
1

Type-Preserving CPS Translation of Σ and Π-Types is Not Not Possible
(Technical Appendix)

WILLIAM J. BOWMAN, Northeastern University

YOUYOU CONG, Ochanomizu University

NICK RIOUX, Northeastern University

AMAL AHMED, Northeastern University

ACM Reference format:

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017. Type-Preserving CPS Translation of Σ and Π-Types is Not

Not Possible (Technical Appendix). 1, 1, Article 1 (November 2017), 35 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 THE CALCULUS OF CONSTRUCTIONS (CC)

Our source language is an extension of the intensional Calculus of Constructions (CC) with strong dependent pairs (Σ
types) and dependent let. We typeset this language in a non-bold, blue, sans-serif font. We adapt this presentation from
the model of the Calculus of Inductive Constructions (CIC) given in the Coq reference manual (The Coq Development
Team 2017, Chapter 4).

We present the syntax of CC in Figure 1 in the style of a Pure Type System (PTS) with no syntactic distinction
between terms, which are run-time computations, types, which statically describe terms and compute during type
checking, and kinds, which describe types. We use the phrase łexpressionž to refer to a term, type, or kind in the
PTS syntax. We usually use the meta-variable e to evoke a term expression and A or B to evoke a type expression.
Similarly, we use x to evoke term variables and α for type variables; note that we have no kind-level computation in
this language. We use t for an expression to be explicitly ambiguous about its nature as a term, type, or kind.

The language includes one impredicative universe, or sort, ∗, and its type, □. The syntax of expressions includes the
universe ∗, variables x or α , Π types Π x : A. B, functions λ x : A. e, application e1 e2, dependent let let x = e : A in e′, Σ
types Σ x : A. B, dependent pairs ⟨e1, e2⟩ as Σ x : A. B, and first and second projections fst e and snd e. Note that we
cannot write □ in source programsÐit is only used by the type system. The environment Γ includes assumptions
x : A and definitions x = e : A. Definitions, introduced while type checking let, allow us to convert a variable x to its
definition e, called δ -reduction, and provides additional definitional equivalences compared to application.

For brevity, we omit the type annotations on pairs, ⟨e1, e2⟩, and let expressions, let x = e in e′, when they are clear
from context. We use the notation A→ B for a function type whose result B does not depend on the input.

In Figure 2 we present the convertibility and equivalence relations for CC. These relations are defined over untyped
expressions and are used to decide equivalences between types during type checking. The conversion relation can
also be seen as the dynamic semantics of programs in CC. It does not fix an evaluation order, but this is not important
since CC is effect-free.
We start with the small-step reductions Γ ⊢ e ▷ e′. Note that we label each individual reduction rule with an

appropriate subscript, such as ▷β for β-reduction. When we refer to the undecorated transition Γ ⊢ e ▷ e′ we mean
that e reduces to e′ using some reduction ruleÐ i.e., using one of ▷δ , ▷β , ▷ζ , ▷π1 , or ▷π2 . This relation requires the
environment Γ for δ -reduction as mentioned previously. For brevity, we usually write this relation as e ▷ e′, with the
environment Γ as an implicit parameter. This reduction relation is completely standard, although δ -reduction may

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

XXXX-XXXX/2017/11-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: November 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Universes U ::= ∗ | □

Expressions t, e,A,B ::= ∗ | x | Π x : A. e | λ x : A. e | e e | let x = e : A in e | Σ x : A. B

| ⟨e1, e2⟩ as Σ x : A. B | fst e | snd e

Environments Γ ::= · | Γ, x : A | Γ, x = e : A

Fig. 1. CC Syntax

Γ ⊢ e ▷ e′

x ▷δ e where x = e : A ∈ Γ

(λ x : A. e1) e2 ▷β e1[e2/x]

let x = e2 : A in e1 ▷ζ e1[e2/x]

fst ⟨e1, e2⟩ ▷π1 e1

snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ e ≡ e′

Γ ⊢ e ▷⋆ e1 Γ ⊢ e′ ▷⋆ e1

Γ ⊢ e ≡ e′
[≡]

Γ ⊢ e ▷⋆ λ x : A. e1 Γ ⊢ e′ ▷⋆ e2 Γ, x : A ⊢ e1 ≡ e2 x

Γ ⊢ e ≡ e′
[≡-η1]

Γ ⊢ e ▷⋆ e1 Γ ⊢ e′ ▷⋆ λ x : A. e2 Γ, x : A ⊢ e1 x ≡ e2

Γ ⊢ e ≡ e′
[≡-η2]

Fig. 2. CC Convertibility and Equivalence

be surprising to readers unfamiliar with dependent type theory. We can δ -reduce any variable x to its definition e,
written x ▷δ e.

We define the relation Γ ⊢ e ▷⋆ e′ as the reflexive, transitive, compatible closure of the small-step relation Γ ⊢ e ▷ e′.
This relation can apply the small-step relation any number of times to any sub-expression in any order. We usually
omit the Γ and write e ▷⋆ e′ for brevity, but note that the compatible closure rule for let introduces a new definition
into Γ, as follows.

Γ, x = e : A ⊢ e1 ▷
⋆ e2

Γ ⊢ let x = e : A in e1 ▷
⋆ let x = e : A in e2

We define definitional equivalence Γ ⊢ e ≡ e′ as reduction in the ▷⋆ relation to the same expression, up to η-
equivalence. This algorithmic presentation induces symmetry and transitivity of ≡ without explicit symmetry and
transitivity rules, but requires two symmetric versions of η-equivalence. We usually abbreviate this judgment as
e ≡ e′, leaving Γ implicit.
The typing rules for CC, Figure 3, are completely standard. The judgment ⊢ Γ checks that the environment Γ is

well formed; it is defined by mutual recursion with the typing judgment. The typing judgment Γ ⊢ e : A checks that
expressions are well typed. The rule [Prod-*] implicitly allows impredicativity in ∗, since the domain A could be
in the higher universe □. The rule [Lam] for functions λ x : A. e gives this function the type Π x : A. B, binding the
function’s variable x in the result type B. The rule [App] is the standard dependent application rule. When applying a
dependent function e : Π x : A. B to an argument e′, the argument is substituted into the result type B yielding an
expression e e′ : B[e′/x]. The rule [Let] is similar; however, when checking the body of let x = e′ :A in e, we also adds
a definition x = e′ : A to the environment. This provides strictly more type expressivity than the application rule,
since the body e is typed with respect to a particular value for x while a function is typed with respect to an arbitrary
value. The rule [Sigma] ensures we do not allow impredicative strong Σ types, which are inconsistent (Coquand 1986;
Hook and Howe 1986). Note that the type of a dependent pair Σ x : A. B may have the first component x free in the

2

⊢ Γ

⊢ ·
[W-Empty]

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
[W-Assum]

⊢ Γ Γ ⊢ e : A Γ ⊢ A : U

⊢ Γ, x = e : A
[W-Def]

Γ ⊢ e : A

⊢ Γ

Γ ⊢ ∗ : □
[Ax-*]

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
[Var]

Γ, x : A ⊢ B : ∗

Γ ⊢ Π x : A. B : ∗
[Prod-*]

Γ, x : A ⊢ B : □

Γ ⊢ Π x : A. B : □
[Prod-□]

Γ, x : A ⊢ e : B Γ ⊢ Π x : A. B : U

Γ ⊢ λ x : A. e : Π x : A. B
[Lam]

Γ ⊢ e : Π x : A′
. B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
[App]

Γ ⊢ e′ : A Γ, x = e′ : A ⊢ e : B

Γ ⊢ let x = e′ : A in e : B[e′/x]
[Let]

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗

Γ ⊢ Σ x : A. B : ∗
[Sigma]

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩ as Σ x : A. B : Σ x : A. B
[Pair]

Γ ⊢ e : Σ x : A. B

Γ ⊢ fst e : A
[Fst]

Γ ⊢ e : Σ x : A. B

Γ ⊢ snd e : B[fst e/x]
[Snd]

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A ≡ B

Γ ⊢ e : B
[Conv]

Fig. 3. CC Typing

Kinds κ ::= ∗ | Πα : κ .κ | Π x : A.κ

Types A,B ::= α | λ x : A. B | λ α : κ . B | A e | A B | Π x : A. B | Πα : κ . B | let x = e : A inB

| letα = A : κ inB | Σ x : A. B

Terms e ::= x | λ x : A. e | λ α : κ . e | e e | e A | let x = e : A in e | letα = A : κ in e
| ⟨e1, e2⟩ as Σ x : A. B | fst e | snd e

Environment Γ ::= · | Γ, x : A | Γ, x = e : A, | Γ,α : κ | Γ,α = A : κ

Fig. 4. CC Explicit Syntax

type of the second component B. The rule [Snd] for the second projection of a dependent pair, snd e, replaces the
free variable x by the first projection, giving snd e the dependent type B[(fst e)/x]. Finally, as we have computation
in types, the rule [Conv] allows typing an expression e : A as e : B when A ≡ B. Note that while the equivalence
relation is untyped, we ensure decidability by only using equivalence in [Conv] after type checking both A and B.
Note that for simplicity, we include only term-level pairs of type Σ x : A. B : ∗. Type-level pairs Σ x : A. B : □

introduce numerous minor difficulties. For instance, we can write pairs of terms and types ⟨e,A⟩ or ⟨A, e⟩. In some
cases, it is unclear how this expression should be CPS translated. We discuss type-level pairs further in Section 5.
To make our upcoming CPS translation easier to follow, we present a second version of the syntax for CC in

which we make the distinction between terms, types, and kinds explicit (see Figure 4). The two presentations are
equivalent (Barthe et al. 1999). Distinguishing terms from types and kinds is useful since we only want to CPS translate
terms, because our goal is to internalize only run-time evaluation contexts.

3

Universes U ::= ∗ | □

Terms/Types e,A,B ::= x | λ x : A. e | e e | Π x : A. e | ∗ | e @ A e | let x = e : A in e | Σ x : A.B

| fst e | snd e | ⟨e1, e2⟩ as Σ x : A.B

Local Environment Γ ::= · | Γ, x : A | Γ, x = e : A

Fig. 5. CCk Syntax

2 THE CALCULUS OF CONSTRUCTIONS WITH CPS AXIOMS (CCK)

Our target language CCk is CC extended with a syntax for parametric reasoning about computations in CPS form. . We
add the form e@ A e′ to the syntax of CCk , Figure 5. This form represents a computation e applied to the answer type
A and the continuation e′. The dynamic semantics, Figure 6, are the same as standard application. The equivalence
rule [≡-Cont] states that a computation e applied to its continuation λ x : B. e′ is equivalent to the application of that
continuation to the underlying value of e. We extract the underlying value by applying e to the łhalt continuationž,
encoded as the identity function in our system. The rule [T-Cont] is used to type check applications that use our
new@ syntax. This typing (Figure 7) rule internalizes the fact that a continuation will be applied to one particular
input, rather than an arbitrary value. It tells the type system that the application of a computation to a continuation
e @ A (λ x : B. e′) jumps to the continuation e′ after evaluating e to a value and binding the result to x. We check the
body of the continuation e′ under the assumption that x = e B id, i.e., with the equality that the name x refers to the
underlying value in the computation e, which we access using the interface given by the polymorphic answer type.

The rule [≡-Cont] (Figure 6) is a declarative rule that requires explicit symmetry and transitivity rules to complete
the definition.We give a declarative presentation of this rule for clarity. The algorithmic versions might look something
like the following.

Γ ⊢ e ▷⋆ (e1 @A (λ x : B. e2)) Γ ⊢ (λ x : B. e2) (e1 B id) ≡ e′

Γ ⊢ e ≡ e′
[≡-Cont1]

Γ ⊢ e′ ▷⋆ (e1 @A (λ x : B. e2)) Γ ⊢ e ≡ (λ x : B. e2) (e1 B id)

Γ ⊢ e ≡ e′
[≡-Cont2]

We have not shown that these rules induce symmetry and transitivity.
Note that [≡-Cont] and [T-Cont] internalize a specific łfree theoremž that we need to prove type preservation

of the CPS translation. In particular, [≡-Cont] only holds when the CPS’d term e1 has the expected parametric
type Πα : ∗. (A→ α)→ α given in [T-Cont]. Notice, however, that our statement of [≡-Cont] does not put any
requirements on the type of e1. This is because we use an untyped equivalence based on the presentation of CIC in
Coq (The Coq Development Team 2017, Chapter 4), and this untyped equivalence is necessary in our type-preservation
proof (see Section 3.1). Therefore, we cannot simply add typing assumptions directly to [≡-Cont]. Instead, we rely on
the fact that the term e @ A e′ has only one introduction rule, [T-Cont]. Since there is only one applicable typing
rule, anytime e @ A e′ appears in our type system, e has the required parametric type. Furthermore, while our
equivalence is untyped, we never appeal to equivalence with ill-typed terms; we only refer to the equivalence A′ ≡ B′

in [Conv] after checking that both A′ and B′ are well-typed. For example, suppose the term e @ A e′ occurs in type
A′, and to prove that A′ ≡ B′ requires our new rule [≡-Cont]. Because A′ is well-typed, we know that its subterms,
including e @ A e′, are well-typed. Since e @ A e′ can only be well-typed by [T-Cont], we know e has the required
parametric type.
Finally, notice that in [T-Cont] and [≡-Cont] we use standard application syntax for the term e B id. We only

use the @ syntax in our CPS translation when we require one of our new rules. The type of the identity function
doesn’t depend on any value, so we never need [T-Cont] to type-check the identity continuation. In a sense, e B id is
the normal form of a CPS’d łvaluež so we never need [≡-Cont] to rewrite this termÐi.e., using [≡-Cont] to rewrite
e B id to id (e B id) would just evaluate the original term.

4

Γ ⊢ e ▷ e′

x ▷δ e where x = e ∈ Γ

(λ x : A. e1) e2 ▷β e1[e2/x]

let x = e2 : A in e1 ▷ζ e1[e2/x]

λα : ∗. e1 @A e2 ▷@ (e1[A/α]) e2

Γ ⊢ e ≡ e′

Γ ⊢ e ▷⋆ e1 Γ ⊢ e′ ▷⋆ e1

Γ ⊢ e ≡ e′
[≡]

Γ ⊢ e ▷⋆ λ x : A. e1 Γ ⊢ e′ ▷⋆ e2 Γ, x : A ⊢ e1 ≡ e2 x

Γ ⊢ e ≡ e′
[≡-η1]

Γ ⊢ e ▷⋆ e1 Γ ⊢ e′ ▷⋆ λ x : A. e2 Γ, x : A ⊢ e1 x ≡ e2

Γ ⊢ e ≡ e′
[≡-η2]

Γ ⊢ (e1 @A (λ x : B. e2)) ≡ (λ x : B. e2) (e1 B id)
[≡-Cont]

Γ ⊢ e′ ≡ e

Γ ⊢ e ≡ e′
[≡-Sym]

Γ ⊢ e ≡ e1 Γ ⊢ e1 ≡ e′

Γ ⊢ e ≡ e′
[≡-Trans]

Fig. 6. CCk Convertibility and Equivalence

2.1 Consistency of CCk

We prove that CCk is consistent by giving a model of CCk in the extensional Calculus of Constructions. Boulier et al.
(2017) provide a detailed explanation of this standard technique.

