Noninterference for Free

William J. Bowman and Amal Ahmed

Let's write a secure program

 Want to write a component e (browser)

 Manages high-security data (passwords)
 ...

Let's write a secure program

 Want to write a component e (browser)

 Manages high-security data (passwords)

- Links with untrusted context C (plugins)
- c provides low-security inputs, reads low-security outputs

Language-based security!

Using language-based security, we statically rule out attacks

Language-based security!

Using language-based security, we statically rule out attacks

Noninterference is an equivalence property of any well-typed term e:

Given *same* low-level (*public*) inputs,

Noninterference is an equivalence property of any well-typed term e:

Given *same* low-level (*public*) inputs,

and *different* high-level (*private*) inputs

Noninterference is an equivalence property of any well-typed term e:

Given *same* low-level (*public*) inputs,

and *different* high-level (*private*) inputs

low-level outputs are indistinguishable

Noninterference is an equivalence property

low-level outputs are indistinguishable

WRONG

Because compilers

Because compilers

"Correct"

Even if the compiler is proven "correct"...

Equivalence Preserving

It may not preserve equivalences, e.g., noninterference.

How do we preserve noninterference?

How do we preserve noninterference?

Folklore suggests noninterference can be

captured by parametricity

?

How do we preserve noninterference?

Folklore suggests noninterference can be

captured by parametricity

?

[1] Tse & Zdancewic, Translating Dependency into Parametricity, ICFP 2004

[2] Shikuma & Igarashi, *Proving Noninterference by a Fully Complete ...*, ASIAN 2006

Languages

Source: DCC [1]

Target: System Fω

- Captures dependency analyses
 - e.g. Information-flow security
- STLC + Lattice of monads

- Parametricity
- Type constructors, i.e., higher-order polymorphism

[1] Abadi et al., The Core Calculus of Dependency, POPL 1999

DCC (Core Calculus of Dependency)

Monad protects data based on label

 $\Gamma \vdash e_1 : T_{\ell} s_1$

DCC (Core Calculus of Dependency)

 $\eta_{\rm H}$ true $\approx_{\sf L} \eta_{\rm H}$ false : $T_{\sf H}$ book

Monad protects data based on label

 $\Gamma \vdash \mathsf{e}_1 : \mathsf{T}_\ell \, \mathsf{s}_1$

DCC (Core Calculus of Dependency)

DCC (Core Calculus of Dependency)

Promise that result is protected

$$\Gamma \vdash \mathsf{e}_1 : \mathsf{T}_\ell \mathsf{s}_1 \qquad \Gamma, \mathsf{x} : \mathsf{s}_1 \vdash \mathsf{e}_2 : \mathsf{s}_2 \qquad \ell \preceq \mathsf{s}_2$$

 $\Gamma \vdash \text{bind } x = e_1 \text{ in } e_2 : s_2$

DCC (Core Calculus of Dependency)

DCC (Core Calculus of Dependency)

Promise that result is protected

For example...

$$L \leq T_L s$$

$$H \leq 1$$

$$H \npreceq T_L s$$

DCC (Core Calculus of Dependency)

Promise that result is protected

For example...

$$L \, \preceq \, T_L \, s$$

$$L \leq T_H s$$

$$H \leq 1$$

$$H \npreceq T_L s$$

$$H \leq T_H s$$

DCC (Core Calculus of Dependency)

Promise that result is protected Monad protects data based on label $\Gamma \vdash e_1 : T_{\ell} s_1 \qquad \Gamma, x : s_1 \vdash e_2 : s_2$ $\Gamma \vdash \text{bind } x = e_1 \text{ in } e_2 : s_2$ Term containing private data

Continuation using private data

How are types translated?

$$1^{+} = 1$$

$$bool^{+} = bool$$

$$(s_{1} \rightarrow s_{2})^{+} = s_{1}^{+} \rightarrow s_{2}^{+}$$

$$(T_{\ell} s)^{+} = ?$$

$$\frac{\Gamma \vdash e_1 : \mathsf{T}_{\ell} \mathsf{s}_1 \qquad \Gamma, \mathsf{x} : \mathsf{s}_1 \vdash e_2 : \mathsf{s}_2 \qquad \ell \preceq \mathsf{s}_2}{\Gamma \vdash \mathsf{bind} \, \mathsf{x} = \mathsf{e}_1 \; \mathsf{in} \; \mathsf{e}_2 : \mathsf{s}_2}$$

