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Abstract
Theoreticians often use sophisticated notation to communicate and
reason about key ideas in their theories and models. Notation is
often domain-specific or even invented on-the-fly when creating a
new theory or model. Proof assistants aid theoreticians by rigor-
ously checking formal models, but have poor support for allowing
users to conveniently define and use sophisticated notation. For ex-
ample, in a proof assistant like Coq or Agda, users can easily define
simple notation like Γ $ e : t, but to use BNF notation the user
must use a preprocessing tool external to the proof assistant, which
is cumbersome.

To support convenient and sophisticated extension, we can use
language extension as a fundamental part of the design of a proof
assistant. By starting from language extension we can not only
facilitate convenient and sophisticated user-defined extensions, but
also get a single, compositional system for writing all extensions to
the core proof language.

We describe how to design a language-extension system that
supports safe, convenient, and sophisticated user-defined exten-
sions, and how to design a proof assistant based on language ex-
tension. We evaluate this design by building a proof assistant that
features a small dependent type theory as the core language and im-
plementing the following extensions in small user-defined libraries:
pattern matching for inductive types, dependently typed staged
meta-programming, a tactic language, and BNF and inference-rule
notation for inductive type definitions.

1. Introduction
Notation is important to convey ideas quickly while ignoring un-
interesting details, but notation is not fixed. Each domain has its
own notation used to hide the uninteresting details common in that
domain. The notation commonly used in programming languages
research differs from the notation commonly used in cryptography.
Even in the same domain, individual results require new notation
to suit the needs of each new model or proof. Every new program-
ming languages result may use common domain-specific notation,
like BNF grammars, but may also define new notation to convey
new ideas.

When working with models on papers, we may conveniently
create arbitrarily sophisticated notation. We may define simple
syntactic sugar by saying "we write let x = e1 in e2 to mean
(λ x : t. e2) e1". Or we may define sophisticated extensions
that require the reader to perform computation: "we omit the type
annotation and instead write λ x. e when the type of x can be
inferred".

Creating these extensions is easy when developing models on
paper, but not when using proof assistants. Proof assistants provide
increased confidence in formal models and proofs, but lack support
for allowing users to conveniently define sophisticated extensions.
This lack of support has two downsides. First, formal models need
to be reproduced in another medium (such as LATEX) to commu-

nicate them effectively, which duplicates effort and risks the two
models falling out of sync. Second, it decreases confidence that the
specification is correct since the specification must be manually en-
coded into the language of the proof assistant, rather than written
in familiar notation.

Some proof assistants, like Agda, enable convenient user-
defined extensions as long as the extension is not sophisticated.
Agda’s mixfix notation (Danielsson and Norell 2008) is convenient
to use but only supports simple notation definitions, like writing
a function named _ $ _ : _, where _ indicates the position of
arguments. Other proof assistants, like Coq, support sophisticated
extensions, but creating these extensions is inconvenient to the
point that few users can do it. Writing a Coq plugin requires the
developer to use a separate toolchain to compile against the Coq
implementation, and requires the user to compile and link the plu-
gin against their Coq installation. However, these plugins support
sophisticated extensions like Mtac (Ziliani et al. 2013), a new tactic
language for Coq. To support more convenient but less sophisti-
cated extensions, Coq also provides other extensions systems like
notations, Ltac, and extensible parsing, but with multiple systems
comes an increased learning curve for users and the challenge of
composing multiple extensions from difference extension systems.

We propose to design proof assistants by using language ex-
tension, in the style of Lisp and its descendants, as a fundamental
feature. This not only supports convenient and sophisticated user-
defined extension, but provides a single and compositional system
for writing extensions. Informally, we can think of this design as
follows: rather than start with a proof assistant and add user-defined
extensions, we start with a core language plus a language-extension
system from which we can "grow" a proof assistant. We explain the
design in detail by:

• Describing a core language for expressing formal models and
proofs (section 2). Our core language, called Curnel, is a de-
pendently typed λ-calculus, and does not contain any features
except those required for expressing encodings of formal mod-
els and proofs. The Curnel implementation is less than 700 lines
of code.

• Describing the design and implementation of our language-
extension system (section 3). We explain what it means for
language-extension systems to enable safe, convenient, and so-
phisticated extensions, and how to build the "seed" of a proof
assistant from a core language and a language-extension sys-
tem.