The idea behind the model is that we can translate each use of [≡-Cont] in CCk to a propositional equivalence in
extensional CC. Next, we translate any term that is typed by [T-Cont] into a dependent let. Finally, we establish that
if there were a proof of False in CCk , our translation would construct a proof of False in extensional CC. But since
extensional CC is consistent, there can be no proof of False in CCk . We construct the model in three parts.

(1) produce proofs (in extensional CC) of all propositional equivalences introduced by our translation of [≡-Cont],
(2) show False in CCk is translated to False in extensional CC,
(3) show our translation is type preserving, i.e., it translates a proof of A to a proof of its translation A◦.

As our model is in the extensional CC, it is not clear that type checking in CCk is decidable. We believe that type
checking should be decidable for all programs produced by our compiler, since type checking in our source language
CC is decidable. In the worst case, to ensure decidability we could change our translation to use a propositional
version of [≡-Cont]. The definitional presentation is simpler, but it should be possible to change the translation so
that, in any term that currently relies on [≡-Cont], we insert type annotations that compute type equivalence using
a propositional version of [≡-Cont]. We leave the issue of decidability of type checking in CCk for future work.

2.1.1 Modeling [≡-Cont]. The extensional Calculus of Constructions differs from our source language CC in
only one way: it allows using the existence of a propositional equivalence as a definitional equivalence, as shown
in Figure 8. The syntax and typing rules are exactly the same as in CC presented in Section 1. We write terms in
extensional CC using a italic, black, serif font.
In extensional CC we can model each use of the definitional equivalence [≡-Cont] by [≡-Ext], as long as there

exists a proof p : (e A k) = (k (e B id)), i.e., a propositional proof of [≡-Cont]; we prove this propositional proof
always exists by using the parametricity translation of Keller and Lasson (2012). This translation gives a parametric
model of CC in itself. This translation is based on prior translations that apply to all Pure Type Systems (Bernardy
et al. 2012), but includes an impredicative universe and provides a Coq implementation that we use.
The translation of a type A, written JAK, essentially transforms the type into a relation on terms of that type. On

terms e of type A, the translation JeK produces a proof that e is related to itself in the relation given by JAK. For

5

⊢ Γ

⊢ ·
[W-Empty]

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
[W-Assum]

⊢ Γ Γ ⊢ e : A Γ ⊢ A : U

⊢ Γ, x = e : A
[W-Def]

Γ ⊢ e : A

⊢ Γ

Γ ⊢ ∗ : □
[Ax-*]

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
[Var]

Γ, x : A ⊢ B : ∗

Γ ⊢ Π x : A.B : ∗
[Prod-*]

Γ, x : A ⊢ B : □

Γ ⊢ Π x : A.B : □
[Prod-□]

Γ, x : A ⊢ e : B Γ ⊢ Π x : A.B : U

Γ ⊢ λ x : A. e : Π x : A.B
[Lam]

Γ ⊢ e : Π x : A′
.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
[App]

Γ ⊢ e : A Γ, x = e : A ⊢ e′ : B

Γ ⊢ let x = e : A in e′ : B[e/x]
[Let]

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗

Γ ⊢ Σ x : A.B : ∗
[Sigma]

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩ as Σ x : A.B : Σ x : A.B
[Pair]

Γ ⊢ e : Σ x : A.B

Γ ⊢ fst e : A
[Fst]

Γ ⊢ e : Σ x : A.B

Γ ⊢ snd e : B[fst e/x]
[Snd]

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A ≡ B

Γ ⊢ e : B
[Conv]

Γ ⊢ e : Πα : ∗. (B→ α)→ α Γ ⊢ A : ∗ Γ, x = e B id ⊢ e′ : A

Γ ⊢ e @ A (λ x : B. e′) : A
[T-Cont]

Fig. 7. CCk Typing

Γ ⊢ e1 ≡ e2

. . .

Γ ⊢ p : e1 = e2

Γ ⊢ e1 ≡ e2
[≡-Ext]

Fig. 8. Additional Equivalence Rule for Extensional CC

example, a type ∗ is translated to the relation J∗K = λ (x ,x ′ : ∗). x →x ′→∗. The translation of a polymorphic function
type JΠ α : ∗.AK is the following.

λ (f , f ′ : (Π α : ∗.A)).Π (α ,α ′ : ∗).Π α r : J∗Kα α ′
. (JAK (f α) (f ′ α ′))

This relation produces a proof that the bodies of functions f and f ′ are related when provided a relation α r for the two
types of α and α ′. This captures the idea that functions at this type must behave parametrically in the abstract type α .
This translation gives us Theorem 2.1 (Parametricity for extensional CC), i.e., that every expression in extensional CC
is related to itself in the relation given by its type.

Theorem 2.1 (Parametricity for extensional CC). If Γ ⊢ t : t ′ then JΓK ⊢ JtK : Jt ′K t t

We apply Theorem 2.1 to our CPS type Π α :∗. (B→α)→α to prove Lemma 2.1. Since a CPS’d term is a polymorphic
function, we get to provide a relation α r for the type α . The translation then gives us a proof that e A k and e B id are
related by α r , so we simply choose α r to be a relation that guarantees e A k = k (e B id). We formalize part of the
proof in Coq in our supplementary materials (Bowman et al. 2017). By [≡-Ext], Theorem 2.1, and the relation just
described, we arrive at a proof of Lemma 2.1 for CPS’d computations encoded in the extensional CC.

Lemma 2.1 (Continuation Shuffling). If Γ ⊢ A : ∗, Γ ⊢ B : ∗, Γ ⊢ e : Π α : ∗. (B → α) → α , Γ ⊢ k : B → A, and

Γ ⊢ e : Π α : ∗. (B → α) → α then Γ ⊢ e A k ≡ k (e B id)

6

Γ ⊢ e : A {◦ e

. . .

Γ ⊢ e : _ {◦ e Γ ⊢ B : _ {◦ B Γ ⊢ A : _ {◦ A Γ, x = e B id ⊢ e′ : A {◦ e
′

Γ ⊢ e @ A (λ x : B. e′) : A {◦ let x = e B id : B in e ′
[Un-Cont]

Fig. 9. Translation from CCk to Extensional CC (excerpt)

Note that this lemma relies on the type of the term e . We must only appeal to this lemma, and the equivalence
justified by it, when e has the right type. In CCk , this is guaranteed by the typing rule [T-Cont], as discussed earlier
in this section.

2.1.2 Modeling [T-Cont]. In Figure 9 we present the key translation rule for modeling CCk in extensional CC. All
other rules are inductive on the structure of typing derivations. Note that since we only need to justify the additional
typing rule [T-Cont], this is the only rule that is changed by the translation. This translation rule is essentially the
same rule from the inverse CPS given by Flanagan et al. (1993), although we do not necessarily produce output in
A-normal form (ANF) since we only translate uses of this one typing rule.

For brevity in our proofs, we define the following notation for the translation of terms and types from CCk into
extensional CC.

e◦
def
= e where Γ ⊢ e : A {◦ e

By writing e◦, we refer to the term produced by the translation with the typing derivation Γ ⊢ e : A as an implicit
parameter.

First, we show that the definition of False is preserved. We define False as Πα : ∗.α , i.e., the function that accepts
any proposition and returns a proof that the proposition holds. It is simple to see that this type has type ∗ in CCk by
the rule [Prod-*]. Note that Πα : ∗.α is translated to Π α : ∗. α of type ∗, i.e., False is translated to False .

Lemma 2.2 (False Preservation). Γ ⊢ (Πα : ∗.α) : ∗ {◦ Π α : ∗. α

Next, to show type preservation, we must first show that equivalence is preserved since the type system appeals to
equivalence. A crucial lemma to both equivalence preservation and type preservation is compositionality, which says
that the translation commutes with substitution.

Lemma 2.3 (Compositionality). (e[e′/x])◦ ≡ e◦[e′◦/x]

Proof. By induction on the typing derivation of e. There is one interesting case.

Case [T-Cont] e = e1 @ B (λ x′ : A. e2) and e◦ = let x ′
= (e◦1 A

◦ id) in e◦2
Without loss of generality, assume x , x′.
It suffices to show that
(e1[e

′/x]@ B[e′/x] (λ x′ : A. e2)[e
′/x])◦ = (let x ′

= (e◦1 A
◦ id) in e◦2)[e

′◦/x]

(e1[e
′/x] @ B[e′/x] (λ x′ : A. e2)[e

′/x])◦ (1)

= (e1[e
′/x] @ B[e′/x] (λ x′ : A[e′/x]. e2[e

′/x]))◦ by definition of substitution (2)

= (let x ′
= ((e1[e

′/x])◦ (A[e′/x])◦ id) in (e2[e
′/x])◦) by definition of the translation (3)

= (let x ′
= (e◦1[e

′◦/x] A◦[e′◦/x] id) in e◦2[e
′◦/x]) by the induction hypothesis (4)

= (let x ′
= e◦1 A

◦ id in e◦2)[e
′◦/x] by definition of substitution (5)

□

The equivalence rules of extensional CC with the addition of Lemma 2.1 (Continuation Shuffling) are the same as
CCk . Therefore, to show that equivalence is preserved, it suffices to show that reduction sequences are preserved.
We first show that single-step reduction is preserved, Lemma 2.4, which easily implies preservation of reduction
sequences, Lemma 2.5.

Lemma 2.4 (Preservation of One-Step Reduction). If e1 ▷ e2, then e◦1 ▷
⋆ e ′ and e◦2 ≡ e ′

Proof. By cases on the reduction step e1 ▷ e2. There is one interesting case.

7

Case e = (λα : ∗. e1)@ B (λ x′ : A. e2) ▷@ (e1[B/α]) (λ x′ : A. e2)
By definition e◦ = (let x ′

= ((λα : ∗. e1)
◦ A◦ id) in e◦2) ▷ζ e◦2[((λα : ∗. e1)

◦ A◦ id)/x ′]

We must show ((e1[B/α]) (λ x′ : A. e2))
◦ ≡ e◦2[((λα : ∗. e1)

◦ A◦ id)/x ′].

((e1[B/α]) (λ x′ : A. e2))
◦ (6)

≡ ((e◦1[B
◦/α]) (λ x ′ : A◦

. e◦2)) by Lemma 2.3 and definition of ◦ (7)

≡ (λ α : ∗. e◦1) B
◦ (λ x ′ : A◦

. e◦2) by [≡] and ▷β (8)

≡ (λ x ′ : A◦
. e◦2) ((λ α : ∗. e◦1) A

◦ id) by Lemma 2.1 (Continuation Shuffling) (9)

≡ e◦2[((λ α : ∗. e◦1) A
◦ id)/x ′] by [≡] and ▷β (10)

≡ e◦2[((λα : ∗. e1)
◦ A◦ id)/x ′] by Lemma 2.3 (11)

□

Lemma 2.5 (Preservation of Reduction Seqences). If e1 ▷
⋆ e2, then e◦1 ▷

⋆ e ′ and e◦2 ≡ e ′.

Proof. By induction on the length n of the reduction sequence e1 ▷
n e2. Follows from Lemma 2.4 (Preservation of

One-Step Reduction). □

Lemma 2.6 (Eqivalence Preservation). If e1 ≡ e2, then e◦1 ≡ e◦2

Finally, we can show type preservation, which completes our proof of consistency. Since the translation is homo-
morphic on all typing rules except [T-Cont], there is only one interesting case in the proof of Lemma 2.7. We must
show that [Un-Cont] is type preserving. Note that the case for [Conv] appeals to Lemma 2.6.

Lemma 2.7 (Type Preservation). If Γ ⊢ e : A then Γ
◦ ⊢ e◦ : A◦

Proof. By induction on the derivation Γ ⊢ e : A. There is one interesting case.

Case [T-Cont]
We have the following.

Γ ⊢ e1 : Πα : ∗. (B→ α)→ α Γ ⊢ A : ∗ Γ, x′ = e1 B id ⊢ e2 : A

Γ ⊢ e1 @A (λ x′ : B. e2) : A

We must show Γ
◦ ⊢ let x ′

= (e◦1 B
◦ id) in e◦2 : A

◦.
By [Let], it suffices to show
• Γ

◦ ⊢ (e◦1 B
◦ id) : B◦, which follows easily by the induction hypothesis applied to the premises of [T-Cont].

• Γ
◦
,x ′
= (e◦1 B

◦ id) : B◦ ⊢ e◦2 : A
◦, which follows immediately by the induction hypothesis. □

Theorem 2.2 (Consistency of CCk). There does not exist a closed term e such that · ⊢ e : False.

8

3 CALL-BY-NAME CPS TRANSLATION OF CC

We now present our call-by-name CPS translation (CPSn) of CC. The main differences between our translation and
the one by Barthe and Uustalu (2002) are that we use a locally polymorphic answer type instead of a fixed answer type,
which enables our type-preservation proof of snd e, and that we use a domain-full target language, which supports
decidable type-checking.
We need a computation translation and a value translation on types. But in addition to types, we will need to

translate universes, kinds, and terms as well. All of our translations are defined by induction on the typing derivations.
This is important when translating to a domain-full target language, since the domain annotations we generate come
from the type of the term we are translating. However, we find it useful to abbreviate these with t÷ (for computation)
and t+ (for value translation). Below we give abbreviations for all of the translation judgments we define for our CPS
translation. Note that anywhere we use this notation, we require the typing derivation as an implicit parameter.

A÷ def
= A where Γ ⊢ A : ∗{n

A÷ A

e÷
def
= e where Γ ⊢ e : A{n

e e

U+
def
= U where Γ ⊢ U {n

U
U

κ+
def
= κ where Γ ⊢ κ : U {n

κ κ

A+
def
= A where Γ ⊢ A : κ {n

A
A

The CPSn translations on universes, kinds, and types are defined in Figure 10. We define the translation for kinds
CPSnκ and universe CPSn

U
, which we abbreviate with +. There is no separate computation translation for kinds or

universes. We only have separate computation and value translations for types since we only internalize the concept
of evaluation at the term-level, and types describe term-level computations and term-level values. Recall that this is
the call-by-name translation, so function arguments, even type-level functions, are still computations. Note, therefore,
that the rule [CPSnκ -ProdA] uses the computation translation on the domain annotation A of Π x : A.κÐi.e., the kind
describing a type-level function that abstracts over a term of type A.

For types, we define a value translation CPSn
A
and a computation translation CPSn

A÷ . Most rules are straightforward.
We translate type-level variables α in-place in rule [CPSn

A
-Var]. Again, since this is the CBN translation, we use the

computation translation on domain annotations. The rule [CPSn
A
-Constr] for the value translation of type-level

functions that abstract over a term, λ x : A. B, translates the domain annotation A using the computation translation.
The rule for the value translation of a function type, [CPSn

A
-Prod], translates the domain annotation A using the

computation translation. This means that a function is a value when it accepts a computation as an argument. The
rule [CPSn

A
-Sigma] produces the value translation of a pair type by translating both components of a pair using the

computation translation. This means we consider a pair a value when it contains computations as components. Note
that since our translation is defined on typing derivations, we have an explicit translation of the conversion rule
[CPSn

A
-Conv].

