLs
N /

Source Language

DCC (Core Calculus of Dependency)

Promise that result is protected

4 For example... \\

| L £ bool H=<1 %52

L < T_s HﬁTLS
| L < Ths H = Ths

/

Source Language

DCC (Core Calculus of Dependency)

Promise that result is protected
Monad protects
data based on label
rFeltTg{ r,X251|—62:SQ ijQ

Fl—bindx:el iHGQISQ

Term containing /

private data Continuation using private data

Translation, Briefly

How are types translated?

17 =1
bool™ = bool
(51— s2)T =s] — s

(Tg S)_I_ = 7

Translation, Briefly

['Fe;: Ty sy [X:s1Fex:so ! < s

" bindx:e1 N €2 . 5o
ldea: CPS the monad + constrain continuation result

(Tys)™ = VBux. (st — B) — 3
s.t. £ < (3

Translation, Briefly

['Fe;: Ty sy [X:s1Fex:so ! < s

Fl—bindx:el iHGQZSQ

(Tes)T = VB ([E 2 B] X (sT — B)) = B

Translation, Briefly

['Fe;: Ty sy [X:s1Fex:so ! < s

Fl—bindx:el ine2:52

(Tes)T = VB ([E 2 B] X (sT — B)) = B

[l <sT] =(a<x ay sT)

Translation, Briefly

['Fer: Tyrsy [X:s1Fex:so ! < s

Fl—bindx:el ine2:52
(Tg S)+ — V,B::*. ((aj Qly 6) X (S —> ﬁ)) —> ,3

data (< «ay s') where
Unit P ::(aj 8%, 1)

Monad P :: [/ C /'] — (a< ay (Tps)™)

Translation Summary

1T =1
bool™ = bool
(s1 — 52)+ — sf — s;

(Tg S)_I_ — V,B* ((aj Qly ,3) X (S —> ,6)) — ,3

Translation Summary

1T =1
bool™ = bool
(s1 — 52)+ — sf — s;

(Tg S)_I_ — V,@* ((aj Qly ,3) X (S —> ,3)) — ,3

Invariants:

- s o<, 0, st

Proving Noninterference
Preservation

Proving Equivalence
Preservation

Equiv. Preservation is Hard

To show

AX:S.e ~ AX:s. e/
implies

Ax:sT.eT ~ Ax:st. e/t

Equiv. Preservation is Hard

To show Assume mi; ~mo :S"

AX:S.e &~ AX:s. e Show e'[m, /x|~ " [ms/X]
implies

Ax:sT.eT ~ Ax:st. e/t

Equiv. Preservation is Hard

To show Assume mq ~ mo:Ss"

AX:S.e &~ AX:s. e Show e'[m, /x|~ " [ms/X]
implies

Axcst et ag AxosT ot Want to proceed as follows:

e By assumption, AX:s.e &~ Ax:s. ¢’

Equiv. Preservation is Hard

To show Assume mq ~ mo:Ss"

AX:S.e &~ AX:s. e Show e'[m, /x|~ " [ms/X]
implies

Axcst et ag AxosT ot Want to proceed as follows:

e By assumption, AX:s.e &~ Ax:s. ¢’

* Hence, elm /x| ~ &'[my /X]

Equiv. Preservation is Hard

To show Assume mq ~ mo:Ss"

AX:S.e &~ AX:s. e Show e'[m, /x|~ " [ms/X]
implies

Axcst et ag AxosT ot Want to proceed as follows:

e By assumption, AX:s.e &~ Ax:s. ¢’

* Hence, elm /x| ~ &'[my /X]
* By induction

Equivalence Retlection”

ow do we say that since m; ~ my : s™

X U

there mustexist €1 €2 S

Equivalence Retlection”

ow do we say that since m; ~ my : s™

X U

there must exist €1 ~ €2 ©' S

Back-translation

How can we possibly back-translate
a more expressive target language?

e
£

Enrich Source”?

How can we possibly back-translate
a more expressive target language?

e

We could enrich the source

Enrich Source”?

How can we possibly back-translate
a more expressive target language?

9
£

We could enrich the source

lmpoverish Target?

How can we possibly back-translate
a more expressive target language?

e

Or impoverish the target

lmpoverish Target?

How can we possibly back-translate
a more expressive target language?

e

Or impoverish the target

None of the above

How can we possibly back-translate
a more expressive target language?

qal -
- :
Neither is satisfying ﬁ

Be clever

How can we possibly back-translate
a more expressive target language?

Recall: % :

Assume my &~ mso : ST

Be clever

How can we possibly back-translate
a more expressive target language?

- ’j By using types.
Recall: {F .

