
Dagger Traced Symmetric Monoidal Categories

and Reversible Programming

William J. Bowman, Roshan P. James, and Amr Sabry

School of Informatics and Computing, Indiana University
{wilbowma,rpjames,sabry}@indiana.edu

Abstract. We develop a reversible programming language from elemen-
tary mathematical and categorical foundations. The core language is
based on isomorphisms between finite types: it is complete for com-
binational circuits and has an elegant semantics in dagger symmetric
monoidal categories. The categorical semantics enables the definition of
canonical and well-behaved reversible loop operators based on the no-
tion of traced categories. The extended language can express recursive
reversible algorithms on recursive types such as the natural numbers,
lists, and trees. Computations in the extended language may diverge but
every terminating computation is still reversible.

1 Introduction

The canonical computational models (e.g., Turing machines, λ-calculus, combi-
natory logic, etc.) are all based on irreversible processes. Hence it is not surpris-
ing that many attempts for developing reversible computational models start
with an irreversible model and attempt to retrofit reversibility with a history
mechanism [3, 4, 17].

In contrast, in Physics, the more fundamental notions describe processes
in closed systems where every action is reversible. Open systems, which allow
irreversible processes, are a derived notion — they can considered as a subsystem
of a closed system. Following the approach pioneered by Toffoli [16] and used by
some researchers [2, 6, 13, 18, 19], we adopt the physical idea that reversibility is
the fundamental notion, and that irreversibility is a derived notion.

Structure of the paper and contributions. Our starting point, therefore, is that
the design of a reversible language should be done from “first principles,” not
via any conventional irreversible model. The next section introduces the lan-
guage Π based on elementary isomorphisms which are reversible by defini-
tion. These isomorphisms have an appealing categorical foundation and fur-
ther allow us to transport other categorical constructions to a computational
interpretation. Section 3 extends the language with a looping construct us-
ing the notion of traced categories. An implementation of the language along
with several programming examples are available for download from http:

//www.cs.indiana.edu/~sabry/papers/reversible.tar.gz.

2 The Language Π of Isomorphisms

Starting with isomorphisms on simple arithmetic expressions, we develop a sim-
ple programming language that is universal for finite types. Although the lan-
guage appears modest, it is universal for reversible combinational circuits.

2.1 Syntax and Type System

Consider the language of arithmetic expressions inductively built from the con-
stants 0, 1, and addition and multiplication. The language admits the following
sound and complete isomorphisms. (1) Addition and multiplication are commu-
tative, associative, and have a neutral element. (2) Multiplication distributes
over addition. We can turn the above system into a reversible programming
language by simply viewing the arithmetic expressions as types and the iso-
morphisms as programs. When viewed as types, the arithmetic expressions are
interpreted as follows. The type 0 is the empty type containing no inhabitants.
The type 1 has exactly one inhabitant called (). The type b1 + b2 is the disjoint
union of b1 and b2 whose elements are appropriately tagged values from either
type. The type b1 ∗ b2 is the type of ordered pairs whose elements are coming
from b1 and b2 respectively. This interpretation can be formalized as follows:

Values types, b ::= 0 | 1 | b+ b | b× b
Values , v ::= () | left v | right v | (v, v)

The type system associates each value with its type:

⊢ () : 1

⊢ v : b1
⊢ left v : b1 + b2

⊢ v : b2
⊢ right v : b1 + b2

⊢ v1 : b1 ⊢ v2 : b2
⊢ (v1, v2) : b1 × b2

We now introduce combinators which are program constructs corresponding
to the left-to-right and right-to-left reading of each isomorphism. These con-
structs will constitute the program building blocks in our language:

3+: 0 + b ↔ b :2+

×+ : b1 + b2 ↔ b2 + b1 : ×+

≷+: b1 + (b2 + b3) ↔ (b1 + b2) + b3 :≶+

3×: 1× b ↔ b :2×

×× : b1 × b2 ↔ b2 × b1 : ××

≷×: b1 × (b2 × b3) ↔ (b1 × b2)× b3 :≶×

�0 : 0× b ↔ 0 : �0

� : (b1 + b2)× b3 ↔ (b1 × b3) + (b2 × b3) : �

Each line of this table is to be read as the definition of two operators. For example
corresponding to the ‘identity of ×’ isomorphism we have the two operators
3×: 1× b ↔ b and 2×: b ↔ 1× b.