There is only one rule for the computation translation of a type, [CPSn
A÷-Comp], which is the polymorphic answer

type translation. Notice that [CPSn
A÷-Comp] is defined only for types of kind ∗, since only types of kind ∗ have

inhabitants. For example, we cannot apply [CPSn
A÷-Comp] to type-level function since no term inhabits a type-level

function.
The CPSn translation on terms is defined in Figure 11 and Figure 12. Intuitively, we translate each term e of type A

to e of type Πα : ∗. (A→ α)→ α , where A is the value translation of A. This type represents a computation that,
when given a continuation k that expects a value of type A, promises to call k with a value of type A. Since we have
only two value forms in the call-by-name translation, we do not explicitly define a separate value translation, but
inline that translation. Note that the value cases, [CPSne -Fun] and [CPSne -Pair], feature the same pattern: produce a
computation λα .λ k. k v that expects a continuation and then immediately calls that continuation on the value v. In
the case of [CPSne -Fun], the value v is the function λ x : A. e produced by translating the source function λ x : A. e
using the computation type translation from A {n

A÷ A and the computation term translation e {n
e e. In the case of

[CPSne -Pair], the value we produce ⟨e1, e2⟩ contains computations, not values.
The rest of the translation rules are for computations. Notice that while all terms produced by the term translation

have a computation type, all continuations take a value type. Since this is a CBN translation, we consider variables
as computations in [CPSne -Var]. We translate term variables as an η-expansion of a CPS’d computation. We must
η-expand the variable case to guarantee CBN evaluation order, as we discuss shortly. In [CPSne -App] we encode
the CBN evaluation order for function application e e′ in the usual way. We translate the computations e {n

e e

9

and e′ {n
e e′. First we evaluate e to a value f , then apply f to the computation e′. The application f e′ is itself a

computation, which we call with the continuation k.
Notice that only the translation rules [CPSne -Fst] and [CPS

n
e -Snd] use the new@ form. To type check the translation

of snd e produced by [CPSne -Snd], we require the rule [T-Cont] when type checking the continuation that performs
the second projection. While type checking the continuation, we know that the value y that the continuation receives
is equivalent to e÷ α id. Now, the reason we must use the@ syntax in the in the translation [CPSne -Fst] is so that we
can apply the [≡-Cont] rule to resolve the equivalence of the two first projections in the type of the second projection.
That is type preservation fails because we must show equivalence between (fst e)÷ and fst y. Since these are the only
two cases that require our new rules, these are the only cases where we use the @ form in our translation; all other
translation rules use standard application. In Section 4, we will see that the CBV translation must use the@ form
much more frequently since, intuitively, our new equivalence rule recovers a notion of łvaluež in our CPS’d language,
and in call-by-value types can only depend on values.

Our CPS translation encodes the CBN evaluation order explicitly so that the evaluation order of compiled terms is
independent of the target language’s evaluation order. This property is not immediately obvious since the [CPSne -Let]
rule binds a variable x to an expression e, making it seem like there are two possible evaluation orders: either evaluate
e first, or substitute e for x first. Note, however, that our CBN translation always produces a λ termÐeven in the
variable case since [CPSne -Var] employs η-expansion as noted above. Therefore, in the [CPSne -Let] rule e will always
be a value, which means it doesn’t evaluate in either CBN or CBV. Therefore, there is no ambiguity in how to evaluate
the translation of let.
The translation rule [CPSne -Conv] is deceptively simple. We could equivalently write this translation as follows,

which makes its subtlety apparent.

Γ ⊢ e : B Γ ⊢ A ≡ B Γ ⊢ e : B{n
e e Γ ⊢ A : κ {n

A A Γ ⊢ B : κ {n
A B

Γ ⊢ e : A{n
e λα : ∗.λ k : A→ α . e α (λ x : B. k x)

[CPSne -Conv]

Notice now that while the continuation k expects a term of type A, we call k with a term of type B. Intuitively, this
should be fine since A and B should be equivalent, but formally this introduces a subtlety in the staging of our proof
of type preservation, which we discuss next in Section 3.1.
We lift the translations to environments in the usual way. Since this is the CBN translation, we recur over the

environment applying the computation translation.

3.1 Proof of Type Preservation for CPSn

In a dependent type system, type preservation requires coherence, which essentially tells us that the translation
preserves definitional equivalence. Since equivalence is defined by reduction, we first have to show that reduction
sequences are preserved. Since reduction relies on substitution, we first must show compositionality, i.e., that the
translation commutes with substitution.

However, there is a problemwith the proof architecture for CPS. Typed CPS for a domain-full target language inserts
the type of every term into the output as a type annotation on the continuation. For example, e : A is compiled to
λα : ∗.λ k :A+→ α . (. . .). Therefore, the translation is defined on typing derivations, not on syntax. This introduces
a problem in the case of the translation of the typing rule [Conv]. As alluded to above when describing [CPSne -Conv],
in order to preserve typing, we must first show coherence, i.e., that we preserve equivalence. Working with the second
definition we gave for the [CPSne -Conv] rule, we need to show that the following term is well-typed.

λ k : A+→ α . e÷ α (λ x : B+. k x)

Note that this term seems to only make sense when A+ ≡ B+. While we have A ≡ B from the source typing derivation,
we don’t know that A+ ≡ B+ unless we have coherence. But if equivalence is only defined on well-typed terms, as
is the case in some dependently typed languages, we must first prove type preservation to know that A+ and B+

are well typed before we can prove coherence. So we have a circularity: type preservation requires coherence, but
coherence requires type preservation.

A similar problem arises in other dependent typing rules, like the translation of application. In the case of application,
to show type preservation we must show compositionality, i.e., that the translation commutes with substitution

10

up to equivalence. Again we have a circularity: we need type preservation to prove compositionality, but to prove
compositionality we need type preservation.
Barthe et al. (1999) explain this in detail, and their solution is to use a domain-free target language. This avoids

the circularity because when there are no type annotations to generate, the translation can be defined on the syntax
instead of typing derivations.
We solve the problem by using an untyped equivalence, which is based on the equivalence for the Calculus of

Inductive Constructions from the Coq reference manual (The Coq Development Team 2017, Chapter 4). Since the
equivalence is untyped, we can show equivalence between terms with different domain annotations as long as their
behavior is equivalent. This allows us to stage the proof: we can prove compositionality before coherence, and prove
coherence before type preservation. While it seems surprising that we can prove equivalence between possibly
ill-typed terms, recall that in the type system, we only appeal to the equivalence after checking that the terms we
wish to prove equivalent are well typed. We can think of this equivalence as proving a stronger equivalence than
we provide for well-typed terms, allowing us to prove a stronger form of coherence: in addition to preserving all
well-typed equivalences, we also preserve certain equivalences that are valid according to their dynamic behavior,
but conservatively ruled out by the strong type system. From this version of coherence, we are able to prove type
preservation.
The proofs in this section are staged as follows. First we show compositionality (Lemma 3.1), since reduction is

defined in terms of substitution. Then we show that the translation preserves reduction sequences (Lemma 3.2 and
Lemma 3.3), which allows us to show coherence (Lemma 3.4). Using compositionality and coherence, we prove that
the translation is type preserving (Lemma 3.5).
We now show Lemma 3.1, which states that the CPSn translation commutes with substitution. The formal state-

ment of the lemma is somewhat complicated since we have the cross product of four syntactic categories and two
translations. However, the intuition is simple: first substituting and then translating is equivalent to translating and
then substituting.

This lemma is critical to our proofs. Since reduction is essentially defined by substitution, this lemma does most of
the work in showing that the translation preserves reduction. However, it is also necessary in type preservation when
showing that a dependent type is preserved. A dependent type, such as B[e′/x] produced by the rule [App], occurs
when we perform substitution into a type. We want to show, for example, that if e : B[e′/x] then the translation of e
has the type translation (B[e′/x])÷. Since our translation is compositional, i.e., commutes with substitution, we know
how to translate B[e′/x] by simply translating B and e′.

Lemma 3.1 (CPSn Compositionality).

(1) (κ[A/α])+ ≡ κ+[A+/α]

(2) (κ[e/x])+ ≡ κ+[e÷/x]

(3) (A[B/α])+ ≡ A+[B+/α]

(4) (A[e/x])+ ≡ A+[e÷/x]

(5) (A[B/α])÷ ≡ A÷[B+/α]

(6) (A[e/x])÷ ≡ A÷[e÷/x]

(7) (e[A/α])÷ ≡ e÷[A+/α]

(8) (e[e′/x])÷ ≡ e÷[e′÷/x]

Proof. In the PTS syntax, we represent source expressions as t[t ′/x]. The proof is by induction on the typing
derivations for t. Note that our ÷ and + notation implicitly require the typing derivations as premises. The proof is
completely straightforward. Part 6 follows immediately by part 3. Part 7 follows immediately by part 4. We give
representative cases for the other parts.

Case [Ax-*], parts 1 and 2. Trivial, since no free variables appear in ∗.
Case [Prod-*] and [Prod-□]: t = Π x : B.κ ′

Sub-Case Part 1. We must show that ((Π x : B.κ ′)[A/α])+ = (Π x : B.κ ′)+[A+/α].

((Π x : B.κ ′)[A/α])+ (12)

= (Π x : B[A/α].κ ′[A/α])+ by definition of substitution (13)

= Π x′ : (B[A/α])÷. (κ ′[A/α])+ by definition of the translation (14)

= Π x′ : B÷[A+/α].κ ′+[A+/α] by parts 1 and 5 of the induction hypothesis (15)

= (Π x′ : B÷.κ ′+)[A+/α] by definition of substitution (16)

= (Π x ′ : B.κ ′)+[A+/α] by definition of the translation (17)

11

Sub-Case Part 2. Similar to the previous subcase.
Case [Var]
Sub-Case Part 3 t = α ′. Part 4 is trivial since x is not free in α .

We must show that (α ′[A/α])+ = α ′[A+/α].
Sub-Sub-Case α = α ′. It suffices to show that A+ = A+, which is trivial.
Sub-Sub-Case α , α ′. α+ = α by definition.
Sub-Case x, parts 7 and 8. Similar to previous case.
Case [App]
Sub-Case t = e1 e2, Part 7

We must show ((e1 e2)[A
′/α ′])÷ = (e1 e2)

÷[A′+/α ′].

((e1 e2)[A
′/α ′])÷ (18)

= (e1[A/α
′] e2[A

′/α ′])÷ by definition of substitution (19)

= λα : ∗.λ k : ((B[A′/α ′])+[(e2[A
′/α ′])÷/x])→ α .

(e1[A
′/α ′])÷ α (λ f : Π x : (A[A′/α ′])÷. (B[A′/α ′])÷.

(f (e2[A
′/α ′])÷) α k)

by def. of translation (20)

= λα : ∗.λ k : (B+[A′+/α ′][e÷2 [A
′+/α ′]/x])→ α .

e÷1 [A
′+/α ′] α (λ f : Π x : A÷[A′+/α ′]. B÷[A′+/α ′].

(f e÷2 [A
′+/α ′]) α k)

by part 3, 5, and 7 of IH (21)

= (λα : ∗.λ k : (B+[e÷2 /x])→ α .

e÷1 α (λ f : Π x : A÷
. B÷.

(f e÷2) α k))[A′+/α ′]

by definition of substitution (22)

= (e1 e2)
÷[A′+/α ′] by definition of translation (23)

Sub-Case Part 8
We must show ((e1 e2)[e/x])

÷
= (e1 e2)

÷[e÷/x].
Similar to previous case.

Case [Conv]. The proof is trivial, now that we have staged the proof appropriately. We give part 8 as an
example.

Γ ⊢ e : B Γ ⊢ A : U Γ ⊢ A ≡ B

Γ ⊢ e : A
We must show that (e[e′/x])÷ ≡ e÷[e′÷/x] (at type A). Note that by part 8 of the induction hypothesis, we
know that (e[e′/x])÷ ≡ e÷[e′÷/x] (at the smaller derivation for type B). But recall that our equivalence cares
nothing for types, so the proof is complete. □

We next prove that the translation preserves reduction sequences, Lemma 3.2 and Lemma 3.3. Note that kinds do
not take steps in the one step reduction, but can in the ▷⋆ relation since it reduces under all contexts. As mentioned
earlier, this is necessary to show equivalence is preserved, since equivalence is defined in terms of reduction. Note
that we can only preserve reduction up to equivalence, in particular η-equivalence. This intuition for this is simple.
The computation translation of a term e′÷ always produce a lambda expression λα .λ k. e′′. However, when e÷ ▷⋆ e′,
we do not know that the term e′ is equal to a lambda expression, although it is η equivalent to one.

Lemma 3.2 (CPSn Preserves One-Step Reduction).

• If Γ ⊢ e : A and e ▷ e′ then e÷ ▷⋆ e′ and e′ ≡ e′÷

• If Γ ⊢ A : κ and A ▷ A′ then A+ ▷⋆ A′ and A′ ≡ A′+

• If Γ ⊢ A : ∗ and A ▷ A′ then A÷
▷
⋆ A′ and A′ ≡ A′÷

Proof. The proof is straightforward by cases on the ▷ relation. We give some representative cases.

Case x ▷δ e′ where x = e′ : A′ ∈ Γ

It suffices to show that x÷ ▷δ e′÷ where x÷ = e′÷ : A′÷ ∈ Γ+, which follows by [CPSne -Def].
Case (λ x : _. e1) e2 ▷β e1[e2/x]

12

We must show that ((λ x : _. e1) e2)
÷
▷
⋆ e′ and e′ ≡ (e1[e2/x])

÷.

((λ x : _. e1) e2) (24)

= λα : ∗.λ k : _. (λα : ∗.λ k : _. k (λ x : _. e÷1)) α (λ f : _. (f e÷2) α k) by definition of translation (25)

▷
⋆
λα : ∗.λ k : _. (((λ x : _. e÷1) e

÷
2) α k) by ▷β (26)

▷
⋆
λα : ∗.λ k : _. (e÷1 [e

÷
2 /x]) α k (27)

≡ e÷1 [e
÷
2 /x] by [≡-η] (28)

= (e1[e2/x])
÷ by Lemma 3.1 (29)

Case snd ⟨e1, e2⟩ ▷π2 e2
We must show that (snd ⟨e1, e2⟩)

÷
▷
⋆ e′ and e′ ≡ e÷2 .

(snd ⟨e1, e2⟩)
÷ (30)

= λα : ∗.λ k : _. (λα : ∗.λ k : _. k ⟨e÷1 , e
÷
2 ⟩) @ α λ y : _. let z = snd y in z α k (31)

▷
⋆
λα : ∗.λ k : _. let z = snd ⟨e÷1 , e

÷
2 ⟩ in z α k (32)

▷
⋆
λα : ∗.λ k : _. e÷2 α k (33)

≡ e÷2 by [≡-η] (34)

□

Lemma 3.3 (CPSn Preserves Reduction Seqences).

