
Toward Type-Preserving Compilation of Coq ∗

William J. Bowman
Northeastern University, USA
wjb@williamjbowman.com

1. Introduction
A type-preserving compiler guarantees that a well-typed source
program is compiled to a well-typed target program.

Theorem 1.1 (Example Type Preservation Statement)
If Γ ` e : t then Γ+ ` e+ : t+ (where + denotes compilation)

Type-preserving compilation can support correctness guarantees
about compilers, and optimizations in compiler intermediate lan-
guages (ILs). For instance, Morrisett et al. [5] use type-preserving
compilation from System F to a Typed Assembly Languages (TAL)
to guarantee absence of stuckness, even when linking with arbitrary
(well-typed) TAL code. Tarditi et al. [8] develop a compiler for ML
that uses a typed IL for optimizations.

We develop type-preserving closure conversion for the Calculus
of Constructions (CC). Typed closure conversion has been studied
for simply-typed languages [4, 1, 6] and polymorphic languages [4,
5]. Dependent types introduce new challenges to both typed closure
conversion in particular and to type preservation proofs in general.

2. Typed Closure Conversion
We specify the correctness of closure conversion as a modi�ed
typing rule for functions that guarantees the body of the function is
closed except with respect to the formal parameters:

x : t, . . . ` e : t′ Γ ` Π (x : t, . . .). t′ : U

Γ ` λ (x : t, . . .). e : Π (x : t, . . .). t′
[LAM]

The well-known translation is to use existential types to hide the
type of the environment [4, 5, 1, 7, 6]:

Π x : t. t′ ; ∃α : t′′. (α×Π (xenv : α,x : t+). t′+)

This avoids the problem of translating two source functions with
different environments but the same type to two target functions
with different types.

However, this translation fails when we have type variables, as in
CC. The types t+ and t′+ are not closed. For example, the following
incomplete derivation results from A being free in the types, but not
in the body of the function.

· ` xenv : 1,x : A fails
·,xenv : 1,x : A ` x : A

A : Set ` λ (xenv : 1,x : A).x : Π (xenv : 1,x : A).A

Morrisett et al. [5] simplify the polymorphic type translation
of Minamide et al. [4] with the observation that, in System F,
type variables are computationally irrelevant so they don’t need
to be included in the (run-time) environment. This does not apply
when term variables can appear in types. The situation is further

∗We use a blue sans-serif font to typeset our source language and a bold
red serif font to typeset the target. The paper will be much easier to read if
viewed/printed in color.

complicated by type-level computation; locally, we cannot decide
which variables in a type are free when the type is used. Consider
the following function, ascribed two different types:

λ y : t′. e : let x = e : t in Π y : t′. x
λ y : t′. e : Π y : t′. x

The variable x may or may not be free, depending on the surrounding
context. We must delay the choice of which type variables to include
in the closure until the type is used, i.e., to type check the function.

We solve these problems by adapting the sophisticated translation
Minamide et al. [4] give for System F to dependent types. Their
translation use translucent types, based on translucent sums [2],
to allow the types to depend on the value of the environment in a
restricted way. They then leave the type variables free in the type
translation, and close them in them in the term translation. We
introduce translucent functions via the following subtyping rule:

Γ ` e : t1 Γ,x1 = e : t1,xr : tr . . . ` t2 � t′2

Γ ` Π (x1 : t1,xr : tr . . .). t2 � e⇒Π (xr : tr . . .). t
′
2

We use the additional equivalence given by this rule to unify the
free type variables in the translated type with the closed type of the
translated function. The essentials of the translation are given in
Figure 1.

3. Proving Type Preservation
The usual recipe for proving type preservation is: give a type transla-
tion, lift it to translate typing environments, give a term translation,
then prove Theorem 1.1. In CC this recipe is “thwarted by the infer-
nal way that everything depends on everything else” (from McBride
[3]). We must simultaneously translate types, terms, and environ-
ments. Similarly, we must simultaneously prove preservation of
well-typedness and well-formedness of environments. Since typing
requires equivalences and subtyping, we must preserve these. There-
fore, while Theorem 1.1 is our goal, we must prove the following
additional lemmas.

Lemma 3.1 (Preservation of Substitution)
(t[t′/x])+ ≡ t+[t′+/x]

Lemma 3.2 (Preservation of Reductions)
If Γ ` e Bx e′ then Γ+ ` e+ B? e and e ≡ e′+

Lemma 3.3 (Equivalence Preservation)
If Γ ` e ≡ e′, then Γ+ ` e+ ≡ e′+

Lemma 3.4 (Preservation of Subtyping)
If Γ ` t1 � t2, then Γ+ ` t+1 � t+2

Lemma 3.5 (Type Preservation)
1. If ` Γ then ` Γ+

2. If Γ ` e : t then Γ+ ` e+ : t+

Lemma 3.1 introduces crucial dif�culties to our proof that this
translation is type-preserving. The case for when t = Π x : t. t′

1 2017/1/9

Γ ` e : t ; e where Γ ` e : t

Γ ` t : U ; t Γ, x : t ` t′ : Prop ; t′

Γ ` Π x : t. t′ : Prop ; ∃α : Type i,xte : α. (xte⇒Π x : t. t′)
. . .