We evaluate this design by implementing a proof assistant called
Cur that supports safe, convenient, and sophisticated language ex-
tension as defined in section 3. To evaluate convenience, we rely
partially on lines of code as a proxy, although it does not take into
account automatic integration into the proof assistant or composi-
tionality of the extension system. To evaluate the level of sophisti-
cation we support, we implement proof-of-concept versions of fea-
tures provided by existing proof assistants and one feature that is
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only supported via external tools. Specifically, we demonstrate that
Cur:

• Enables users to define syntactic sugar and surface language
features that are primitive in the surface languages of other
proof assistants (section 4). We build a proof assistant by im-
plementing a surface language as a user-defined library. This
library provides notation including let, non-dependent func-
tion arrows, automatic currying, pattern matching on inductive
types, and dependently-typed staged meta-programming. This
library is less than 400 lines of code.

• Enables users to define tactic languages for writing proofs, in-
cluding interactive tactic-based proving (section 5). While ex-
isting proof assistants like Coq and VeriML (Stampoulis and
Shao 2010) provide tactic languages, they either do not support
user-defined tactic languages, or require users to use external
toolchains. Our design enables writing the tactic language in a
library, using the same extension system that provides syntac-
tic sugar. Our implementation of this tactic system, excluding
tactics, is less than 200 lines of code. By comparison, the Mtac
plugin for Coq is over 1200 lines of code.

• Enables users to define domain-specific languages for writing
formal models (section 6). In particular, we define a library
that enables modeling programming languages using BNF and
inference rule notation, and extracting the models to Coq and
LATEX in addition to using them in Cur directly. This library is
inspired by Ott (Sewell et al. 2007), an external tool that outputs
files for multiple proof assistants from a single file with BNF
and inference rule notation. While Ott is a mature tools with
many more feature so comparing directly is difficult, our library
is less than 400 lines of code, while just the lexer for Ott is
more than 400 lines of code. No other proof assistant supports
BNF and inference-rule notation in the language, nor provides
support for users to add the feature as a library in just 400 lines
of code.

2. Core Language
Our choice of core language is not vital to our design. We choose a
dependently-typed calculus because dependent types have proven
to be useful not only for theorem proving but also for verified pro-
gramming. Whatever the choice, we want to restrict the core lan-
guage to contain only features necessary to represent the models,
proofs, and programs that we are interested in. Features that are
not required for expressivity (Felleisen 1990), that only add conve-
nience or reduce burden for the user, should be implemented using
language extension.

Our core language, Curnel, is a dependently-typed λ-calculus
with inductive families (Dybjer 1994), an infinite hierarchy of cu-
mulative predicative universes, and an impredicative universe. Cur-
nel is inspired by TT, the core language of Idris (Brady 2013), and
similar to Luo’s UTT (Luo 1994). Curnel is implemented in Re-
dex (Felleisen et al. 2009; Matthews et al. 2004) and all figures in
this section are extracted from the Redex implementation, so some
notation may be slightly non-standard.

The top of Figure 1 presents the syntax of Curnel. A Curnel
term is either a universe U, a function λx:t.e, a variable, a dependent
function type Πx:t.t, an application (e e), or the elimination of an
inductive type elimD motive (methods ...) e. We write universes of
level i as Unv i. We usually write variables using the meta-variable
x, but we use D for the name of declared inductive types and c
for the names of inductive-type constructors. We use application
contexts Θ to represent nested application, and Ξ to represent nested
product contexts (telescopes).

n, i, j, k ::= natural
U ::= Unv i

D, x, c ::= variable-not-otherwise-mentioned
Γc ::= ∅ | (Γc (c : t))
Δ ::= ∅ | Δ,D:[n]t := Γc

t, e ::= U | λx:e.e | x | Πx:e.e | (e e) | elimD e (e ...) e
Ξ, Φ ::= [] | Πx:t.Ξ

Θ ::= [] | (Θ e)
(λx:t0.t1 t2) β t1[t2/x]

elimD emotive (em ...) Θc[c] ι Θmi[emi]

Figure 1: Curnel Syntax and Dynamic Semantics

The language is parameterized by a sequence of strictly-positive
inductive-type declarations Δ. The declaration Δ,D:[n]t := Γc ex-
tends Δ with the inductive type D of type t, with n parameters,
whose constructors are declared by Γc. While users must explicitly
apply constructors to their parameter arguments in the core lan-
guage, the elimination principle guarantees that they are invariant
across the definition.