• If Γ ⊢ e : A and e ▷⋆ e′ then e÷ ▷⋆ e′ and e′ ≡ e′÷

• If Γ ⊢ A : κ and A ▷⋆ A′ then A+ ▷⋆ A′ and A′ ≡ A′+

• If Γ ⊢ A : ∗ and A ▷⋆ A′ then A÷
▷
⋆ A′ and A′ ≡ A′÷

• If Γ ⊢ κ : U and κ ▷⋆ κ ′ then κ+ ▷⋆ κ ′ and κ ′ ≡ κ ′+

Proof. The proof is straightforward by induction on the length of the reduction sequence. The base case is trivial
and the inductive case follows by Lemma 3.2 and the inductive hypothesis. □

Lemma 3.4 (CPSn Coherence).

• If e ≡ e′ then e÷ ≡ e′÷

• If A ≡ A′ then A+ ≡ A′+
• If A ≡ A′ then A÷ ≡ A′÷

• If κ ≡ κ ′ then κ+ ≡ κ ′+

Proof. The proof is by induction on the derivation of e ≡ e′. The base case follows by Lemma 3.3, and the cases of
η-equivalence follow from Lemma 3.3, the induction hypothesis, and the fact that we have the same η-equivalence
rules in the CCk . □

We first prove type preservation, Lemma 3.5, using the explicit syntax on which we defined CPSn . This proof is our
central contribution to the call-by-name translation. In this lemma, proving that the translation of snd e preserves
typing requires both the new typing rule [T-Cont] and the equivalence rule [≡-Cont]. The rest of the proof is
straightforward.

Lemma 3.5 (CPSn is Type Preserving (Explicit Syntax)).

(1) If ⊢ Γ then ⊢ Γ+

(2) If Γ ⊢ e : A then Γ+ ⊢ e÷ : A÷

(3) If Γ ⊢ A : κ then Γ+ ⊢ A+ : κ+

(4) If Γ ⊢ A : ∗ then Γ+ ⊢ A÷ : ∗+

(5) If Γ ⊢ κ : U then Γ+ ⊢ κ+ : U+

Proof. All cases are proven simultaneously by mutual induction on the type derivation and well-formedness
derivation. Part 4 follows easily by part 3 in every case, so we elide its proof. Most cases follow easily from the
induction hypotheses. We give proofs of the cases where reasoning is not simple, including those that require subtle
reasoning about the universe hierarchy and the cases related to pairs.

13

Case Part 5, [Ax-*]: Γ ⊢ ∗ : □
We must show that Γ+ ⊢ ∗+ : □+, which follows by part 1 of the induction hypothesis and by definition of

the translation, since ∗+ = ∗ and □+ = □.
Case [Prod-*]: Γ ⊢ Π x : e1. e2 : κ

There are two sub-cases: either e2 is a type, or a kind.
Sub-Case Part 3, e2 = B, i.e., is a type.

There are two sub-cases: either e1 is a type or a kind.
Sub-Sub-Case e1 = A, i.e., is a type.

We have Γ ⊢ Π x : A. B : ∗.
We must show that Γ+ ⊢ (Π x : A. B)+ : ∗+

By definition, must show Γ+ ⊢ Π x : A÷
. B÷ : ∗, which follows by the part 4 of the induction hypothesis

applied to A and B.
Sub-Sub-Case e1 = κ, i.e., is a kind.

We have Γ ⊢ Πα : κ . B : ∗.
We must show that Γ+ ⊢ (Πα : κ . B)+ : ∗+

By definition, must show Γ+ ⊢ Πα : κ+. B÷ : ∗, which follows by the part 4 of the induction hypothesis
applied to B, and part 5 of the induction hypothesis applied to κ.

Sub-Case Part 5, e2 = κ
′, i.e., is a kind.

There are two sub-cases: either e1 is a type or a kind.
Sub-Sub-Case e1 = A, i.e., is a type.

We have Γ ⊢ Π x : A.κ ′ : U .
We must show that Γ+ ⊢ (Π x : A.κ ′)+ : ∗+

By definition, must show Γ+ ⊢ Π x : A÷
.κ ′+ : ∗, which follows by the part 4 of the induction hypothesis

applied to A and part 5 of the induction hypothesis applied to κ.
Sub-Sub-Case e1 = κ, i.e., is a kind.

We have Γ ⊢ Πα : κ .κ ′ : ∗.
We must show that Γ+ ⊢ (Πα : κ .κ ′)+ : ∗+

By definition, must show Γ+ ⊢ Πα : κ+.κ ′+ : ∗, which follows by the part 5 of the induction hypothesis
applied to κ and κ ′+.

Case [Prod-□] Similar to the previous case, except with ∗ replaced by □; there are two fewer cases since this
must be a kind.

Case [Sigma]: Γ ⊢ Σ x : A. B : ∗
We must show that Γ+ ⊢ Σ x : A÷

. B÷ : ∗, which follows easily by the part 4 of the induction hypothesis
applied to A and B.

Case [Pair] Γ ⊢ ⟨e1, e2⟩ : Σ x : A. B
By definition of the translation, we must show that
Γ+ ⊢ λα : ∗.λ k : (Σ x : A÷

. B÷ → α).

k ⟨e÷1 , e
÷
2 ⟩ as Σ x : A÷

. B÷ : Πα : ∗. (Σ x : A÷
. B÷ → α)→ α

It suffices to show that Γ+ ⊢ ⟨e÷1 , e
÷
2 ⟩ as Σ x : A÷

. B÷ : Σ x : A÷
. B÷, which follows easily by part 2 of the

induction hypothesis applied to Γ ⊢ e1 : A and Γ ⊢ e2 : B[e1/x].
Case [Snd] Γ ⊢ snd e : B[fst e/x]

We must show that λα : ∗.λ k : B+[(fst e)÷/x]→ α .

e÷ @ α (λ y : Σ x : A÷
. B÷. let z = snd y in z α k)

has type (B[fst e/x])÷.
By part 6 of Lemma 3.1, and definition of the translation, this type is equivalent toΠα : ∗. (B+[(fst e)÷/x]→ α)→ α

By [Lam], it suffices to show that

Γ+,α : ∗, k : B+[(fst e)÷/x]→ α ⊢ e÷ @ α (λ y : Σ x : A÷
. B÷. let z = snd y in z α k) : α

This is the key difficulty in the proof. The term z α has type (B+[fst y/x]→ α)→ α while the term k has
type B+[(fst e)÷/x]→α . To show that z α k is well-typed, we must show that (fst e)÷ ≡ fst y. We proceed by
our new typing rule [T-Cont], which will help us prove this.

14

First, note that e÷ (Σ x : A÷
. B÷) id is well-typed. By part 4 of the induction hypothesis we know that

Γ+ ⊢ A÷ : ∗ and Γ+, x : A÷ ⊢ B÷ : ∗. By part 2 of the induction hypothesis applied to Γ ⊢ e : Σ x :A. B, we know
Γ+ ⊢ e÷ : Πα : ∗. (Σ x : A÷

. B÷ → α)→ α .
Now, by [T-Cont], it suffices to show that

Γ+,α : ∗, k : B+[(fst e)÷/x]→ α , y = e÷ Σ x : A÷
. B÷id ⊢ let z = snd y in z α k : α

Note that we now have the definitional equivalence y = e÷ (Σ x : A÷
. B÷) id. By [Let] it suffices to show

Γ+,α : ∗, k : B+[(fst e)÷/x]→ α , y = e÷ Σ x : A÷
. B÷ id, z = snd y : B÷[fst y/x] ⊢ z α k : α

Note that

z : B÷[fst y/x] (35)

= Πα : ∗. (B+[fst y/x]→ α)→ α by definition of B÷ (36)

≡ Πα : ∗. (B+[fst (e÷ _ id)/x]→ α)→ α by δ reduction on y (37)

The Equation (37) above, in which we δ reduce y, is impossible without [T-Cont].
By [Conv], and since k : B+[(fst e)÷/x]→ α , to show z α k : α it suffices to show that (fst e)÷ ≡ fst (e÷ _ id).
Note that (fst e)÷ = λα : ∗.λ k′ : (A+→ α).

e÷ @ α (λ y : Σ x : A÷
. B÷. let z′ = fst y : A÷ in z′ α k′)

by definition of the translation.
By [≡-η], it suffices to show that

e÷ @ α (λ y : Σ x : A÷
. B÷. let z′ = fst y : A÷ in z′ α k′) (38)

≡ (λ y : Σ x : A÷
. B÷. let z′ = fst y in z′ α k′) (e÷ _ id) [≡-Cont] (39)

≡ (fst (e÷ _ id)) α k′ by reduction (40)

Notice that Equation (39) requires our new equivalence rule applied to the translation of the fst.
Case [Lam]

We give proofs for only the term-level functions; the type-level functions follow exactly the same structure as
type-level function types. There are two subcases.

Sub-Case The function abstracts over a term, Γ ⊢ λ x : A. e : Π x : A. B
We must show

Γ+ ⊢ (λ x : A. e)÷ : (Π x : A. B)÷.
By definition of the translation, we must show

Γ+ ⊢ λα : ∗.λ k : (Π x : A÷
. B÷)→ α .

(k (λ x : A÷
. e÷)) : Πα : ∗. (Π x : A÷

. B÷ → α)→ α

It suffices to show that
Γ+,α : ∗, k : Π x : A÷

. B÷ → α ⊢ k (λ x : A÷
. e÷) : α .

By [App], it suffices to show that
Γ+,α : ∗, k : Π x : A÷

. B÷ → α ⊢ (λ x : A÷
. e÷) : Π x : A÷

. B÷

By part 2 of the induction hypothesis applied to Γ, x : A ⊢ e : B, we know that
Γ+, x : A÷ ⊢ e÷ : B÷

It suffices to show that
⊢ Γ+,α : ∗, k : Π x : A÷

. B÷ → α which follows easily by part 4 of the induction hypothesis applied to the
typing derivations for A and B.

Sub-Case The function abstracts over a type, Γ ⊢ λ α : κ . e : Πα : κ . B
We must show Γ+ ⊢ (λ α : κ . e)÷ : (Πα : κ . B)÷.
By definition of the translation, we must show that

Γ+ ⊢ λα ans : ∗.λ k : (Πα : κ+. B÷)→ α .

(k (λα : κ+. e÷)) : Πα ans : ∗. (Πα : κ+. B÷ → α ans)→ α ans

It suffices to show that
Γ+,α ans : ∗, k : Πα : κ+. B÷ → α ans ⊢ k (λα : κ+. e÷) : α ans .

By [App], it suffices to show that
Γ+,α ans : ∗, k : Πα : κ+. B÷ → α ans ⊢ (λ x : A÷

. e÷) : Πα : κ+. B÷

15

By part 2 of the induction hypothesis applied to Γ,α : κ ⊢ e : B, we know that
Γ+,α : κ+ ⊢ e÷ : B÷

It suffices to show that ⊢ Γ+,α ans : ∗, k : Πα : κ+. B÷ → α ans which follows easily by parts 5 and 4 of the
induction hypothesis applied to the typing derivations for κ and B.

Case [App]
Sub-Case A term-level function applied to a term Γ ⊢ e1 e2 : B[e2/x]

We must show that
Γ+ ⊢ (e1 e2)

÷ : (B[e2/x])
÷

By definition of the translation, we must show:
Γ+ ⊢ λα : ∗.λ k : (B[e2/x])

+→ α . e÷1 α (λ f : Π x : A÷
. B÷. (f e÷2) α k) : (B[e2/x])

÷

By part 6 of Lemma 3.1 and definition of B÷, we must show:
Γ+ ⊢ λα : ∗.λ k : (B+[e÷2 /x])→ α .

e÷1 α (λ f : Π x : A÷
. B÷. (f e÷2) α k) : Πα : ∗. (B+[e÷2 /x]→ α)→ α

It suffices to show that
• Γ+ ⊢ B+[e÷2 /x] : κ By the part 3 of the induction hypothesis we know that Γ+, x : A÷ ⊢ B+ : κ , and by
part 2 of the induction hypothesis we know that Γ+ ⊢ e÷2 : A÷, hence the goal follows by substitution.

• Γ+ ⊢ e÷1 : Πα : ∗. (Π x : A÷
. B÷ → α)→ α , which follows by part 2 of the induction hypothesis and by

definition of (Π x : A. B)÷.
• Γ+,α : ∗, k : (B+[e÷2 /x]) → α ⊢ (λ f : Π x : A÷

. B÷. (f e÷2) α k) : Π x : A÷
. B÷ → α , which follows

since by part 2 of the induction hypothesis e÷2 : A÷ we know (f e÷2) : B÷[e÷2 /x] and by definition
B÷[e÷2 /x] = Πα : ∗. (B+[e÷2 /x]→ α)→ α .

Sub-Case A term-level function applied to a type Γ ⊢ e1 A : B[A/α]
The proof is similar to the previous case, but relies on showing that Γ+ ⊢ A+ : κ+, which follows by part 3

of the induction hypothesis.
Sub-Case A type-level function applied to a term Γ ⊢ A e : κ[e/x]

This case is straightforward by the part 3 and part 2 of the induction hypothesis.
Sub-Case A type-level function applied to a type Γ ⊢ A B : κ[B/α]

This case is straightforward by the part 3 of the induction hypothesis.
Case [Conv] Γ ⊢ e : A such that Γ ⊢ e : B and A ≡ B.

We must show that e÷ has type A÷
= Πα : ∗. (A+→ α)→ α .

By the induction hypothesis, we know that e÷ : B÷ = Πα : ∗. (B+→ α)→ α . By [Conv] it suffices to show
that A+ ≡ B+, which follows by Lemma 3.4. □

To recover a simple statement of the type-preservation theorem over the PTS syntax, we define two meta-functions
for translating terms and types depending on their use. We define cps JtK to translate a PTS expression in łtermž
position, i.e., when used on the left side of a type annotation as in t : t ′, and we define cpsT Jt ′K to translate an
expression in łtypež position, i.e., when used on the right side of a type annotation. We define these in terms of the
translation shown above, noting that for every t : t ′ in the PTS syntax, one of the following is true: t is a term e and
t ′ is a type A in the explicit syntax; t is a type A and t ′ is a kind κ in the explicit syntax; or t is a kind κ and t ′ is a
universe U in the explicit syntax.

cps JtK
def
= e÷ when t is a term

cps JtK
def
= A+ when t is a type

cps JtK
def
= κ+ when t is a kind

cpsT Jt ′K
def
= A÷ when t ′ is a type

cpsT Jt ′K
def
= κ+ when t ′ is a kind

cpsT Jt ′K
def
= U+ when t ′ is a universe

This notation is based on Barthe and Uustalu (2002).