Idea: CPS the monad + constrain continuation result

$$(\mathsf{T}_{\ell}\,\mathsf{s})^{+} = \forall \beta :: *. (\mathsf{s}^{+} \to \beta) \to \beta$$
$$s.t. \ \ell \preceq \beta$$

$$\frac{\Gamma \vdash e_1 : \mathsf{T}_{\ell} \mathsf{s}_1 \qquad \Gamma, \mathsf{x} : \mathsf{s}_1 \vdash e_2 : \mathsf{s}_2 \qquad \ell \preceq \mathsf{s}_2}{\Gamma \vdash \mathsf{bind} \, \mathsf{x} = \mathsf{e}_1 \; \mathsf{in} \; \mathsf{e}_2 : \mathsf{s}_2}$$

$$(\mathsf{T}_{\ell}\,\mathsf{s})^{+} = \forall \beta :: *. (\llbracket \ell \preceq \beta \rrbracket \times (\mathsf{s}^{+} \to \beta)) \to \beta$$

$$\frac{\Gamma \vdash e_1 : \mathsf{T}_{\ell} \mathsf{s}_1 \qquad \Gamma, \mathsf{x} : \mathsf{s}_1 \vdash e_2 : \mathsf{s}_2 \qquad \ell \preceq \mathsf{s}_2}{\Gamma \vdash \mathsf{bind} \mathsf{x} = \mathsf{e}_1 \mathsf{in} \mathsf{e}_2 : \mathsf{s}_2}$$

$$(\mathsf{T}_{\ell}\,\mathsf{s})^{+} = \forall \beta :: *. (\llbracket \ell \preceq \beta \rrbracket \times (\mathsf{s}^{+} \to \beta)) \to \beta$$
$$\llbracket \ell \preceq \mathsf{s}^{+} \rrbracket = (\alpha_{\preceq} \ \alpha_{\ell} \ \mathsf{s}^{+})$$

```
\frac{\Gamma \vdash e_1 : \mathsf{T}_{\ell} \mathsf{s}_1 \qquad \Gamma, \mathsf{x} : \mathsf{s}_1 \vdash e_2 : \mathsf{s}_2 \qquad \ell \preceq \mathsf{s}_2}{\Gamma \vdash \mathsf{bind} \, \mathsf{x} = \mathsf{e}_1 \mathsf{ in } \mathsf{e}_2 : \mathsf{s}_2}
```

$$(\mathsf{T}_{\ell}\,\mathsf{s})^{+} = \forall \beta :: *. ((\alpha_{\preceq} \ \alpha_{\ell} \ \beta) \times (\mathsf{s} \to \beta)) \to \beta$$

```
data (\alpha_{\preceq} \ \alpha_{\ell} \ \mathsf{s}^{+}) where Unit_P :: (\alpha_{\preceq} \ \alpha_{\ell} \ 1)

Monad_P :: \llbracket \ell \sqsubseteq \ell' \rrbracket \to (\alpha_{\prec} \ \alpha_{\ell} \ (\mathsf{T}_{\ell'} \ \mathsf{s})^{+})
```

Translation Summary

$$egin{aligned} & 1^+ = 1 \ & ext{bool}^+ = ext{bool} \ & (ext{s}_1
ightarrow ext{s}_2)^+ = ext{s}_1^+
ightarrow ext{s}_2^+ \ & (T_\ell \, ext{s})^+ = orall eta ::*. ((oldsymbol{lpha}_{\preceq} \, oldsymbol{lpha}_\ell \, oldsymbol{eta}) imes (ext{s}
ightarrow oldsymbol{eta}))
ightarrow oldsymbol{eta} \end{aligned}$$

Translation Summary

$$egin{aligned} 1^+ &= 1 \ & bool^+ &= bool \ & (\mathsf{s}_1
ightarrow \mathsf{s}_2)^+ &= \mathsf{s}_1^+
ightarrow \mathsf{s}_2^+ \ & (\mathsf{T}_\ell \ \mathsf{s})^+ &= orall eta :: *. ((oldsymbol{lpha}_{\preceq} \ oldsymbol{lpha}_\ell \ eta) imes (\mathsf{s}
ightarrow eta))
ightarrow oldsymbol{eta} \end{aligned}$$

Invariants:

$$\vdash s$$

$$lpha_{\preceq}, lpha_{\ell}, \cdots dash$$
s $^+$

Proving Noninterference Preservation

Proving Equivalence Preservation

Equiv. Preservation is Hard

```
To show \lambda x : s. e \approx \lambda x : s. e' implies \lambda x : s^{+}.e^{+} \approx \lambda x : s^{+}.e'^{+}
```

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$

implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $m_1 \approx m_2 : s^+$

Show
$$e^+[m_1/x] \approx e'^+[m_2/x]$$

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$

implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $m_1 \approx m_2 : s^+$

Show
$$e^+[m_1/x] \approx e'^+[m_2/x]$$

Want to proceed as follows:

• By assumption, $\lambda x : s. e \approx \lambda x : s. e'$

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$
 implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $m_1 \approx m_2 : s^+$

Show $e^+[m_1/x] \approx e'^+[m_2/x]$

Want to proceed as follows:

- By assumption, $\lambda x : s. e \approx \lambda x : s. e'$
- Hence, $e[m_1/x] \approx e'[m_2/x]$

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$
 implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $m_1 \approx m_2 : s^+$

Show $e^+[m_1/x] \approx e'^+[m_2/x]$

Want to proceed as follows:

- By assumption, $\lambda x : s. e \approx \lambda x : s. e'$
- Hence, $e[m_1/x] \approx e'[m_2/x]$
- By induction

Equivalence Reflection?

```
How do we say that since \mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s^+}
```

```
\Omega
```

there must exist e₁ e₂: s

Equivalence Reflection?

```
How do we say that since \mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s^+}
```

 Ω

there must exist $e_1 \approx e_2 : s$

Back-translation

Enrich Source?

How can we possibly back-translate a *more expressive* target language?

We could enrich the source

Enrich Source?

How can we possibly back-translate a *more expressive* target language?

We could enrich the source

Impoverish Target?

How can we possibly back-translate a *more expressive* target language?

Or impoverish the target

Impoverish Target?

How can we possibly back-translate a *more expressive* target language?

Or impoverish the target

None of the above

How can we possibly back-translate a *more expressive* target language?

Neither is satisfying

Be cleverer

How can we possibly back-translate a *more expressive* target language?

By using types and partial evaluation.

Can we back-translate:

Not by induction

 $(\lambda x:t.m) m' \longmapsto m'' : s^+$

 \mathbf{m}' : t is no more

Be clevererer

How can we possibly back-translate a *more expressive* target language?

By using types and partial evaluation.

Not by induction

Therefore, must prove all terms are back-translatable.

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$

implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $m_1 \approx m_2 : s^+$

Show
$$e^+[m_1/x] \approx e'^+[m_2/x]$$

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$

implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $\mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s}^+$

Show $e^+[m_1/x] \approx e'^+[m_2/x]$

How the proof proceeds:

• Back-translate $\mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s^+}$ to $\mathbf{e_1} \approx \mathbf{e_2} : \mathbf{s}$

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$

implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $m_1 \approx m_2 : s^+$

Show $e^+[m_1/x] \approx e'^+[m_2/x]$

- Back-translate $\mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s^+}$ to $\mathbf{e_1} \approx \mathbf{e_2} : \mathbf{s}$
- By assumption, $\lambda x : s. e \approx \lambda x : s. e'$

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$

implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $\mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s}^+$

Show $e^+[m_1/x] \approx e'^+[m_2/x]$

- Back-translate $\mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s^+}$ to $\mathbf{e_1} \approx \mathbf{e_2} : \mathbf{s}$
- By assumption, $\lambda x : s. e \approx \lambda x : s. e'$
- Hence, $e[e_1/x] \approx e'[e_2/x]$

To show

$$\lambda x : s. e \approx \lambda x : s. e'$$

implies

$$\lambda x:s^+.e^+ \approx \lambda x:s^+.e'^+$$

Assume $\mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s}^+$

Show
$$e^+[m_1/x] \approx e'^+[m_2/x]$$

- Back-translate $\mathbf{m_1} \approx \mathbf{m_2} : \mathbf{s^+}$ to $\mathbf{e_1} \approx \mathbf{e_2} : \mathbf{s}$
- By assumption, $\lambda x : s. e \approx \lambda x : s. e'$
- Hence, $e[e_1/x] \approx e'[e_2/x]$
- By induction. QED.

If you don't understand logical relations, you can stop listening for the next 4 slides.

"Open" Logical Relations

Typically, logical relations are defined on closed terms/types.

Again recall: Assume $m_1 \approx m_2 : s^+$

And: $\alpha_{\preceq}, \alpha_{\ell}, \cdots \vdash s^+$

But translation types are only well-formed when open.

"Open" Logical Relations

Again recall: Assume $m_1 \approx m_2 : s^+$ And: $\alpha \stackrel{\cdot}{\preceq}, \alpha_\ell, \cdots \vdash s^+$

i.e., to even state this assumption, the logical relation must leave these type variables open.

"Open" Logical Relations

$$m_1 \approx m_2 : s^+$$

building on [1], we define $\mathbf{m_1} \approx^{\Sigma} \mathbf{m_2} : \mathbf{s}^+$

[1] Zhao et al., Relational Parametricity for Linear System F, APLAS 2010

QED! (ish)

 $m_1 \approx m_2 : s^+$

```
\mathbf{m_1} pprox^{\mathbf{\Sigma}} \mathbf{m_2} : \mathsf{s}^+ \mathbf{\Delta}_{\mathbf{1}} = \mathbf{M}_{\mathbf{1}} = \mathbf{M
```

Conclusion

- Language-based reasoning requires better compilers
- We have developed techniques for such compilers (specifically, for noninterference preservation)

https://www.williamjbowman.com/papers#niforfree