Now that we have primitive operators we need some means of composing
them. We construct the composition combinators out of the closure conditions

for isomorphisms. Thus we have program constructs that witness reflexivity id ,
symmetry sym, and transitivity ◦ and two parallel composition combinators, one
for sums ⊕ and one for pairs ⊗.

id : b ↔ b

c : b1 ↔ b2
sym c : b2 ↔ b1

c1 : b1 ↔ b2 c2 : b2 ↔ b3
c1 ◦ c2 : b1 ↔ b3

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 ⊕ c2 : b1 + b2 ↔ b3 + b4

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 ⊗ c2 : b1 × b2 ↔ b3 × b4

2.2 Semantics

Every program construct has an adjoint that works in the other direction.

Proposition 1. Each combinator c : b1 ↔ b2 has an adjoint c† : b2 ↔ b1.

Given a program c : b1 ↔ b2 in Π, we can run it by supplying it with a value
v1 : b1. The use of the sym constructor uses the adjoint to reverse the program.
The evaluation rules c v1 7→ v2 are given below:

3+ (right v) 7→ v
2+ v 7→ right v
×+ (left v) 7→ right v
×+ (right v) 7→ left v
≷+ (left v1) 7→ left (left v1)
≷+ (right (left v2)) 7→ left (right v2)
≷+ (right (right v3)) 7→ right v3
≶+ (left (left v1)) 7→ left v1
≶+ (left (right v2)) 7→ right (left v2)
≶+ (right v3) 7→ right (right v3)

3× ((), v) 7→ v
2× v 7→ ((), v)
×× (v1, v2) 7→ (v2, v1)
≷× (v1, (v2, v3)) 7→ ((v1, v2), v3)
≶× ((v1, v2), v3) 7→ (v1, (v2, v3))

� (left v1, v3) 7→ left (v1, v3)
� (right v2, v3) 7→ right (v2, v3)
� (left (v1, v3)) 7→ (left v1, v3)
� (right (v2, v3)) 7→ (right v2, v3)

Since there are no values that have the type 0, the reductions for the combina-
tors 3+, 2+, �0 and �0 omit the impossible cases. The semantics of composition
combinators is:

id v 7→ v

c†v1 7→ v2
(sym c) v1 7→ v2

c1 v1 7→ v c2 v 7→ v2
(c1 ◦ c2) v1 7→ v2

c1 v1 7→ v2
(c1 ⊕ c2) (left v1) 7→ left v2

c2 v1 7→ v2
(c1 ⊕ c2) (right v1) 7→ right v2

c1 v1 7→ v3 c2 v2 7→ v4
(c1 ⊗ c2) (v1, v2) 7→ (v3, v4)

We can now formalize that the adjoint of each construct c is its inverse in
the sense that the evaluation of the adjoint maps the output of c to its input.

Proposition 2. Reversibility. Iff c v 7→ v′ then c†v′ 7→ v.

The language Π has an elegant semantics in dagger symmetric monoidal
categories (See Selinger’s survey paper [15] for an excellent reference.) These
categories constitute the backbone of reversible, quantum, and linear program-
ming models [1].

Proposition 3. The language Π can be interpreted as a dagger symmetric
monoidal category in two ways: with + as the monoidal tensor or with × as
the monoidal tensor.