Theorem 3.1 (CPSn is Type Preserving (PTS syntax)). Γ ⊢ t : t ′ then Γ+ ⊢ cps JtK : cpsT Jt ′K

3.2 Proof of Correctness for CPSn

Since type preservation in a dependently typed language requires preserving reduction sequences, we have already
done most of the work to prove two other compiler correctness properties: correctness of separate compilation, and
whole-program compiler correctness. To specify compiler correctness, we need an independent specification that tells

16

us how source valuesÐor, more generally, observationsÐare related to target values. For instance, when compiling
to C we might specify that the number 5 is related to the bits 0x101. Without a specification, independent of the
compiler, there is no definition that the compiler can be correct with respect to. In our setting, such an independent
specification is simple to construct. We can add ground values such as booleans to our language with the obvious
cross-language relation: True ≈ True and False ≈ False.
Next, to define separate compilation, we need a definition of linking. We can define linking as substitution, and

define valid closing substitutions γ as follows.

Γ ⊢ γ
def
= ∀x : A ∈ Γ. ⊢ γ (x) : γ (A)

We extend the compiler in a straightforward way to compile closing substitutions, written γ÷, and allow compiled
code to be linked with the compilation of any valid closing substitution γ . This definition supports a separate
compilation theorem that allows linking with the output of our compiler, but not with the output of other compilers.
Now we can show that the compiler is correct with respect to separate compilation: if we first link and run to a

value, we get a related value when we compile and then link with the compiled closing substitution. Since our target
language is in CPS form, we should apply the halt continuation, id, and compare the ground values.

Theorem 3.2 (Separate Compilation Correctness). If Γ ⊢ e : A where A is ground, and γ (e) ▷⋆ v then

γ÷(e÷) A+ id ▷⋆ v and v ≈ v.

Proof. Since reduction implies equivalence, we reason in terms of equivalence. By Lemma 3.3, (γ (e))÷ ▷⋆ e and
v÷ ≡ e. By Lemma 3.1, (γ (e))÷ ≡ γ÷(e÷), hence γ÷(e÷) ▷⋆ e and v÷ ≡ e. Since the translation on all ground values is
v÷ = λα .λ k. k v, where v ≈ v, we know v÷ A+ id ▷⋆ v such that v ≈ v. Since v÷ ≡ e ≡ γ÷(e÷), we also know that
γ÷(e÷) A+id ▷⋆ v′ and v′ ≡ v. Since v is ground, v′ = v and v ≈ v′. □

Corollary 3.1 (Whole-Program Compiler Correctness). If ⊢ e : A and e ▷⋆ v then e÷ A+ id ▷⋆ v and v ≈ v.

Our separate-compilation correctness theorem is similar to the guarantees provided by SepCompCert (Kang et al.
2016) in that it supports linking with only the output of the same compiler. We could support more flexible notions of
linkingÐsuch as linking with code produced by different compilers, from different source languages, or code written
directly in the target languageÐby defining an independent specification for when closing substitutions are related
across languages (e.g., (Ahmed and Blume 2011; Neis et al. 2015; New et al. 2016; Perconti and Ahmed 2014)).

17

Γ ⊢ U {n
U
U

Γ ⊢ ∗{n
U ∗

[CPSn
U
-Star]

Γ ⊢ □{n
U □

[CPSn
U
-Box]

Γ ⊢ κ : U {n
κ κ Lemma 3.5 will show Γ+ ⊢ κ+ : U+

Γ ⊢ ∗ : □{n
κ ∗

[CPSnκ -Ax]
Γ ⊢ κ : U {n

κ κ Γ,α : κ ⊢ κ ′ : U ′
{

n
κ κ

′

Γ ⊢ Πα : κ .κ ′ : U ′
{

n
κ Πα : κ .κ ′

[CPSnκ -ProdK]

Γ ⊢ A : κ ′
{

n
A÷ A Γ, x : A ⊢ κ : U {n

κ κ

Γ ⊢ Π x : A.κ : U {n
κ Π x : A.κ

[CPSnκ -ProdA]

Γ ⊢ A : κ {n
A
A Lemma 3.5 will show Γ+ ⊢ A+ : κ+

Γ ⊢ α : κ {n
A α

[CPSn
A
-Var]

Γ ⊢ A : κ ′
{

n
A÷ A Γ, x : A ⊢ B : κ {n

A B

Γ ⊢ λ x : A. B : Π x : A.κ {n
A λ x : A.B

[CPSn
A
-Constr]

Γ ⊢ κ : U {n
κ κ Γ,α : κ ⊢ B : κ ′

{
n
A B

Γ ⊢ λ α : κ . B : Πα : κ .κ ′
{

n
A λα : κ .B

[CPSn
A
-Abs]

Γ ⊢ A : Π x : B.κ {n
A A Γ ⊢ e : B{n

e e

Γ ⊢ A e : κ[e/x]{n
A A e

[CPSn
A
-AppConstr]

Γ ⊢ A : Πα : κ ′
.κ {n

A A Γ ⊢ B : κ ′
{

n
A B

Γ ⊢ A B : κ[B/α]{n
A A B

[CPSn
A
-Inst]

Γ ⊢ A : κ {n
A÷ A Γ, x : A ⊢ B : κ ′

{
n
A÷ B

Γ ⊢ Π x : A. B : κ ′
{

n
A Π x : A.B

[CPSn
A
-Prod]

Γ ⊢ κ : U {n
κ κ Γ, x : A ⊢ B : κ ′

{
n
A÷ B

Γ ⊢ Πα : κ . B : κ ′
{

n
A Πα : κ .B

[CPSn
A
-ProdK]

Γ ⊢ e : A{n
e e Γ ⊢ A : κ {n

A÷ A Γ, x = e : A ⊢ B : κ ′
{

n
A B

Γ ⊢ let x = e : A inB : κ ′
{

n
A let x = e : A inB

[CPSn
A
-Let]

Γ ⊢ A : κ {n
A A ⊢ Γ {n

Γ Γ ⊢ A : κ {n
κ κ Γ,α = A : κ ⊢ B : _{n

A B

Γ ⊢ letα = A : κ inB : _{n
A letα = A : κ in B

[CPSn
A
-LetK]

Γ ⊢ A : ∗{n
A÷ A Γ, x : A ⊢ B : ∗{n

A÷ B

Γ ⊢ Σ x : A. B : ∗{n
A Σ x : A.B

[CPSn
A
-Sigma]

Γ ⊢ A : κ ′ Γ ⊢ κ ≡ κ ′ Γ ⊢ A : κ ′
{

n
A A

Γ ⊢ A : κ {n
A A

[CPSn
A
-Conv]

Γ ⊢ A : ∗{n
A÷ A Lemma 3.5 will show Γ+ ⊢ A÷ : ∗+

Γ ⊢ A : ∗{n
A A

Γ ⊢ A : ∗{n
A÷ Πα : ∗. (A→ α)→ α

[CPSn
A
-Comp]

Fig. 10. CPSn of Universes, Kinds, and Types

18

Γ ⊢ e : A{n
e A Lemma 3.5 will show Γ+ ⊢ e÷ : A÷

Γ ⊢ A : κ {n
A A

Γ ⊢ x : A{n
e λα : ∗.λ k : A→ α . x α k

[CPSne -Var]

Γ ⊢ A : κ {n
A÷ A Γ, x : A ⊢ B : κ ′

{
n
A÷ B Γ, x : A ⊢ e : B{n

e e

Γ ⊢ λ x : A. e : Π x : A. B{n
e λα : ∗.λ k : (Π x : A.B)→ α . k (λ x : A. e)

[CPSne -Fun]

Γ ⊢ κ : _{n
κ κ Γ,α : κ ⊢ B : _{n

A÷ B Γ,α : κ ⊢ e : B{n
e e

Γ ⊢ λ α : κ . e : Πα : κ . B{n
e λα ans : ∗.λ k : (Πα : κ .B)→ α ans . k (λα : κ . e)

[CPSne -Abs]

Γ ⊢ e : Π x : A. B{n
e e

Γ ⊢ A : κ {n
A÷ A

÷ Γ, x : A ⊢ B : κ ′
{

n
A÷ B

÷ Γ, x : A ⊢ B : κ ′
{

n
A B+ Γ ⊢ e′ : A{n

e e′

Γ ⊢ e e′ : B[e′/x]{n
e λα : ∗.λ k : (B+[e′/x])→ α .

e α (λ f : Π x : A÷
.B÷
. (f e′) α k)

[CPSne -App]

Γ ⊢ e : Πα : κ . B{n
e e Γ,α : κ ⊢ B : _{n

A÷ B
÷ Γ,α : κ ⊢ B : _{n

A B+ Γ ⊢ A : κ {n
A A

Γ ⊢ e A : B[A/α]{n
e λα ans : ∗.λ k : (B+[A/α])→ α ans .

e α (λ f : Πα : κ .B÷
. (f A) α ans k)

[CPSne -Inst]

Γ ⊢ e : A{n
e e Γ ⊢ A : κ {n

A÷ A Γ, x = e : A ⊢ B : κ ′
{

n
A B Γ, x = e : A ⊢ e′ : B{n

e e′

Γ ⊢ let x = e : A in e′ : B[e/x]{n
e λα : ∗.λ k : B[e/x]→ α . let x = e : A in e′ α k

[CPSne -Let]

Γ ⊢ A : κ {n
A A Γ ⊢ κ : U {n

κ κ Γ,α = A : κ ⊢ B : κ ′
{

n
A B Γ,α = A : κ ⊢ e : B{n

e e

Γ ⊢ letα = A : κ in e : B[A/α]{n
e λα ans : ∗.λ k : B[A/x]→ α ans . letα = A : κ in e α ans k

[CPSne -LetK]

Γ ⊢ e : B{n
e e

Γ ⊢ e : A{n
e e

[CPSne -Conv]

Fig. 11. CPSn of Terms

Γ ⊢ e1 : A{
n
e e1 Γ ⊢ e2 : B[e1/x]{

n
e e2 Γ ⊢ A : ∗{n

A÷ A Γ, x : A ⊢ B : ∗{n
A÷ B

Γ ⊢ ⟨e1, e2⟩ : Σ x : A. B{n
e λα : ∗.λ k : Σ x : A.B→ α . k ⟨e1, e2⟩ as Σ x : A.B

[CPSne -Pair]

Γ ⊢ A : ∗{n
A÷ A

÷ Γ, x : A ⊢ B : ∗{n
A÷ B

÷ Γ ⊢ A : ∗{n
A A+ Γ ⊢ e : Σ x : A. B{n

e e

Γ ⊢ fst e : A{n
e λα : ∗.λ k : A+→ α .

e @ α (λ y : Σ x : A÷
.B÷
. let z = fst y in z α k)

[CPSne -Fst]

Γ ⊢ A : ∗{n
A÷ A

÷ Γ, x : A ⊢ B : ∗{n
A÷ B

÷

Γ, x : A ⊢ B : ∗{n
A B+ Γ ⊢ (fst e) : A{n

e (fst e)÷ Γ ⊢ e : Σ x : A. B{n
e e

Γ ⊢ snd e : B[(fst e)/x]{n
e λα : ∗.λ k : B+[(fst e)÷/x]→ α .

e @ α (λ y : Σ x : A÷
.B÷
. let z = snd y in z α k)

[CPSne -Snd]

Fig. 12. CPSn of Terms (pairs)

19

⊢ Γ {n
Γ Lemma 3.5 will show ⊢ Γ+

⊢ · {n ·
[CPSn

Γ
-Empty]

⊢ Γ {n
Γ Γ ⊢ A : κ {n

A÷ A

⊢ Γ, x : A {n
Γ, x : A

[CPSn
Γ
-AssumT]

⊢ Γ {n
Γ Γ ⊢ κ : U {n

κ κ

⊢ Γ,α : κ {n
Γ,α : κ

[CPSn
Γ
-AssumK]

⊢ Γ {n
Γ Γ ⊢ A : κ {n

A÷ A Γ ⊢ e : A{n
e e

⊢ Γ, x = e : A {n
Γ, x = e : A

[CPSn
Γ
-Def]

⊢ Γ {n
Γ Γ ⊢ A : κ {n

A A Γ ⊢ κ : U {n
κ κ

⊢ Γ,α = A : κ {n
Γ,α = A : κ

[CPSn
Γ
-DefT]

Fig. 13. CPSn of Environments

20

4 CALL-BY-VALUE CPS TRANSLATION OF CC

In this section, we present the call-by-value CPS translation (CPSv) of CC. First, we redefine our short-hand from
Section 3 to refer to call-by-value translation.

A÷ def
= A where Γ ⊢ A : ∗{v

A÷ A

e÷
def
= e where Γ ⊢ e : A{v

e e

U+
def
= U where Γ ⊢ U {v

U
U

κ+
def
= e where Γ ⊢ κ : U {v

κ κ

A+
def
= A where Γ ⊢ A : κ {v

A
A

Unlike CBN, the CBV translation forces every computation to a value. Therefore, every dependent elimination
requires our new [T-Cont] typing rule. Moreover, all substitutions of a term into a type must substitute values instead
of computations so all dependent type annotations must explicitly convert computations to values by supplying the
identity continuation.
We present our call-by-value translation CPSv in Figures 14 and 15. In general, CPSv differs from CPSn in two

ways. First, all term variables must have value types, so the translation rules for all binding constructs now use the
value translation for type annotations. Second, we change the definition of value types so that functions must receive
values and pairs must contain values.

The universe translation is unchanged from CPSn . The kind translation (Figure 14) has changed in only one place.
Now the translation rule [CPSvκ -ProdA] translates the kind of type-level functions Π x : A.κ to accept a value as
argument x : A+.
The type translation (Figure 14) has multiple rules with variable annotations that have changed from CBN. The

computation translation of types is unchanged. In the value translation, similar to the kind translation, dependent
function types that abstract over terms now translate the argument annotation x : A using the value translation.
Dependent pair types Σ x :A. B now translate to pairs of values Σ x :A+. B+. When terms appear in the type language,
such as in [CPSv

A
-AppConstr] and [CPSv

A
-Let], we must explicitly convert the computation to a value to maintain

the invariant that all term variables refer to term values. Hence in [CPSv
A
-AppConstr] we translate a type-level

application with a term argument A e to A+ (e÷ B+ id). We similarly translate let-bound terms [CPSv
A
-Let] by casting

the computation to a value. While expressions of the form A+ (e÷ B+ id) are not in CPS form, this expression is a type
and will be evaluated during type checking. Terms that evaluate at run time are always in proper CPS form and do
not return.

