
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

Only Control Effects and Dependent Types

YOUYOU CONG, Ochanomizu University

WILLIAM J. BOWMAN, Northeastern University

ACM Reference format:

Youyou Cong and William J. Bowman. 2016. Only Control Effects and Dependent Types. 1, 1, Article 1 (January 2016),

3 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

In natural language semantics, control operators, like shi� and reset (Danvy and Filinski 1990), have been used
to solve a major challenge in formalizing compositional semantics for natural languages—how to represent
sentences that manipulate scope (Barker 2004). Natural language semantics is concerned with how to represent
the meaning of natural language sentences. For example, we could represent the sentence “John loves Mary” as
the logical predicate Love (j, m). Such semantic representations should be built compositionally, i.e., the meaning
of the whole sentence is computed from the meanings of constituent words and the rules used to combine them.
�is principle is intuitive, and explains the reason why we are able to interpret sentences that we have never
encountered before. However, compositional calculation of a semantic representation poses difficulties when
the sentence contains phrases that take scope, which can be understood as that of quantifiers in predicate logic.
Scope-taking is a concept from natural language semantics unrelated to the notion of scope in programming
language semantics. An example of scope-taking phrases is the adverb “only” in “John only loves Mary”. One
way to encode this sentence is as ∀x .Love (j, x) ↔ x =m.

Dependent types have been used to solve another major challenge in natural language semantics—modeling
anaphoric phrases, i.e., phrases that require the information of previous sentences such as “he” in the discourse
“Someone entered. He whistled.” Bekki and Mineshima (2017) develop Dependent Type Semantics (DTS), which
uses dependent types to represent the meaning of sentences, and shows an elegant solution to handling anaphoric
phrases. For example, the first sentence of the above discourse is encoded as the type Σ x : Entity . Enter (x),
and the second sentence as Whistle (fst p), where p is a proof of the first sentence, i.e., a term of type Σ x :
Entity . Enter (x).
Unfortunately, in programming language semantics, combining control operators and dependent types is an

open problem. For example, the continuation-passing style (CPS) translation, which is o�en used to implement
control operators, results in ill-typed terms if the language includes inductive types with dependent eliminations
(Barthe and Uustalu 2002). Further work shows that introducing call/cc to a system with Σ types and equality
leads to inconsistency (Herbelin 2005). Recent work by Herbelin (2012) defines a fragment of dependent type
theory that can safely use control operators—the negative-elimination-free fragment.
In this work, we model a dependently typed language with the shi� and reset operators. �e syntax of our

model is given in Figure 1. While our model so far omits Σ types, and thus cannot yet represent anaphoric phrases,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permi�ed. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2016 ACM. XXXX-XXXX/2016/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1:2 • Youyou Cong and William J. Bowman

Universes U ::= Type i | Π x : X .U | Π α : U1 .U2

Types A,X ::= α | c | λ x : X . A | λ α : U . A | A e | A B | Π x : X . Y | Π α : U . X | shi�A | resetA

Terms e ::= x | c | λ x : X . e | λ α : U . e | e1 e2 | e A | shi�A

Fig. 1. Syntax of the source language

it yields interesting insights into the problem of control operators in dependent type theory. In the presence
of dependent types, there are 8 variants of the shi� operator. �ese variants depend on: (i) whether the shi�
appears as a term or a type; (ii) whether it captures a term-level context or a type-level context; and (iii) whether
it returns a term or a type.
In natural language semantics, we need two of these shi� operators. First, we need the term-to-type shi�,

which is a term that captures a type-level context and returns a type. �is can represent the sentence “John only
loves Mary”. In this sentence, we place the emphasis, or the focus of “only”, on the phase “Mary”. �is sentence
means that the only person John loves is Mary. �is is the same interpretation of the sentence we gave earlier;
we will see a second interpretation shortly. In DTS, the intended meaning of this sentence is represented as
Π x : Entity . Love (j, x) ↔ x =m, where j andm are terms of type Entity and Love (j, x) is a type that depends
on entities j and x . Loosely speaking, we can obtain this representation by translating the sentence into the
formula Love (j, Only (m)). We implement Only () using shi� to capture the context, and by placing reset at the
start of the sentence. �e expression Only (m) receives the context Love (j, [.]). �is is a type-level context, but
the argument position [.] is a term—hence this is a term-to-type shi�. We then replace the context, adding a
quantifier and the additional constraint to implement the meaning of the adverb “only”.