As an example of writing in Curnel, we can encode the natural
numbers and write the addition function as follows. First we define
the natural numbers:

∅,Nat:[0]Unv 0 := (∅,z:Nat (s : Πx:Nat.Nat))

Next, we define addition.

λn:Nat.λm:Nat.elimNat λx:Nat.Nat (m λn-1:Nat.λih:Nat.(s ih)) n

Note that in Cur n-1 is a valid identifier.
We annotate the eliminator with the type D being eliminated.
The next argument to the eliminator is the motive, a type con-

structor used to compute the result type of the elimination. The
motive is a function that takes the indices of the inductive type and
the argument being eliminated, and computes the return type. In
this case, the motive is λx:Nat.Nat, a constant function that tells us
the result type of addition is Nat.

The next argument is a sequence of are methods. The eliminator
requires one method for each constructor of the inductive type
being eliminated. For natural numbers, there are two constructors
and thus two methods. Each method takes the arguments to its
corresponding constructor and inductive hypotheses, the result of
recursively eliminating the recursive arguments to the constructor.
The method for z is just the constant m; it takes no arguments since
the constructor z takes no arguments. The method for s takes two
arguments: one for the argument to s and one for the recursive
elimination of that argument, since the argument is also a Nat.

The final argument is the discriminant, i.e., the value to elimi-
nate, in this case the argument n.

The bottom of Figure 1 presents the small-step reduction of
Curnel. The dynamic semantics of Curnel are standard, with β-
reduction and folds over inductive types D. The fold over an in-
ductive type takes a step when the discriminant is a fully applied
constructor c of the inductive type D. we step to the method corre-
sponding to the constructor applied to arguments Θmi, where these
arguments are computed from the constructor’s arguments, and the
recursive application of the eliminator to recursive arguments. We
omit the definitions of various meta-functions used in the reduction
relation as they are not instructive. We extend these small-step rules
for a call-by-value normalization strategy in the usual way.

Rather than explain in more detail the semantics of eliminators
in general, we give an example reducing an eliminator. Continuing
with our addition example, suppose we have called the addition
function with (s z) and z. Then the eliminator will take a step as
follows:

elimNat o (m0 m1) (s z) Ñ ((m1 z) elimNat o (m0 m1) z)
where:
U = Unv 0
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o = λx:Nat.Nat
m0 = z
m1 = λn-1:Nat.λih:Nat.(s ih)

Since the eliminator is applied to (s z), the second constructor for
Nat, we step to a use of the second method m1. We pass this method
the argument to s, and recursively eliminate that argument.

The type system of Curnel is a standard intuitionistic dependent-
type theory, but we will present it briefly so that readers are aware
of any differences between our system and existing proof assistants.
Figure 2 presents the type system.

Starting at the top of the figure, the judgment (U0, U1) ∈ A gives
typing for universes. Each universe Unv i has the type Unv i + 1.

The judgment (U0, U1, U2) ∈ R encodes the predicativity rules
for universes and the types of function spaces. We use predicativity
rules similar to Coq; functions are impredicative in Unv 0, but
are predicative in all higher universes. Unlike Coq, we do not
distinguish between Prop and Set.

The subtyping judgment Δ;Γ ⊢ t0 ≼ t1, in the middle of Fig-
ure 2, defines when the type t0 is a subtype of the type t1. A type t0
is a subtype of t1 if they equivalent, i.e., they reduce to α-equivalent
terms in the dynamic semantics. Any universe is a subtype of any
higher universe. A function type Πx:t0.e0 is a subtype of another
function type Πx:t1.e1 if t0 is equivalent to t1, and e0 is a subtype
of e1. Note that we cannot allow t0 to be a subtype of t1 due to
predicativity rules.

In the bottom of the figure, we define term typing. We separate
term typing into two judgments to simplify algorithmic implemen-
tation of convertibility during type checking. The type-inference
judgment Δ;Γ ⊢ e ⇒ t infers the type t for the term e under term
environment Γ and declarations Δ. Note that this inference is trivial
since Curnel terms are fully annotated. Without loss of generality,
we assume the inference judgment can return a type in normal form
if required.