The term translation (Figure 15 and Figure 16) changes in three major ways. As in Section 3, we implicitly have a
computation and a value translation on term values, with the latter inlined into the former. First, unlike in CPSn ,
variables are values, whereas the translation must produce a computation. Therefore, we translate x by łvalue
η-expansionž into λα .λ k. k x, a computation that immediately applies the continuation to the value. Second, as
discussed above, we change the translation of application [CPSve -App] to force the evaluation of the function argument.
Third and finally, in the translation of pairs [CPSve -Pair], we force the evaluation of the components of the pair
and produce a pair of values for the continuation. Note that in cases of the translation where we have types with
dependencyÐ[CPSve -App], [CPS

v
e -Let], [CPS

v
e -Pair], and [CPSve -Snd]Ðwe cast computations to values in the types

by applying the identity continuation, and require the @ form to use our new typing rule.
Interestingly, because typing the application of a continuation is essentially a dependent let, we can simplify the

translation of pairs. We present this in the rule [CPSve -Pair-Alt]. Instead of explicitly substituting the value of e1 into
the type B, we simply use the same variable name x to bind the value of e1 in both the term and the type. Since that
variable is free in the type annotation B on the variable x2, we implicitly substitute its value into B rather than being
so explicitly. This is rather subtle so we prefer the more direct and explicit translation, [CPSve -Pair].

Given the translation of binding constructs in the language, the translation of the environment (Figure 17) should
be unsurprising. Since all variables are values, we translate term variables x : A using the value translation on types
to produce x : A+ instead of x : A÷. We must also translate term definitions x = e : A by casting the computation to a
value, producing x = e÷ A+ id : A+.

4.1 Proof of Type-Preservation for CPSv

The structure of the type-preservation proof is the same as in Section 3. First we prove that the translation commutes
with substitution, then that reduction sequences are preserved, then that equivalence is preserved, and finally that

21

typing is preserved. Except for Lemma 4.2 (CPSv Compositionality), the proofs of the supporting lemmas are essentially
the same as in Section 3.

We begin with a technical lemma that is essentially an η principle for CPS’d computations. In the CPSv setting, we
must frequently reason about normal forms of CPS’d computations. This lemma provides a useful abstraction for
doing so.1 The lemma states that any CPS’d computation e÷ is equivalent to a new CPS’d computation that accepts a
continuation k simply applies e÷ to k. The proof is straightforward. Note the type annotations are mismatched, as in
our explanation of coherence in Section 3.1, but the behaviors of the terms are the same and equivalence is untyped.

Lemma 4.1 (CPSv Computation η). e÷ ≡ λα : ∗.λ k : A→ α . e÷ @ α (λ x : B. k x)

Proof. Note that e÷ ≡ λα : ∗.λ k :A→ α . e÷ α (λ x : B. k x), by η-equivalence. By transitivity, it suffices to show
that
λα : ∗.λ k : A→ α . e÷ α (λ x : B. k x) ≡ λα : ∗.λ k : A→ α . e÷ @ α (λ x : B. k x)

Intuitively, this is true since@ dynamically behaves exactly like application, only changing which typing rule is
used. Since our equivalence is untyped, the semantics of@ as far as equivalence is concerned is no different than
normal application.
Formally, note that by definition of the translation, e÷ must be of the form λα .λ k. e′.
The goal follows since
λα : ∗.λ k : A→ α . (λα .λ k. e′) α (λ x : B. k x) ▷⋆ λα : ∗.λ k : A→ α . e′

and
λα : ∗.λ k : A→ α . (λα .λ k. e′)@ α (λ x : B. k x) ▷⋆ λα : ∗.λ k : A→ α . e′ □

Since variables are values in call-by-value, we adjust the statement of Lemma 4.2 to cast computations to values.
Proving this lemma now requires our new equivalence rule [≡-Cont] for cases involving substitution of terms. By
convention, all terms being translated have an implicit typing derivation, so the omitted types are easy to reconstruct.

1The proofs for the CBN setting only require a specialized instance of this property although the general form holds.

22

Lemma 4.2 (CPSv Compositionality).

(1) (κ[A/α])+ ≡ κ+[A+/α]

(2) (κ[e/x])+ ≡ κ+[e÷ _ id/x]

(3) (A[B/α])+ ≡ A+[B+/α]

(4) (A[e/x])+ ≡ A+[e÷ _ id/x]

(5) (A[B/α])÷ ≡ A÷[B+/α]

(6) (A[e/x])÷ ≡ A÷[e÷ _ id/x]

(7) (e[A/α])÷ ≡ e÷[A+/α]

(8) (e[e′/x])÷ ≡ e÷[e′÷ _ id/x]

Proof. The proof is straightforward by induction on the typing derivation of the expression t being substituted
into. Part 6 follows immediately by part 3 of the induction hypothesis. Part 7 follows immediately by part 4 of the
induction hypothesis. We give representative cases for the other parts. In most cases, it suffices to show that the two
terms are syntactically identical.

Case [Ax-*] t = U , parts 1 and 2. Trivial, since no free variables appear in U .
Case [Prod-*] t = Π x : B.κ ′

Sub-Case Part 1. We must show that ((Π x : B.κ ′)[A/α])+ = (Π x : B.κ ′)+[A+/α].

((Π x : B.κ ′)[A/α])+ (41)

= (Π x : B[A/α].κ ′[A/α])+ by definition of substitution (42)

= Π x′ : (B[A/α])+. (κ ′[A/α])+ by definition of the translation (43)

= Π x′ : B+[A+/α].κ ′+[A+/α] by parts 1 and 3 of the induction hypothesis (44)

= (Π x′ : B+.κ ′+)[A+/α] by definition of substitution (45)

= (Π x ′ : B.κ ′)+[A+/α] by definition of the translation (46)

Sub-Case Part 2. Similar to the previous subcase.
Case [Var]
Sub-Case t = α ′, part 3. Part 4 is trivial since x is not free in α .

We must show that (α ′[A/α])+ = α
′[A+/α].

Sub-Case α = α ′. It suffices to show that A+ = A+, which is trivial.
Sub-Case α , α ′. Trivial.
Sub-Case t = x, part 7 is trivial.
Sub-Case Part 8

We must show (x[e/x ′])÷ = x÷[e÷ _ id/x′].
W.l.o.g., assume x = x ′.

(x[e/x])÷ (47)

= e÷ by definition of substitution (48)

≡ λα .λ k. (e÷ @ α λ x. k x) by Lemma 4.1 (49)

≡ λα .λ k. (λ x. k x) (e÷ _ id) by [≡-Cont] (50)

= (λα .λ k. (λ x. k x) x)[(e÷ _ id)/x] by substitution (51)

≡ (λα .λ k. k x)[(e÷ _ id)/x] by ▷β (52)

= x÷[(e÷ _ id)/x] by definition of translation (53)

Case [App] e1 e2
Sub-Case Part 7

23

We must show ((e1 e2)[A
′/α ′])÷ = (e1 e2)

÷[A′+/α ′].

((e1 e2)[A
′/α ′])÷ (54)

= (e1[A/α
′] e2[A

′/α ′])÷ by substitution (55)

= λα : ∗.λ k : ((B[A′/α ′])+[(e2[A
′/α ′])÷/x])→ α .

(e1[A
′/α ′])÷ α (λ f : Π x : (A[A′/α ′])+. (B[A′/α ′])÷.

(e2[A
′/α ′])÷ @ α (λ x : (A[A′/α ′])+. (f x) α k))

by translation (56)

= λα : ∗.λ k : (B+[A′+/α ′][e÷2 [A
′+/α ′]/x])→ α .

e÷1 [A
′+/α ′] α (λ f : Π x : A+[A′+/α ′]. B÷[A′+/α ′].

e÷2 [A
′+/α ′]@ α (λ x : A+[A′+/α ′]. (f x) α k))

by IH (3,5,7) (57)

= (λα : ∗.λ k : (B+[e÷2 /x])→ α .

e÷1 α (λ f : Π x : A÷
. B÷.

e÷2 @ α (λ x : A+. (f x) α k)))[A′+/α ′]

by substitution (58)

= (e1 e2)
÷[A′+/α ′] by translation (59)

□

Lemma 4.3 (Translation Preserves One-Step Reduction).

• If Γ ⊢ e : A and e ▷ e′ then e÷ ▷⋆ e′ and e′ ≡ e′÷

• If Γ ⊢ A : κ and A ▷ A′ then A+ ▷⋆ A′ and A′ ≡ A′+

• If Γ ⊢ A : ∗ and A ▷ A′ then A÷
▷
⋆ A′ and A′ ≡ A′÷

Proof. The proof is straightforward by cases on the ▷ relation. We give some representative cases.

Case x ▷δ e′ where x = e′ : A′ ∈ Γ

We must show that x÷ ▷δ e such that e ≡ e′÷ _ id where x÷ = e′÷ _ id : A′+ ∈ Γ+, which follows by the same
argument as Sub-Case Part 8 of the x case of Lemma 4.3.

Case (λ x : _. e1) e2 ▷β e1[e2/x]

We must show that ((λ x : _. e1) e2)
÷
▷
⋆ e′ and e′ ≡ (e1[e2/x])

÷.

((λ x : _. e1) e2) (60)

= (λα .λ k.

(λα .λ k. k (λ x. e÷1)) α (λ f . e÷2 @ α (λ x. (f x) α k)))

by translation (61)

▷
⋆ (λα .λ k. e÷2 @ α (λ x. ((λ x. e÷1) x) α k)) by ▷β (62)

▷
⋆ (λα .λ k. e÷2 @ α (λ x. e÷1 α k)) by ▷β (63)

≡ (λα .λ k. (λ x. e÷1 α k) (e÷2 _ id)) by [≡-Cont] (64)

▷
⋆ (λα .λ k. (e÷1 α k)[(e÷2 _ id)/x]) by ▷β (65)

= (λα .λ k. (e÷1 α k))[(e÷2 _ id)/x] by substitution (66)

≡ e÷1 [e
÷
2 _ id/x] by [≡-η] (67)

= (e1[e2/x])
÷ by Lemma 4.2 (68)

□

Note that kinds do not take steps in the one step reduction, but can in the ▷⋆ relation (since it is the compatible
closure).

Lemma 4.4 (Translation Preserves ▷⋆ Relation).

• If Γ ⊢ e : A and e ▷⋆ e′ then e÷ ▷⋆ e′ and e′ ≡ e′÷

• If Γ ⊢ A : κ and A ▷⋆ A′ then A+ ▷⋆ A′ and A′ ≡ A′+

• If Γ ⊢ A : ∗ and A ▷⋆ A′ then A÷
▷
⋆ A′ and A′ ≡ A′÷

• If Γ ⊢ κ : U and κ ▷⋆ κ ′ then κ+ ▷⋆ κ
′ and κ ′ ≡ κ ′+

24

Proof. The proof is straightforward by induction on the length of the reduction sequence. The base case is trivial
and the inductive case follows by Lemma 4.3 and the inductive hypothesis. □

Lemma 4.5 (CPSv Coherence).

• If e ≡ e′ then e÷ ≡ e′÷

• If A ≡ A′ then A+ ≡ A′+
• If A ≡ A′ then A÷ ≡ A′÷

• If κ ≡ κ ′ then κ+ ≡ κ ′+

Lemma 4.6 (CPSv is Type Preserving (Explicit Syntax)).

(1) If ⊢ Γ then ⊢ Γ+

(2) If Γ ⊢ e : A then Γ+ ⊢ e÷ : A÷

(3) If Γ ⊢ A : κ then Γ+ ⊢ A+ : κ+

(4) If Γ ⊢ A : ∗ then Γ+ ⊢ A÷ : ∗+

(5) If Γ ⊢ κ : U then Γ+ ⊢ κ+ : U+

Proof. All cases are proven simultaneously by mutual induction on the typing derivation and well-formedness
derivation. Part 4 follows easily by part 3 in every case, so we elide its proof. Most cases follow easily from the
induction hypotheses.

Case [W-Assum] ⊢ Γ, x : A
There are two sub-cases: either A is a type or a kind.

Sub-Case A is a type
We must show ⊢ Γ+, x : A+.
It suffices to show that Γ+ ⊢ A+ : κ , which follows by part 3 of the induction hypothesis.

Sub-Case A is a kind; similar to the previous case, except the goal follows by part 5 of the induction hypothesis.
Case [W-Def] ⊢ Γ, x = e : A

We give the case for when A is a type; the case when A is a kind is similar.
We must show ⊢ Γ+, x = e÷ A+ id : A+.
It suffices to show that Γ+ ⊢ e÷ A+ id : A+.
By part 2 of the induction hypothesis and definition of the translation, we know that Γ+ ⊢ e÷ : Πα : ∗. (A+→
α)→ α , easily which implies the goal.

Case [Var] Γ ⊢ x : A
We give the case for when A is a type; the case when A is a kind is simple since the translation on type
variables is the identity.
We must show that Γ+ ⊢ λα : ∗.λ k : A+→ α . k x : A÷

By the part 1 of the induction hypothesis, we know Γ+ ⊢ x : A+, which implies the goal.
Case [App] Γ ⊢ e1 e2 : B[e2/x].

There are 4 sub-cases: e1 can be either a term or a type, and e2 can be either a term or a type. The interesting
case is when both are terms, since this is the case most affected by the CPS translation.

Sub-Case [CPSve -App], both e1 and e2 are terms.
We must show that

Γ+ ⊢ λα : ∗.λ k : (B+[(e÷2 A+ id)/x])→ α .

e÷1 α (λ f : Π x : A+. B÷. e÷2 @ α (λ x : A+. (f x) α k))

: (B[e2/x])
÷

Note that,

(B[e2/x]) (69)

≡ B÷[e÷2 A+ id/x] by Lemma 4.2 (70)

≡ Πα : ∗. ((B+[e÷2 A+ id/x])→ α)→ α by translation (71)

Hence it suffices to show that
Γ+,α : ∗, k : (B+[(e÷2 A+ id)/x])→ α ⊢ e÷1 α (λ f : Π x : A+. B÷. e÷2 @ α (λ x : A+. (f x) α k)) : α

By part 2 of the induction hypothesis, we know that Γ+ ⊢ e÷1 : Πα : ∗. ((Π x : A+. B÷)→ α)→ α ,
hence it suffices to show that

Γ+,α : ∗, k : (B+[(e÷2 A+ id)/x])→ α , f : Π x : A+. B÷ ⊢ e÷2 @ α (λ x : A+. (f x) α k) : α

25

By [T-Cont], we must show
Γ+,α : ∗, k : (B+[(e÷2 A+ id)/x])→ α , f : Π x : A+. B÷, x = e÷2 A+ id, ⊢ (f x) α k : α

Note that f x : B÷[x/x] and B÷[x/x] = Πα : ∗. (B+[x/x])→ α → α .
But k : (B+[(e÷2 A+ id)/x])→ α .
Hence it suffices to show that (B+[x/x]) ≡ (B+[(e÷2 A+ id)/x]), which follows by δ reduction on x since we
have x = e÷2 A+ id by our new typing rule [T-Cont].

Note that without our new typing rule, we would be here stuck. However, thanks to [T-Cont], we have
the equality that x = e÷2 A+ id, and we are able to complete the proof.