Only (f) = shi� (λ k : (Π : F .Type 0) . Π x : F . k x ↔ x = f)

Here, f is the focused phrase and F is the type of f . Using this, we build the formula reset (Love (j, Only (m))),
which evaluates to the desired representation.

Second, we need the type-to-type shi�, which is a type that captures a type-level context and returns a type.
�is can represent the sentence “John only loves Mary”. Unlike before, we place the emphasis on “loves” instead
of on “Mary”, yielding a different interpretation of the sentence. �is sentence means the only thing John does
with Mary is love her. We use the type-to-type shi� in the position of “loves”. Note that “loves” is a type-level
function, and capture the continuation “John [.] Mary”, which is a type-level context.

reset ((shi� (λ k : (Π : (Π x : Entity . Πy : Entity .Type 0) .Type 0) .

Πp : (Π x : Entity . Πy : Entity .Type 0) . k p ↔ p = Love))m j)

We give a prototype implementation of term-to-type and type-to-type shi� operator in Cur (Bowman 2016), a
dependently typed language with support for safe and sophisticated user-defined extensions. �e implementation
is a type-preserving call-by-value CPS translation into the core language of Cur, which is similar to the Calculus of
Inductive Constructions. �e extensions are guaranteed to be sound. As long as the shi� and reset extensions are
used over the negative-elimination-free fragment, the extensions will be well-typed. Otherwise, the translation is
not type-preserving and the result of the translation does not type-check in Cur. Our goal is to extend the model
and the implementation with Σ types to support modeling compositional natural language semantics.

We propose a 20-minute talk, in which we briefly introduce natural language semantics, present the semantics
of our model, and give a brief demo of our implementation. In particular we want to communicate the different
variants of shi� operators that arise in dependent type theory. We use natural language semantics as a motivating

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Only Control Effects and Dependent Types • 1:3

example, but we hope to find other useful applications from making these variants explicit. We will conclude with
the challenges of supporting more sentences, in particular those with anaphoric phrases that rely on Σ types.

REFERENCES

Chris Barker. 2004. Continuations in Natural Language. Continuation Workshop 4 (2004), 1–11.

Gilles Barthe and Tarmo Uustalu. 2002. CPS Translating Inductive and Coinductive Types. ACM SIGPLAN Notices 37, 3 (2002), 131–142.

h�ps://doi.org/10.1145/509799.503043

Daisuke Bekki and Koji Mineshima. 2017. Context-passing and Underspecification in Dependent Type Semantics. In Studies in Linguistics and

Philosophy. Springer, 11–41. h�ps://doi.org/10.1007/978-3-319-50422-3 2

William J. Bowman. 2016. Growing a Proof Assistant. In Higher-Order Programming with Effects. h�ps://williamjbowman.com/papers/#cur

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming (LFP). ACM, ACM Press, 151–160.

h�ps://doi.org/10.1145/91556.91622

Hugo Herbelin. 2005. On the Degeneracy of Σ-types in Presence of Computational Classical Logic. In International Conference on Typed

Lambda Calculi and Applications (TLCA’05). Springer-Verlag, Berlin, Heidelberg, 209–220. h�ps://doi.org/10.1007/11417170 16

Hugo Herbelin. 2012. A Constructive Proof of Dependent Choice, Compatible with Classical Logic. In Symposium on Logic in Computer

Science. IEEE Computer Society, 365–374. h�ps://doi.org/10.1109/lics.2012.47

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://doi.org/10.1145/509799.503043
https://doi.org/10.1007/978-3-319-50422-3_2
https://williamjbowman.com/papers/#cur
https://doi.org/10.1145/91556.91622
https://doi.org/10.1007/11417170_16
https://doi.org/10.1109/lics.2012.47

	References