3 Traced Categories and the Language Π
o

Traced categories, introduced by Joyal, Street and Verity [10], have proved useful
for modeling recursion [7]. After defining these categories, we extend Π with the
appropriate structures for recursion: isorecursive types and trace operators.

Definition 1. A symmetric monoidal category with + as the monoidal tensor, 0
as the identity, ×+ as the symmetry natural transformation, is said to be traced
if it is equipped with a family of functions, called a trace, such that for any
morphism f : (X + A) → (X + B), we have a morphism TrXA,B(f) : A → B
subject to the following coherence conditions [8]:

– Tightening: TrXC,D((idX ⊕ k) ◦ f ◦ (idX ⊕ h)) = k ◦ TrXA,B(f) ◦ h

– Yanking: TrXX,X(×+) = idX = TrXX,X(×+)

– Superposing: TrXA+C,B+C(f ⊕ idC) = TrXA,B(f)⊕ idC

– Exchange:

TrXA,B(Tr
Y
X+A,X+B(f)) = TrYA,B(Tr

X
Y+A,Y+B((×+⊕ idB) ◦ f ◦ (×+⊕ idA)))

3.1 Recursive Types

We begin by extending Π with isorecursive types. These types can express all the
usual inductive structures, like the natural numbers, lists, and trees. In addition,
they naturally fit within the framework of reversible languages as they come
equipped with two isomorphisms fold and unfold that witness the equivalence
of a value of a recursive type with all its “unrollings.” In more detail, we extend
the type, values and isomorphisms as follows:

b :: = ... | x | µx.b
v :: = ... | 〈v〉 fold : b[µx.b/x] ↔ µx.b : unfold

⊢ v : b[µx.b/x]

⊢ 〈v〉 : µx.b
In the type µx.b, the type b typically includes occurrences of x that (recur-

sively) refer back to µx.b. This isomorphism between the occurrences of x and
µx.b is witnessed by the two combinators fold and unfold . To create recursive
values, we introduce the notation 〈v〉 that allows the construction of arbitrarily
large values of a given recursive type. Intuitively, to construct a value of type
µx.b, we must have a value of type b[µx.b/x]. Depending on the structure of b,
this may or not be possible. For example, if the recursive type is µx.x then to
construct a value of that type, we need to have a value of the same type, ad

infinitum. In contrast, if the recursive type is µx.1 + x, then we can create the
initial value left () of type 1+(µx.1+x) which leads to the value 〈left ()〉 of type
µx.1 + x and then 〈right 〈left ()〉〉, 〈right 〈right 〈left ()〉〉〉 and so on. In fact the
type µx.1 + x represents the natural numbers in unary format. The semantics
of fold and unfold is simply fold v 7→ 〈v〉 and unfold 〈v〉 7→ v.

3.2 Trace Operators

The definition of traced categories is expressed using a particular monoidal ten-
sor. We have two possible tensors in Π which in principle can be extended to
support trace operators. The natural tensor to use in this case, however, is the
sum operator + as it leads to usual looping constructs as explained next. Specif-
ically, we extend Π with a trace operator that has this typing rule:

c : b1 + b2 ↔ b1 + b3
trace c : b2 ↔ b3

Intuitively, we are given a computation c that accepts a value of type b1 + b2
and we build a looping version trace c that only takes a value of type b2 and
evaluates as follows. The value of type b2 is injected into the sum type b1 + b2
by tagging it with the right constructor and passing it to c. As long as c returns
a value that is tagged with left , that value is fed back to c. As soon as a value
tagged with right is returned, that value is returned as the final answer of the
trace c computation. Formally, we can express this semantics as follows:

(c ◦ loopc) (right v1) 7→ v2

(trace c) v1 7→ v2

(c ◦ loopc) (left v1) 7→ v2

loopc (left v1) 7→ v2 loopc (right v) 7→ v

where loopc is an internal combinator. We note that the evaluation trace c may
diverge.