Sub-Case e1 is a term but e2 is a type A
′. This case is similar to the application case of the CBN translation. It

does not require the new typing rule [T-Cont], as the argument is a type, the argument is not CPS translated.
Sub-Case e1 is a type and e2 is a term. This case is simple; note that the translate [CPSv

A
-AppConstr] translates

the argument e2 into e÷2 A+ id since the term variable must have a value type.
Sub-Case Both e1 and e2 are types. This case is trivial by the induction hypothesis.
Case [Let] Γ ⊢ let x = e1 : A in e2 : B[e1/x]

There are 4 subcases, as in the case of application, and the proofs are nearly identical. This should be
unsurprising, since our new typing rule [T-Cont] essentially gives the typing of application of a continuation
the same expressive power as dependent let. We give the case for both e1 and e2 are terms, since this is the
most interesting case.

Sub-Case [CPSve -Let]
We must show that Γ+ ⊢ λα : ∗.λ k : B+[e÷2 A+ id/x]→ α .

e÷1 @ α (λ x : A+. e÷2 α k)

: (B[e2/x])
÷

By Lemma 4.2 and the definition of the translation, it suffices to show
Γ+,α : ∗, k : B+[e÷2 A+ id/x]→ α ⊢ e÷1 @ α (λ x : A+. e÷2 α k) : α

By [T-Cont], we must show
Γ+,α : ∗, k : B+[e÷2 A+ id/x]→ α , x = e÷1 A+ id ⊢ e÷2 α k : α

Note that by the induction hypothesis, Γ+, x = e÷1 A+ id ⊢ e÷2 : Πα : ∗. (B+→ α)→ α

Hence by δ reduction and [Conv],
Γ+, x = e÷1 A+ id ⊢ e÷2 : Πα : ∗. (B+[(e÷ A+ id)/x]→ α)→ α which implies the goal.

Case [Pair]
Note that the translation of pair values, [CPSve -Pair], also requires a use of the rule [T-Cont]. Since our

source language allows pairs of expressions, but our target language for the CBV translation should not, we
must evaluate both components of the pair before calling the continuation. However, since the type of second
component depends on the value of the first component, we must apply [T-Cont] when typing the application
of the continuation to the first component so that we have x1 = e÷1 A+ id when typing the continuation for
the second component.

The proof is similar to the application case.
Case [Snd] The proof is exactly like the case for the CBN translation.

□

Theorem 4.1 (CPSv is Type Preserving (PTS syntax)). If Γ ⊢ e : A then Γ+ ⊢ cps JeK : cpsT JAK.

4.2 Proof of Correctness for CPSv

To prove correctness of separate compilation for CPSv , we follow the same recipe as in Section 3.2. We use the same
cross-language relation ≈ on values of ground type. However, note that in CBV we should only link with values,
so we restrict closing substitutions γ to values and use the value translation on substitutions γ+. The proofs follow
exactly the same structure as in Section 3.2.

Theorem 4.2 (Separate Compilation Correctness). If Γ ⊢ e : A where A is ground, and γ (e) ▷⋆ v then

γ+(e÷) A+ id ▷⋆ v and v ≈ v.

Corollary 4.1 (Whole-Program Compiler Correctness). If ⊢ e : A and e ▷⋆ v then e÷ A+ id ▷⋆ v and v ≈ v.

26

Γ ⊢ U {v
U
U

Γ ⊢ ∗{v
U ∗

[CPSv
U
-Star]

Γ ⊢ □{v
U □

[CPSv
U
-Box]

Γ ⊢ κ : U {v
κ κ Lemma 4.6 will show Γ+ ⊢ κ+ : U+

Γ ⊢ ∗ : □{v
κ ∗

[CPSvκ -Ax]
Γ ⊢ κ : U {v

κ κ Γ,α : κ ⊢ κ ′ : U {v
κ κ

′

Γ ⊢ Πα : κ .κ ′ : U {v
κ Πα : κ .κ ′

[CPSvκ -ProdK]

Γ ⊢ A : κ ′
{

v
A A Γ, x : A ⊢ κ : U {v

κ κ

Γ ⊢ Π x : A.κ : U {v
κ Π x : A.κ

[CPSvκ -ProdA]

Γ ⊢ A : κ {v
A
A Lemma 4.6 will show Γ+ ⊢ A+ : κ+

Γ ⊢ α : κ {v
A α

[CPSv
A
-Var]

Γ ⊢ A : κ ′
{

v
A A Γ, x : A ⊢ B : κ {v

A B

Γ ⊢ λ x : A. B : Π x : A.κ {v
A λ x : A.B

[CPSv
A
-Constr]

Γ ⊢ κ : U {v
κ κ Γ,α : κ ⊢ B : κ ′

{
v
A B

Γ ⊢ λ α : κ . B : Πα : κ .κ ′
{

v
A λα : κ .B

[CPSv
A
-Abs]

Γ ⊢ A : Π x : B.κ {v
A A Γ, x : A ⊢ B : κ ′

{
v
A B Γ ⊢ e : B{v

e e

Γ ⊢ A e : κ[e/x]{v
A A (e B id)

[CPSv
A
-AppConstr]

Γ ⊢ A : Πα : κ ′
.κ {v

A A Γ ⊢ B : κ ′
{

v
A B

Γ ⊢ A B : κ[B/α]{v
A A B

[CPSv
A
-Inst]

Γ ⊢ A : κ ′
{

v
A A Γ, x : A ⊢ B : κ {v

A÷ B

Γ ⊢ Π x : A. B : κ {v
A Π x : A.B

[CPSv
A
-Prod]

Γ ⊢ κ : U ′
{

v
κ κ Γ, x : A ⊢ B : U {v

A÷ B

Γ ⊢ Πα : κ . B : U {v
A Πα : κ .B

[CPSv
A
-ProdK]

Γ ⊢ e : A{v
e e Γ ⊢ A : κ ′

{
v
A A Γ, x = e : A ⊢ B : κ {v

A B

Γ ⊢ let x = e : A inB : κ {v
A let x = e A id : A inB

[CPSv
A
-Let]

Γ ⊢ A : κ {v
A A ⊢ Γ {v

Γ Γ ⊢ A : κ ′ Γ,α = A : κ ⊢ B : _{v
e B

Γ ⊢ letα = A : κ inB : _{v
A letα = A : κ ′ in B

[CPSv
A
-LetK]

Γ ⊢ A : ∗{v
A A Γ, x : A ⊢ B : ∗{v

A B

Γ ⊢ Σ x : A. B : ∗{v
A Σ x : A.B

[CPSv
A
-Sigma]

Γ ⊢ A : κ ′ Γ ⊢ κ ≡ κ ′ Γ ⊢ A : κ ′
{

n
A A

Γ ⊢ A : κ {n
A A

[CPSn
A
-Conv]

Γ ⊢ A : ∗{v
A÷ A Lemma 4.6 will show Γ+ ⊢ A÷ : ∗+

Γ ⊢ A : ∗{v
A A

Γ ⊢ A : ∗{v
A÷ Πα : ∗. (A→ α)→ α

[CPSv
A
-Comp]

Fig. 14. CPSv of Universes, Kinds, and Types

27

Γ ⊢ e : A{v
e e Lemma 4.6 will show Γ+ ⊢ e÷ : A÷

Γ ⊢ A : κ {v
A A

Γ ⊢ x : A{v
e λα : ∗.λ k : A→ α . k x

[CPSve -Var]

Γ ⊢ A : κ ′
{

v
A A Γ, x : A ⊢ B : κ {v

A÷ B Γ, x : A ⊢ e : B{v
e e

Γ ⊢ λ x : A. e : Π x : A. B{v
e λα : ∗.λ k : (Π x : A.B)→ α . k (λ x : A. e)

[CPSve -Fun]

Γ ⊢ κ : _{v
κ κ Γ,α : κ ⊢ B : _{v

A÷ B Γ,α : κ ⊢ e : B{v
e e

Γ ⊢ λ α : κ . e : Πα : κ . B{v
e λα ans : ∗.λ k : (Πα : κ .B)→ α ans .

k (λα : κ . e)

[CPSve -Abs]

Γ ⊢ e : Π x : A. B{v
e e

Γ, x : A ⊢ B : κ {v
A÷ B

÷ Γ, x : A ⊢ B : κ {v
A B+ Γ ⊢ e′ : A{v

e e′ Γ ⊢ A : κ ′
{

v
A A

Γ ⊢ e e′ : B[e′/x]{v
e λα : ∗.λ k : (B+[(e′ A id)/x])→ α .

e α (λ f : Π x : A.B÷
.

e′ @ α (λ x : A. (f x) α k))

[CPSve -App]

Γ ⊢ e : Πα : κ . B{v
e e Γ,α : κ ⊢ B : _{v

A÷ B Γ ⊢ A : κ {v
e A

Γ ⊢ e A : let x = A inB{v
e λα ans : ∗.λ k : (B[A/α])→ α ans .

e α (λ f : Πα : κ .B.
(f A) α ans k)

[CPSve -Inst]

Γ ⊢ e : A{v
e e Γ ⊢ A : κ ′

{
v
A A Γ ⊢ B : κ {v

A B Γ, x = e : A ⊢ e′ : B{v
e e′

Γ ⊢ let x = e : A in e′ : B[e/x]{v
e λα : ∗.λ k : B[(e A id)/x]→ α .

e @ α (λ x : A. e′ α k)

[CPSve -Let]

Γ ⊢ A : κ {v
A A Γ ⊢ κ : U {v

κ κ Γ,α = A : κ ⊢ B : κ ′
{

v
A B Γ,α = A : κ ⊢ e : B{v

e e

Γ ⊢ letα = A : κ in e : B[A/α]{v
e λα ans : ∗.λ k : B[A/α]→ α ans . letα = A : κ in e α ans k

[CPSve -LetK]

Γ ⊢ e : B{v
e e

Γ ⊢ e : A{v
e e

[CPSve -Conv]

Fig. 15. CPSv of Terms

28

Γ ⊢ e1 : A{
v
e e1 Γ ⊢ e2 : B[e1/x]{

v
e e2 Γ ⊢ A : ∗{v

A A Γ, x : A ⊢ B : ∗{v
A B

Γ ⊢ ⟨e1, e2⟩ : Σ x : A. B{v
e λα : ∗.λ k : Σ x : A.B→ α .

e1 @ α (λ x1 : A. e2 @ α (λ x2 : B[(e1 A id)/x].

k ⟨x1, x2⟩ as Σ x : A.B))

[CPSve -Pair]

Γ ⊢ A : ∗{v
A A Γ ⊢ e : Σ x : A. B{v

e e

Γ ⊢ fst e : A{v
e λα : ∗.λ k : A+→ α .

e @ α (λ y : Σ x : A.B. let z = fst y in k z)

[CPSve -Fst]

Γ ⊢ A : ∗{v
A A Γ, x : A ⊢ B : ∗{v

A B Γ ⊢ (fst e) : A{v
e (fst e)÷ Γ ⊢ e : Σ x : A. B{v

e e

Γ ⊢ snd e : B[fst e/x]{v
e λα : ∗.λ k : B[((fst e)÷ A id)/x]→ α .

e @ α (λ y : Σ x : A.B. let z = snd y in k z)

[CPSve -Snd]

Γ ⊢ e1 : A{
v
e e1 Γ ⊢ e2 : B[e1/x]{

v
e e2 Γ ⊢ A : ∗{v

A A Γ, x : A ⊢ B : ∗{v
A B

Γ ⊢ ⟨e1, e2⟩ : Σ x : A. B{v
e λα : ∗.λ k : Σ x : A.B→ α .

e1 @ α (λ x : A.
e2 @ α (λ x2 : B. k ⟨x, x2⟩ as Σ x : A.B))

[CPSve -Pair-Alt]

Fig. 16. CPSv of Terms (pairs)

⊢ Γ {v
Γ Lemma 4.6 will show ⊢ Γ+

⊢ · {v ·
[CPSv

Γ
-Empty]

⊢ Γ {v
Γ Γ ⊢ A : κ {v

A A

⊢ Γ, x : A {v
Γ, x : A

[CPSv
Γ
-AssumT]

⊢ Γ {v
Γ Γ ⊢ κ : U {v

κ κ

⊢ Γ,α : κ {v
Γ,α : κ

[CPSv
Γ
-AssumK]

⊢ Γ {v
Γ Γ ⊢ A : κ {v

A A Γ ⊢ e : A{v
e e

⊢ Γ, x = e : A {v
Γ, x = e A id : A

[CPSv
Γ
-Def]

⊢ Γ {v
Γ Γ ⊢ A : κ {v

A A Γ ⊢ κ : U {v
κ κ

⊢ Γ,α = A : κ {v
Γ,α = A : κ

[CPSv
Γ
-DefT]

Fig. 17. CPSv of Environments

29

Universes U ::= Type i | Set | Prop

Kinds κ ::= U | Πα : κ .κ | Π x : A.κ | Σ x : A.κ | Σα : κ .κ ′

Types A,B ::= α | λ x : A. B | λ α : κ . B | A e | A B | Π x : A. B | Πα : κ . B | let x = e : A inB

| letα = A : κ inB | Σ x : A. B | Σ x : A.κ | Σα : κ . B
| ⟨e,B⟩ as Σ x : A.κ | ⟨A,B⟩ as Σα : κ ′

.κ | ⟨A, e⟩ as Σα : κ ′
. B | fstA | sndA

Terms e ::= x | λ x : A. e | λ α : κ . e | e e | e A | let x = e : A in e | letα = A : κ in e | fst e

| snd e | ⟨e1, e2⟩ as Σ x : A. B | ⟨e1,B⟩ as Σ x : A.κ | ⟨A, e2⟩ as Σα : κ . B

Local Environment Γ ::= · | Γ, x : A | Γ, x = e : A, | Γ,α : κ | Γ,α = A : κ

Fig. 18. ECC Explicit Syntax

Γ ⊢ κ : U {n
κ κ

Γ ⊢ U : U ′
{

n
κ U

[CPSnκ -Ax]
Γ ⊢ κ : _{n

κ κ Γ,α : κ ⊢ κ ′ : _{n
κ κ

′

Γ ⊢ Πα : κ .κ ′ : U {n
κ Πα : κ .κ ′

[CPSnκ -ProdK]

Γ ⊢ A : _{n
A A Γ, x : A ⊢ κ : _{n

κ κ

Γ ⊢ Π x : A.κ : U {n
κ Π x : A.κ

[CPSnκ -ProdA]

Γ ⊢ κ : _{n
κ κ Γ,α : κ ⊢ κ ′ : _{n

κ κ
′

Γ ⊢ Σα : κ .κ ′ : U {n
κ Σα : κ .κ ′

[CPSnκ -SigmaK]

Γ ⊢ A : _{n
A A Γ, x : A ⊢ κ : _{n

κ κ

Γ ⊢ Σ x : A.κ : U {n
κ Σ x : A.κ

[CPSnκ -SigmaA1]

Γ ⊢ κ : _{n
κ κ Γ,α : κ ⊢ B : _{n

A B

Γ ⊢ Σα : κ . B : U {n
κ Σα : κ .B

[CPSnκ -SigmaA2]

Fig. 19. CBN CPS Translation of Kinds

5 EXTENDING THE CALL-BY-NAME CPS TRANSLATION TO THE CALCULUS OF INDUCTIVE

CONSTRUCTIONS (CIC)

CIC introduces additional challenges to the translation. For one, the infinite universe hierarchy creates a problem
with the locally polymorphic answer type.