The type-checking judgment Δ;Γ ⊢ e ⇐ t checks that term e has
a type t0 that is convertible to the type t. The typing for eliminators
is based on CIC’s typing of case, but extended to handle recursive
arguments. We omit the presentation as it is standard.

3. Designing for Language Extension
If we were following the design of other proof assistants, we would
now describe a practical surface language. The surface language
would include features that are not necessary for expressivity but
simplify development. We would then write an elaborator that
transforms the surface language into the core language. In this
paper, we instead essentially develop an expressive and extensible
elaborator and expose it to the user. This elaborator is the language-
extension system.

As with our choice of core language, the choice of language-
extension system is not vital to our design. We choose Racket’s
language-extension system as it is the subject of active research
and development and already supports convenient and sophisti-
cated extension, so we need only ensure the extensions are safe. We
imagine that if a proof assistant like Coq were implemented using
our design, it would feature a language-extension system written in
OCaml. Whatever the choice, we want the language-extension sys-
tem to enable the users to conveniently write safe and sophisticated
extensions.

We will refer to the "metalanguage" as the language in which
users write extensions and the "object language" as the language in
which users write proof and formal models. In fact, Cur supports an
infinite hierarchy of metalanguages; we do not discuss this further
in this paper, but refer the interested reader to the literature on
multi-stage programming—Taha (2004), for example.

Safe Extension
For extensions to be safe in the context of a proof assistant, all
extensions must be valid—in the sense that they do not introduce
inconsistency—according to the core language. The simplest and
most convenient way to ensure safety is to check the output of
all extensions after elaboration into the core language. The biggest
drawback to this approach is that type errors may arise in expanded
code, rather than in the code written by the user.

To improve type errors, we enable extension authors to check
subforms and report errors during expansion. While our design en-
ables extension authors to overcome the problem, other approaches
avoid the problem entirely by typing extensions. We discuss these
alternatives in section 7.

Convenient Extension
To ensure extensions are convenient to write, we must allow ex-
tension authors to reuse language infrastructure and automatically
integrate extensions into the object language. Extension authors
should not need separate toolchains to write or integrate new ex-
tensions; the language-extension system should be an integral part
of the proof assistant. Users should be free to write metalanguage
and object language code in the same module. Users should only
need to write the semantics of extension; the extensions should au-
tomatically integrate into the parser and receive parsed objects to
compute over. All extensions should be automatically checked for
safety.

By comparison, Coq plugins require users to compile against
the Coq implementation using a separate toolchain. Users abandon
their project when they find they require a plugin.1

Writing extensions as external preprocessors, such as Ott (Sewell
et al. 2007), requires users to write a parser and compiler, and the
resulting tool does not integrate into the object language. This adds
a barrier to both developing and using such extensions.

Sophisticated Extension
To support sophisticated extension, we must allow extensions to
perform computation in a general-purpose metalanguage. New ex-
tensions should integrate into the syntax of the object language as if
they were native syntax. Users must be able to redefine and extend
existing syntax, including base syntax like λ and application.

Language-extension should also support extensions to non-
syntactic features of the language. A user may want to extend the
reader to parse new literals, rather than just perform rewrites on the
AST of the object language. A user may want to extend the inter-
pretation of a module to perform advanced type inference before
the existing type checker runs.

Mixfix notation in Agda only supports defining new functions
whose arguments appear in non-standard positions. It does not sup-
port defining a form whose subforms are not evaluated as object
language expressions; we give an example of such a form in sec-
tion 6.

Coq features notations and Idris (Brady 2013) features macros,
but these are limited to simple syntactic rewrites. They do not sup-
port general-purpose computation nor redefining existing syntax.

3.1 Racket Languages and Language Extension
To describe how we implement Cur and language extension in Cur,
we must first explain Racket’s language-extension facilities. Racket
is both a language and a system for defining languages (Tobin-
Hochstadt et al. 2011). We use Racket as both: we implement Cur
as an object language in Racket as a system, and write language ex-
tensions in Cur using Racket as the metalanguage. We use Racket
because Racket’s existing language extension features support con-

1 There are many examples on the Coq-Club mailing list.
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i1 = i0 + 1

(Unv i0, Unv i1) ∈ A (Unv i, Unv 0, Unv 0) ∈ R

i3 = max(i1, i2)