Γ, x : t ` e : t′ ; e Γ ` t : U ; t
Γ, x : t ` t′ : U ; t′ x0 : t0, . . . ,xn : tn = fv(t, e, t′) Σenv = Σ x0 : t0. . . .Σ xn : tn.1 env = 〈x0, . . . ,xn〉

Γ ` λ x : t. e : Π x : t. t′ ; pack 〈Σenv, env,λ (xenv : Σenv,x : let x0 = π0 xenv : t0 in . . . t).
let x0 = π0 xenv : t0 in . . . e

〉

Figure 1. Closure Conversion for Terms (Excerpt)

requires that the types t and t′ be left open, hence require our
use of translucent types. The case where t = λ x : t1. e requires
that we show e with t′ substituted for x is equivalent to a closure
whose environment contains mapping x+ to t′+. This requires a new
equivalence rule that corresponds to η-expansion of closures.

Γ ` e B? pack 〈Σenv, env,λ (xenv : Σenv,x : t1). e1〉
Γ ` e′ B? e2

Γ,x : t′1 ` e′1 ≡ unpack 〈α,xte, f〉= e2 in f xte x
where t′1 = t1[env/xenv]

e′1 = e1[env/xenv]

Γ ` e ≡ e′

4. Future Work: Inductive Types
We have extended the translation to the Calculus of Inductive
Constructions (CIC), although our type preservation proofs are not
yet complete. CIC introduces two additional challenges.

The �rst challenge is to distinguish between functions, which
need to be closure-converted, and other syntactic forms that are
con�ated with functions in CIC. For example, CIC uses the Π
type to describe both functions and constants. Similarly, the typing
rule for dependent case expressions heavily uses the function type
to type the motive (a term that computes the return type of the
dependent case analysis) and the branches of the case expression.
If we closure-convert case naïvely, then the typing rule for case
in the target language will be tied to our representation of closures.
For constants, we essentially η-expand them and ensure they appear
fully-applied after elaboration. After this elaboration, constants no
longer have function type. We elaborate the syntax of case to directly
bind arguments to the motive and branches, rather than relying on
functions to bind arguments.

The second challenge is how to closure convert recursive func-
tions and preserve the guard condition. This is particularly chal-
lenging because the guard condition is requires recursive functions
to be syntactically applied to an argument guarded by a constant.
However, inspection of the guard condition shows that the name of
the recursive function can appear (in fact, if it is ever used then it
must appear) in the closure of functions, such as the branches of a
case expression. After closure conversion, we must allow the name
of the recursive function to �ow into certain data structures, namely,
the environment of closures. We develop a new �ow-sensitive guard
condition to track the �ow of the name of the recursive function
and ensure it is still guarded. While we do not prove that this new
guard condition guarantees consistency, the proof that our closure
conversion pass preserves the guard condition gives intuition as to
why it should ensure consistency.

References
[1] A. Ahmed and M. Blume. Typed Closure Conversion Preserves Ob-

servational Equivalence. In ICFP 2008. URL https://dl.acm.org/
citation.cfm?id=1411227.

[2] R. Harper and M. Lillibridge. A Type-theoretic Approach to Higher-
order Modules with Sharing. In POPL 1994. URL http://doi.acm.
org/10.1145/174675.176927.

[3] C. McBride. Outrageous but Meaningful Coincidences: Dependent
Type-safe Syntax and Evaluation. In Workshop on Generic Program-
ming (WGP 2010). URL http://doi.acm.org/10.1145/1863495.
1863497.

[4] Y. Minamide, G. Morrisett, and R. Harper. Typed Closure Conversion. In
POPL 1996. URL http://dx.doi.org/10.1145/237721.237791.

[5] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed
Assembly Language. In POPL 1998. URL http://dx.doi.org/10.
1145/268946.268954.

[6] M. S. New, W. J. Bowman, and A. Ahmed. Fully Abstract Compilation
via Universal Embedding. In ICFP 2016. URL http://doi.acm.
org/10.1145/2951913.2951941.

[7] J. T. Perconti and A. Ahmed. Verifying an Open Compiler Using Multi-
Language Semantics. In ESOP 2014. URL http://dx.doi.org/10.
1007/978-3-642-54833-8_8.

[8] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL:
A Type-Directed Optimizing Compiler for ML. In PLDI 1996. URL
http://doi.acm.org/10.1145/231379.231414.

2 2017/1/9

https://dl.acm.org/citation.cfm?id=1411227
https://dl.acm.org/citation.cfm?id=1411227
http://doi.acm.org/10.1145/174675.176927
http://doi.acm.org/10.1145/174675.176927
http://doi.acm.org/10.1145/1863495.1863497
http://doi.acm.org/10.1145/1863495.1863497
http://dx.doi.org/10.1145/237721.237791
http://dx.doi.org/10.1145/268946.268954
http://dx.doi.org/10.1145/268946.268954
http://doi.acm.org/10.1145/2951913.2951941
http://doi.acm.org/10.1145/2951913.2951941
http://dx.doi.org/10.1007/978-3-642-54833-8_8
http://dx.doi.org/10.1007/978-3-642-54833-8_8
http://doi.acm.org/10.1145/231379.231414

	Introduction
	Typed Closure Conversion
	Proving Type Preservation
	Future Work: Inductive Types