First, It’s not clear what the type of the answer types α should be, since that is determined by the context. One
approach, which we’ve sketched here, is to use a fixed answer universe. This introduces several challenges of its own.
As this universe is really determined by the calling context, we should probably use universe polymorphism instead.
However, that may prove to introduces other challenges.
Second, we need to accommodate universes constructing functions, like λ x : Type 1. Set . It seems that this is a

type-level function, and that universe can be both types and kinds. This does not seem difficult to solve, but we must
be check the details carefully.

Third and finally, we need to accommodate type-level pairs. We’ve sketch the translations of type-level pairs, but
have yet to solve all the issues. In CC, some of these combination are invalid, but become valid with the infinite
hierarchy of universes. It’s not clear what some of the translations, such as a pair of a term and a universe, should be.

30

Γ ⊢ A : κ {n
A
A

Γ ⊢ α : κ {n
A α

[CPSn
A
-Var]

Γ ⊢ A : _{n
A÷ A Γ, x : A ⊢ B : _{n

A÷ B

Γ ⊢ λ x : A. B : κ {n
A λ x : A.B

[CPSn
A
-Constr]

Γ ⊢ κ : _{n
κ κ Γ,α : κ ⊢ B : _{n

A÷ B

Γ ⊢ λ α : κ . B : κ ′
{

n
A λα : κ .B

[CPSn
A
-Abs]

Γ ⊢ A : Π x : B.κ {n
A A Γ ⊢ e : B{n

e e

Γ ⊢ A e : κ[e/x]{n
A A e

[CPSn
A
-AppConstr]

Γ ⊢ A : Πα : κ ′
.κ {n

A A Γ ⊢ B : κ ′
{

n
A B

Γ ⊢ A B : κ[B/α]{n
A A B

[CPSn
A
-Inst]

Γ ⊢ A : _{n
A÷ A Γ, x : A ⊢ B : _{n

A÷ B

Γ ⊢ Π x : A. B : κ {n
A Π x : A.B

[CPSn
A
-Prod]

Γ ⊢ κ : _{n
κ κ Γ, x : A ⊢ B : _{n

A÷ B

Γ ⊢ Πα : κ . B : _{n
A Πα : κ .B

[CPSn
A
-ProdK]

Γ ⊢ e : A{n
e e Γ ⊢ A : _{n

A÷ A Γ, x = e : A ⊢ B : _{n
A B

Γ ⊢ let x = e : A inB : _{n
A let x = e : A inB

[CPSn
A
-Let]

Γ ⊢ A : κ {n
A A ⊢ Γ {n

Γ Γ ⊢ A : κ ′ Γ,α = A : κ ⊢ B : _{n
e B

Γ ⊢ letα = A : κ inB : _{n
A letα = A : κ ′ in B

[CPSn
A
-LetK]

Γ ⊢ A : _{n
A÷ A Γ, x : A ⊢ B : _{n

A÷ B

Γ ⊢ Σ x : A. B : _{n
A Σ x : A.B

[CPSn
A
-Sigma]

Γ ⊢ A : κ {n
A÷ A

Γ ⊢ A : κ {n
A A

Γ ⊢ A : κ {n
A÷ Πα : Ui . (A→ α)→ α

[CPSn
A
-Comp]

Fig. 20. CBN CPS Translation of Types

31

Γ ⊢ κ : _{n
κ κ Γ,α : κ ⊢ B : _{n

A÷ B

Γ ⊢ Σα : κ . B : _{n
A Σα : κ .B

[CPSn
A
-SigmaK1]

Γ ⊢ A : _{n
A÷ A Γ, x : A ⊢ κ : _{n

κ κ

Γ ⊢ Σ x : A.κ : _{n
A Σ x : A.κ

[CPSn
A
-SigmaK2]

Γ ⊢ A : _{n
A A Γ ⊢ B : _{n

A B ⊢ Γ {n
Γ Γ ⊢ A : κ ′

1 Γ ⊢ B : κ ′
2[A/α]

Γ ⊢ ⟨A,B⟩ as Σα : κ1.κ2 : _{
n
A ⟨A, B⟩ as Σα : κ ′

1.κ
′
2

[CPSn
A
-PairK]

Γ ⊢ e : _{n
e e Γ ⊢ A : _{n

A÷ A Γ, x : A ⊢ B : _{n
A B ⊢ Γ {n

Γ Γ ⊢ B : κ ′[e/x]

Γ ⊢ ⟨e,B⟩ as Σ x : A.κ : _{n
A ⟨e, B⟩ as Σ x : A.κ ′

[CPSn
A
-PairA1]

Γ ⊢ B : _{n
A B Γ ⊢ e : _{n

e e Γ,α : κ ⊢ A : _{n
A÷ A ⊢ Γ {n

Γ Γ ⊢ B : κ ′

Γ ⊢ ⟨B, e⟩ as Σα : κ .A : _{n
A ⟨B, e⟩ as Σα : κ ′

.A
[CPSn

A
-PairA2]

Γ ⊢ A : Σα : κ1.κ2{
n
A A

Γ ⊢ fstA : κ1{
n
A fst A

[CPSn
A
-Fst1]

Γ ⊢ A : Σα : κ1. B{
n
A A

Γ ⊢ fstA : κ1{
n
A fst A

[CPSn
A
-Fst2]

Γ ⊢ A : Σα : κ1.κ2{
n
A A

Γ ⊢ sndA : κ2[fstA/α]{
n
A sndA

[CPSn
A
-Snd1]

Γ ⊢ A : Σ x : B.κ2{
n
A A

Γ ⊢ sndA : κ2[fstA/x]{
n
A sndA

[CPSn
A
-Snd2]

Fig. 21. CBN CPS Translation of Type-Level Pairs

32

Γ ⊢ e : A{n
e e

Γ ⊢ x : A{n
e x

[CPSne -Var]

Γ ⊢ A : _{n
A÷ A Γ, x : A ⊢ B : _{n

A÷ B Γ, x : A ⊢ e : B{n
e e

Γ ⊢ λ x : A. e : Π x : A. B{n
e λα : Ui .λ k : (Π x : A.B)→ α .

k (λ x : A. e)

[CPSne -Fun]

Γ ⊢ κ : _{n
κ κ Γ,α : κ ⊢ B : _{n

A÷ B Γ,α : κ ⊢ e : B{n
e e

Γ ⊢ λ α : κ . e : Πα : κ . B{n
e λα ans : Ui .λ k : (Πα : κ .B)→ α ans .

k (λα : κ . e)

[CPSne -Abs]

Γ ⊢ e : Π x : A′
. B{n

e e Γ, x : A ⊢ B : _{n
A÷ B Γ ⊢ e′ : A′

{
n
e e′

Γ ⊢ e e′ : B[e′/x]{n
e λα : Ui .λ k : (B[e′/x])→ α .

e α (λ f : Π x : A.B.
(f e′) α k)

[CPSne -App]

Γ ⊢ e : Πα : κ . B{n
e e Γ,α : κ ⊢ B : _{n

A÷ B Γ ⊢ A : κ {n
e A

Γ ⊢ e A : B[A/α]{n
e λα ans : Ui .λ k : (B[A/α])→ α ans .

e α (λ f : Πα : κ .B.
(f A) α ans k)

[CPSne -Inst]

Γ ⊢ e : A{n
e e Γ ⊢ A : _{n

A÷ A Γ, x = e : A ⊢ e′ : B{n
e e′

Γ ⊢ let x = e : A in e′ : B[e/x]{n
e λα : Ui .λ k : B[e/x]→ α . let x = e : A in e′ α k

[CPSne -Let]

Γ ⊢ A : κ {n
A A Γ ⊢ κ : _{n

κ κ Γ,α = A : κ ⊢ e : _{n
e e

Γ ⊢ letα = A : κ in e : B[A/α]{n
e λα ans : Ui .λ k : B[A/x]→ α ans . letα = A : κ in e α ans k

[CPSne -LetK]

Fig. 22. CBN CPS Translation of Terms

Γ ⊢ e1 : A{
n
e e1 Γ ⊢ e2 : B[e1/x]{

n
e e2 Γ ⊢ A : _{n

A÷ A Γ, x : A ⊢ B : _{n
A÷ B

Γ ⊢ ⟨e1, e2⟩ : Σ x : A. B{n
e λα : Ui .λ k : Σ x : A.B→ α . k ⟨e1, e2⟩ as Σ x : A.B

[CPSne -Pair]

Γ ⊢ A : κ {n
A A Γ ⊢ e2 : B[A/x]{

n
e e2 Γ,α : κ ⊢ B : _{n

A÷ B ⊢ Γ {n
Γ Γ ⊢ A : κ ′

Γ ⊢ ⟨A, e2⟩ : Σα : κ . B{n
e λα ans : Ui .λ k : Σα : κ ′

.B→ α . k ⟨A, e2⟩ as Σα : κ ′
.B

[CPSne -PairA1]

Γ ⊢ e1 : A{
n
e e1 Γ ⊢ B : κ {n

A B Γ ⊢ A : _{n
A÷ A ⊢ Γ {n

Γ Γ ⊢ B : κ ′[e1/x]

Γ ⊢ ⟨e1,B⟩ : Σ x : A.κ {n
e λα ans : Ui .λ k : Σ x : A.κ ′ → α . k ⟨e1, B⟩ as Σ x : A.κ ′

[CPSne -PairA2]

Γ ⊢ A : _{n
A÷ A

÷ Γ ⊢ A : _{n
A A+ Γ ⊢ e : Σ x : A. B{n

e e

Γ ⊢ fst e : A{n
e λα : Ui .λ k : A+→ α .

e α λ y : Σ x : A÷
.B÷
.

let z = fst y in z α k

[CPSne -Fst]

Γ ⊢ A : _{n
A÷ A

÷ Γ, x : A ⊢ B : _{n
A B+ Γ ⊢ (fst e) : A{n

e (fst e)÷ Γ ⊢ e : Σ x : A. B{n
e e

Γ ⊢ snd e : B[(fst e)/x]{n
e λα : Ui .λ k : B+[(fst e)÷/x]→ α .

e α λ y : Σ x : A÷
.B÷
.

let z = snd y in z α k

[CPSne -Snd]

Fig. 23. CBN CPS Translation of Terms (pairs)

33

⊢ Γ {n
Γ

⊢ · {n ·
[CPSn

Γ
-Empty]

⊢ Γ {n
Γ Γ ⊢ A : _{n

A÷ A

⊢ Γ, x : A {n
Γ, x : A

[CPSn
Γ
-AssumT]

⊢ Γ {n
Γ Γ ⊢ κ : _{n

κ κ

⊢ Γ,α : κ {n
Γ,α : κ

[CPSn
Γ
-AssumK]

⊢ Γ {n
Γ Γ ⊢ A : _{n

A÷ A Γ ⊢ e : A{n
e e

⊢ Γ, x = e : A {n
Γ, x = e : A

[CPSn
Γ
-Def]

⊢ Γ {n
Γ Γ ⊢ A : _{n

A A Γ ⊢ A : κ ′

⊢ Γ,α = A : κ {n
Γ,α = A : κ ′

[CPSn
Γ
-DefT]

Fig. 24. CBN CPS Translation of Environments

34

REFERENCES

Amal Ahmed and Matthias Blume. 2011. An Equivalence-preserving CPS Translation Via Multi-language Semantics. In International Conference on

Functional Programming (ICFP). https://doi.org/10.1145/2034773.2034830

Gilles Barthe, John Hatcliff, and Morten Heine B. Sùrensen. 1999. CPS Translations and Applications: The Cube and Beyond. Higher-Order and

Symbolic Computation 12, 2 (Sept. 1999). https://doi.org/10.1023/a:1010000206149

Gilles Barthe and Tarmo Uustalu. 2002. CPS Translating Inductive and Coinductive Types. In Workshop on Partial Evaluation and Semantics-based

Program Manipulation (PEPM). https://doi.org/10.1145/509799.503043

Jean-philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for Free: Parametricity for Dependent Types. Journal of Functional

Programming 22, 02 (March 2012). https://doi.org/10.1017/S0956796812000056

Simon Boulier, Pierre-marie Pédrot, and Nicolas Tabareau. 2017. The Next 700 Syntactical Models of Type Theory. In Conference on Certified

Programs and Proofs (CPP). https://doi.org/10.1145/3018610.3018620

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017. Type-Preserving CPS Translation of Σ and Π Types Is Not Not Possible

(Supplementary Materials. (Oct. 2017). https://williamjbowman.com/resources/cps-sigma.tar.gz

Thierry Coquand. 1986. An Analysis of Girard’s Paradox. In Symposium on Logic in Computer Science (LICS). https://hal.inria.fr/inria-00076023

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations. In International

Conference on Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/155090.155113

James G. Hook and Douglas J. Howe. 1986. Impredicative Strong Existential Equivalent to Type:type. Technical Report. Cornell University.

http://hdl.handle.net/1813/6600

Jeehoon Kang, Yoonseung Kim, Chung-kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight Verification of Separate Compilation. In

Symposium on Principles of Programming Languages (POPL). https://doi.org/10.1145/2837614.2837642

Chantal Keller and Marc Lasson. 2012. Parametricity in an Impredicative Sort. In International Workshop on Computer Science Logic (CSL).

https://hal.inria.fr/hal-00730913

Georg Neis, Chung-kil Hur, Jan-oliver Kaiser, Craig Mclaughlin, Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A Compositionally Verified

Compiler for a Higher-order Imperative Language. In International Conference on Functional Programming (ICFP). https://doi.org/10.1145/

2784731.2784764

Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully Abstract Compilation Via Universal Embedding. In International Conference on

Functional Programming (ICFP). https://doi.org/10.1145/2951913.2951941

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-language Semantics. In European Symposium on Programming

(ESOP). https://doi.org/10.1007/978-3-642-54833-8_8

The Coq Development Team. 2017. The Coq Proof Assistant Reference Manual. (Oct. 2017). https://coq.inria.fr/doc/Reference-Manual006.html

35

https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1023/a:1010000206149
https://doi.org/10.1145/509799.503043
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1145/3018610.3018620
https://williamjbowman.com/resources/cps-sigma.tar.gz
https://hal.inria.fr/inria-00076023
https://doi.org/10.1145/155090.155113
http://hdl.handle.net/1813/6600
https://doi.org/10.1145/2837614.2837642
https://hal.inria.fr/hal-00730913
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1007/978-3-642-54833-8_8
https://coq.inria.fr/doc/Reference-Manual006.html

	1 The Calculus of Constructions (CC)
	2 The Calculus of Constructions with CPS axioms (CCk)
	2.1 Consistency of CCk

	3 Call-by-Name CPS Translation of CC
	3.1 Proof of Type Preservation for
	3.2 Proof of Correctness for

	4 Call-by-Value CPS Translation of CC
	4.1 Proof of Type-Preservation for
	4.2 Proof of Correctness for

	5 Extending the Call-by-Name CPS Translation to the Calculus of Inductive Constructions (CIC)
	References