We now establish that Πo retains all the properties of Π:

Proposition 4. Each combinator c : b1 ↔ b2 has an adjoint c† : b2 ↔ b1.

Proposition 5. Reversibility of Πo. Iff c v 7→ v′ then c†v′ 7→ v.

Proposition 6. The language Πo can be interpreted as a traced category with
+ as the monoidal tensor.

4 Conclusion

We have presented Π and its extension Πo which are languages that have clear
categorical connections and every computation is inherently reversible. We pro-
vide many programming examples in the code accompanying the paper. Finally,
we briefly outline connections with other related work.

Several papers achieve reversibility via compilation [12, 5] whereas we pro-
pose a model of computation, Πo, that is inherently reversible. Proposals for

reversible computation such as rCL [14], SECD-H [9], SE(M)CD [11] and Pen-
dulum [18] consist of an irreversible core and some form of “history tracking”
for reverse execution. Πo does not rely on any such history tracking. The Janus
language [19] is reversible by design, but requires the programmer to divine cor-
rect ‘exit predicates’ for backward determinism, unlike Πo where all expressible
computations are reversible. In spirit, Πo is much like Abramsky’s biorthogonal
automata [1] which lack a term language - but in principle could be given one.

Acknowledgments. We thank Erik Wennstrom for feedback on trace operators
in category theory and the anonymous reviewers for their excellent feedback and
corrections.

References

1. Abramsky, S.: A structural approach to reversible computation. Theor. Comput.
Sci. 347, 441–464 (December 2005)

2. Axelsen, H.B., Glück, R.: What do reversible programs compute? In: FOSSACS.
pp. 42–56 (2011)

3. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17 (1973)
4. Di Pierro, A., Hankin, C., Wiklicky, H.: Reversible combinatory logic. Mathemat-

ical. Structures in Comp. Sci. 16, 621–637 (August 2006)
5. Glück, R., Kawabe, M.: Revisiting an automatic program inverter for lisp. SIG-

PLAN Notices 40(5), 8–17 (2005)
6. Green, A.S., Altenkirch, T.: From reversible to irreversible computations. Electron.

Notes Theor. Comput. Sci. 210, 65–74 (July 2008)
7. Hasegawa, M.: Recursion from cyclic sharing: Traced monoidal categories and mod-

els of cyclic lambda calculi. In: TLCA. pp. 196–213. Springer-Verlag (1997)
8. Hasegawa, M.: On traced monoidal closed categories. Mathematical. Structures in

Comp. Sci. 19, 217–244 (April 2009)
9. Huelsbergen, L.: A logically reversible evaluator for the call-by-name lambda cal-

culus. InterJournal Complex Systems 46 (1996)
10. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In: Mathematical

Proceedings of the Cambridge Philosophical Society. Cambridge Univ Press (1996)
11. Kluge, W.E.: A Reversible SE(M)CD Machine. In: IFL. pp. 95–113 (1999)
12. Mu, S.C., Bird, R.S.: Inverting functions as folds. In: MPC. pp. 209–232 (2002)
13. Mu, S.C., Hu, Z., Takeichi, M.: An injective language for reversible computation.

In: Mathematics of Program Construction. pp. 289–313 (2004)
14. Pierro, A.D., Hankin, C., Wiklicky, H.: Reversible combinatory logic. Mathematical

Structures in Computer Science 16(4), 621–637 (2006)
15. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B.

(ed.) New Structures for Physics, Lecture Notes in Physics, vol. 813, pp. 289–355.
Springer Berlin / Heidelberg (2011)

16. Toffoli, T.: Reversible computing. In: Automata, Languages and Programming. pp.
632–644. Springer-Verlag (1980)

17. Van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Comput.
33, 1109–1135 (May 2004)

18. Vieri, C.J.: Pendulum: A Reversible Computer Architecture. Master’s thesis, MIT
(May 1995)

19. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: PEPM’07. pp. 144–153. ACM (2007)