Assume m; ~ ms : 5T :

Be clever

How can we possibly back-translate
a more expressive target language?

- 2 By using types.
Recall: % .

Assume my &~ mso : ST

e.g.
X:S) HMm:sg ... » X:S1He:ss

+ + +

AX:S; .M :S{ — S, > AX:S1.€:S1 — S

Be clever

How can we possibly back-translate
a more expressive target language?

- 2 By using types.

Can we back-translate:

m/ .t / Non-translation type sub-term
(Ax:t.m) m’ : st Translation type

Be cleverer

How can we possibly back-translate
a more expressive target language?

» By using types
- 4 and partial evaluation.

4

Can we back-translate:
Not by induction

(Ax:t.m) m’ — m” : st m’ : t is No more

Be clevererer

How can we possibly back-translate
a more expressive target language?

» By using types
- 4 and partial evaluation.

Not by induction -

Theretore, must prove all terms are back-translatable.

Proof of Equiv. Preservation

To show Assume mi; ~mo :S"

AX:S.e &~ AX:s. e Show e'[m, /x|~ " [ms/X]
implies

Ax:sT.eT ~ Ax:st. e/t

How the proof proceeds:

Proof of Equiv. Preservation

To show Assume mq ~ mo:Ss"

AX:S.e &~ AX:s. e Show e™[m; /x|~ €T [my/x]

mplies How the proof proceeds:

~ . ot
R Y .-+ 1+ | * Back-translate 113 ~ 1My © S

Proof of Equiv. Preservation

To show Assume mq ~ mo:Ss"

AX:S.e &~ AX:s. e Show e™[m; /x|~ €T [my/x]

mplies How the proof proceeds:

~ . ot
R Y .-+ 1+ | * Back-translate 113 ~ 1My © S

* By assumption, AX:s.e ~ Ax:s. e’

Proof of Equiv. Preservation

To show Assume mq ~ mo:Ss"

AX:S.e &~ AX:s. e Show e™[m; /x|~ €T [my/x]

mplies How the proof proceeds:

~ . ot
R Y .-+ 1+ | * Back-translate 113 ~ 1My © S

* By assumption, AX:s.e ~ Ax:s. e’
* Hence, ele1 /x| ~ €'[es/X]

Proof of Equiv. Preservation

To show Assume mq ~ mo:Ss"
AX:S.e =~ Ax:s. e Show e [m; /x|~ e [msy/x]

mplies How the proof proceeds:

~ . ot
R Y .-+ 1+ | * Back-translate 113 ~ 1My © S

* By assumption, AX:s.e ~ Ax:s. e’
* Hence, ele1 /x| ~ €'[es/X]
* By induction. QED.

Proof of Equiv. Preservation

To show Assume m; ~ msy :st
)\X:S.e ~ }\,V'C a/ Chrw et lms- /X] %e/+[m2/x]
mplies roceeds:
Y U _I_
. _|_ _l_ ~ -‘ 1~ m2 .S
Ax:sT.eT = A EXCEPT

:s.e &~ AX:s. e
' e'[ez/X]

Proof of Equiv. Preservation

To show Assume mq ~ mo:s"
)\X:S.e > }\,V'C a/ Chnwy 9+[m1 /X] %e/+[m2/x]
implies bes:
N/ . _I_
3 _|_ _l_ ~ < 1~ m2 * S
AX:sT.eT & A: EXCEPT

(:Ss.e ~ AX:s. e
' e'[ez/X]

e —— E—

If you don’t understand logical relations, you can stop listening for the next 4 slides.

‘Open” Logical Relations

Typically, logical relations are defined on closed terms/types.
Again recall: Assume m; & ms:sT

And: <, ay, - bEsT

But translation types are only well-formed when open.

‘Open” Logical Relations

Again recall: Assume my 5z mg s’

And: g, 0, st

l.e., 1o even state this assumption, the logical relation
must leave these type variables open.

‘Open” Logical Relations

M —=-s S

building on [1], we define m; =~* my : s™

data (< «y s) where
3 — Unit_ P :: (< ay 1)

Monad_P :: (a< ay (Tps)™)

[1] Zhao et al., Relational Parametricity for Linear System F, APLAS 2010

QED! (ish)

IIW"

)Y

mlr&ﬁ m25+

data (< a4 sT) where
3 Unit_ P :: (< ay 1)

Monad_P :: (a< ay (Tps)™)

12|, =7

Conclusion

* |Language-based reasoning requires better compilers

* \We have developed techniques for such compilers
(specifically, for noninterference preservation)

https://www.williamjbowman.com/papers#nitorfree

https://www.williamjbowman.com/papers#niforfree

