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Noninterference is an equivalence property
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‘Correct”

Even if the compiler is proven “correct”...
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Cquivalence Preserving

It may not preserve equivalences, e.g., noninterference.
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[1] Tse & Zdancewic, Translating Dependency into Parametricity, ICFP 2004

[2] Shikuma & Igarashi, Proving Noninterference by a Fully Complete ..., ASIAN 2006



| anguages
Source: DCC 1] I:{> Target: System Fw

« Captures dependency analyses Parametricity

* e.g. Information-flow security Type constructors, i.e

 STLC + Lattice of monads higher-order polymorphism

[1] Abadi et al., The Core Calculus of Dependency, POPL 1999
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['Fe;: Ty sy [ X:s1Fex:so ! < s
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Translation, Briefly

['Fer: Tyrsy [ X:s1Fex:so ! < s

Fl—bindx:el ine2:52
(Tg S)+ — V,B::*. ((aj Qly 6) X (S —> ﬁ)) —> ,3

data (< «ay s') where
Unit P ::(aj 8%, 1)

Monad P :: [/ C /'] — (a< ay (Tps)™)
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Translation Summary

1T =1
bool™ = bool
(s1 — 52)+ — sf — s;

(Tg S)_I_ — V,@* ((aj Qly ,3) X (S —> ,3)) — ,3

Invariants:

- s o<, 0, st
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None of the above

How can we possibly back-translate
a more expressive target language?

qal -
- :
Neither is satisfying ﬁ
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Be clever

How can we possibly back-translate
a more expressive target language?

- 2 By using types.
Recall: % .

Assume my &~ mso : ST

e.g.
X:S) HMm:sg ... » X:S1He:ss

+ + +

AX:S; .M :S{ — S, > AX:S1.€:S1 — S
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- 2 By using types.

Can we back-translate:

m/ .t / Non-translation type sub-term
(Ax:t.m) m’ : st Translation type
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Be clevererer

How can we possibly back-translate
a more expressive target language?

» By using types
- 4 and partial evaluation.

Not by induction -

Theretore, must prove all terms are back-translatable.
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Proof of Equiv. Preservation

To show Assume mq ~ mo:Ss"
AX:S.e =~ Ax:s. e Show e [m; /x|~ e [msy/x]

mplies How the proof proceeds:

~ . ot
R Y .-+ 1+ | * Back-translate 113 ~ 1My © S

* By assumption, AX:s.e ~ Ax:s. e’
* Hence, ele1 /x| ~ €'[es/X]
* By induction. QED.




Proof of Equiv. Preservation

To show Assume m; ~ msy :st
)\X:S.e ~ }\,V'C a/ Chrw et lms- /X] %e/+[m2/x]
mplies roceeds:
Y U _I_
. _|_ _l_ ~ -‘ 1~ m2 .S
Ax:sT.eT = A EXCEPT

:s.e &~ AX:s. e
' e'[ez/X]




Proof of Equiv. Preservation

To show Assume mq ~ mo:s"
)\X:S.e > }\,V'C a/ Chnwy 9+[m1 /X] %e/+[m2/x]
implies bes:
N/ . _I_
3 _|_ _l_ ~ < 1~ m2 * S
AX:sT.eT & A: EXCEPT

(:Ss.e ~ AX:s. e
' e'[ez/X]

e —— E—

If you don’t understand logical relations, you can stop listening for the next 4 slides.



‘Open” Logical Relations

Typically, logical relations are defined on closed terms/types.
Again recall: Assume m; & ms:sT

And: <, ay, - bEsT

But translation types are only well-formed when open.



‘Open” Logical Relations

Again recall: Assume my 5z mg s’

And: g, 0, st

l.e., 1o even state this assumption, the logical relation
must leave these type variables open.



‘Open” Logical Relations

M —=-s S

building on [1], we define m; =~* my : s™

data (< «y s) where
3 — Unit_ P :: (< ay 1)

Monad_P :: (a< ay (Tps)™)

[1] Zhao et al., Relational Parametricity for Linear System F, APLAS 2010



QED! (ish)
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data (< a4 sT) where
3 Unit_ P :: (< ay 1)

Monad_P :: (a< ay (Tps)™)

12|, =7



Conclusion

* |Language-based reasoning requires better compilers

* \We have developed techniques for such compilers
(specifically, for noninterference preservation)

https://www.williamjbowman.com/papers#nitorfree
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