(Unv i1, Unv i2, Unv i3) ∈ R

Δ;Γ ⊢ t0 ≡ t1

Δ;Γ ⊢ t0 ≼ t1
 [≼-≡]

i0 ≤ i1

Δ;Γ ⊢ Unv i0 ≼ Unv i1
 [≼-Unv]

Δ;Γ ⊢ t0 ≡ t1

Δ;Γ,x0:t0 ⊢ e0 ≼ e1[x0/x1]

Δ;Γ ⊢ Πx0:t0.e0 ≼ Πx1:t1.e1
 [≼-Π]

Δ ⊢ Γ (U0, U1) ∈ A

Δ;Γ ⊢ U0 ⇒ U1

 [Unv]
D : t ∈ Δ Δ ⊢ Γ

Δ;Γ ⊢ D ⇒ t
 [Inductive]

c : t ∈ Δ Δ ⊢ Γ

Δ;Γ ⊢ c ⇒ t
 [Constr]

x : t ∈ Γ Δ ⊢ Γ

Δ;Γ ⊢ x ⇒ t
 [Var]

Δ;Γ,x:t0 ⊢ e ⇒ t1

Δ;Γ ⊢ Πx:t0.t1 ⇒ U

Δ;Γ ⊢ λx:t0.e ⇒ Πx:t0.t1
 [Fun]

Δ;Γ ⊢ t0 ⇒ U1

Δ;Γ,x:t0 ⊢ t ⇒ U2

(U1, U2, U) ∈ R

Δ;Γ ⊢ Πx:t0.t ⇒ U
 [Prod]

Δ;Γ ⊢ e0 ⇒ Πx0:t0.t1

Δ;Γ ⊢ e1 ⇐ t0

Δ;Γ ⊢ (e0 e1) ⇒ t1[e1/x0]
 [App]

Δ;Γ ⊢ ec ⇒ Θ[D] Δ;Γ ⊢ eP ⇒ tB Δ;Γ ⊢ Θp[D] ⇒ tD

check-motive ⟦Θp[D], tD, tB⟧

(c ...) = Δ-ref-constructors ⟦Δ, D⟧ Δ;Γ ⊢ Θp[c] ⇒ tc ...

(tm ...) = (method-type ⟦n, D, [], Θp[c], tc, eP⟧ ...)

Δ;Γ ⊢ em ⇐ tm ...

Δ;Γ ⊢ elimD eP (em ...) ec ⇒ (Θi[eP] ec)
 [ElimD]

Δ;Γ ⊢ e ⇒ t0

Δ;Γ ⊢ t0 ≼ t

Δ;Γ ⊢ t ⇒ U

Δ;Γ ⊢ e ⇐ t
 [Conv]

Figure 2: Cur's Type System (excerpts)

venient and sophisticated extensions as defined earlier in the sec-
tion. We describe how we enforce safety later in this section.

Each Racket library provides a set of definitions that includes
both syntactic forms such as lambda or define and values such
as Nat or plus. Roughly speaking, definitions exist in one of two
phases: compile-time and run-time. Compile-time definitions in-
clude both syntactic forms and value definitions. Run-time defini-
tions include only value definitions. Compile-time definitions are
written in a metalanguage, while run-time definitions are written
in an object language. Defining new syntactic forms extends the
object language. In Racket (the language), the metalanguage and
object language are the same. In Cur, we create a new object lan-
guage but leave Racket as metalanguage.

We define syntactic forms using syntactic macros. Each macro
binds an identifier to a transformer, a metalanguage function on
syntax objects—a data type representing object language syntax.
For example, if we assume the object language contains the form
λ, we can define a new ASCII version lambda as follows:

; Start a metalanguage block
(begin-for-syntax

; A metalanguage function definition
(define (transform-lambda syn)

; Expect ":" to be a literal symbol
(syntax-case syn (:)

[(_ (x : t) e)
#'(λ (x : t) e)])))

; Defines an object language "lambda" form
(define-syntax lambda transform-lambda)

The form begin-for-syntax starts a metalanguage block; it can
contain arbitrary Racket definitions that will only be visible at
compile-time.

The transformer function transform-lambda uses syntax-
case to pattern match on the syntax object. It also takes a set of
literals. This set, (:), declares that : should be treated as a literal
and not as a pattern variable. Where _ appears in a pattern, we do
not bind a pattern variable.

In transform-lambda, we ignore the first element of the syn-
tax, as that will be the name of the macro. In the body of the clause,
we use syntax quote #' to create a template for a new syntax ob-
ject. Pattern variables are bound inside the template. We simply
preserve the pattern of the syntax object, and replace the macro
identifier with the unicode name λ. In a practical implementation,
we would add additional conditions on the pattern variables, such
as check that x is an identifier rather than an arbitrary expression.

Finally, outside the meta-language block, we declare the new
syntactic form using define-syntax, and it is added to the object
language.

The first stage of running a program is to run the macro ex-
pander. The expander recursively traverses the syntax and calls the
associated transformer when it reaches a use of a macro identifier.
This recursive expansion enables macros to generate calls to other
macros, and to build abstractions for defining macros.

In Racket, we can even use macros to extend and redefine lan-
guage features that do not normally have an associated syntactic
identifier, like the semantics of application. Language features that
do not normally have an associated identifier have a secondary ex-
plicit name. For example, while we normally write application (f
e), this is just a special syntax for (#%app f e). We can redefine
application by redefining #%app, exactly as we defined lambda.
Similarly, we can redefine the semantics of a module by redefin-
ing the #%module-begin form. The ability to redefine language
features enables the most sophisticated language extensions and al-
lows us to define new object languages in Racket.

We define a new language by defining a library that provides
the base syntactic forms of the language and a definition for
#%module-begin to implements the semantics of a module. Each
Racket module begins with a line of the form #lang name, where
name is the name of a library. This causes Racket to use the library
name to interpret the module.

We can also define extensions to the language reader which al-
low adding new literals or entirely new kinds of syntax for writing
object and metalanguage programs. A reader mixin is an exten-
sion to the reader. Users can use reader mixins by adding them
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before the language name in the #lang name line. For exam-
ple, #lang sweet-exp cur adds the sweet-expression reader
sweet-exp to Cur, allowing users to write Cur using sweet-
expressions instead of Racket’s usual s-expressions. Using reader
mixins does not affect how macros are written, since macros are
defined on syntax objects which the reader returns, and not on, say,
token streams.

3.2 Implementing Cur
We define Cur as a Racket language invoked using #lang cur.
Cur uses Racket as the metalanguage, but replaces the object lan-
guage. The base syntactic forms of Cur are the Curnel forms given
section 2. For example, we can write the identity function as:
#lang cur

(λ (A : (Type 0)) (λ (a : A) a))
To eliminate some of the syntactic noise of s-expressions,

we can write the same code using sweet-expressions. Sweet-
expressions are similar to s-expressions, but infer some structure
from indentation, provide some support for infix notation, and sup-
port the $ operator used in Haskell for controlling precedence.
S-expressions are also valid sweet-expressions, so we can still ex-
press structure manually when necessary. The rest of the example
in this paper will use sweet-expression syntax.
#lang sweet-exp cur

λ (A : (Type 0)) $ λ (a : A) a
Cur also provides a define form for creating run-time value

definitions and a data form for defining inductive types:
define id $ λ (A : (Type 0)) $ λ (a : A) a

data Nat : 0 (Type 0)
z : Nat
s : (Π (x : Nat) Nat)

The base forms plus define and data make up the default object
language. The module semantics recursively expand all syntactic
forms into base forms. The forms data and define generate
no code, but affect the module’s environment. The data form
extends the module’s inductive type declaration Δ. The define
form extends the module’s value definitions. As each syntactic
form in the module is expanded, prior value definitions are inlined
and added to the term environment Γ, the expanded term is type-
checked, and top-level expression are normalized and printed.

We can write macros as we saw in the previous section to extend
the syntax of Cur. The example of the ASCII lambda is a valid Cur
extension. As in Racket, we can also build and use metalanguage
abstractions to simplify defining new language extensions. For
instance, the previous example required a lot of code to simply
add another name to an existing form. Instead, we could use the
following metalanguage abstraction that generate transformers that
just replace the macro identifier with another identifier:
define-syntax lambda

make-rename-transformer(#'λ)

; id, now without unicode
define id

lambda (A : (Type 0)) $ lambda (a : A) a

3.3 Reflection API
Some of the extensions we want to write check and infer types, and
run Cur terms at compile-time. We can implement staged meta-
programming by running Cur terms at compile-time. We can add
type errors to extensions by type-checking during macro expansion.
We therefore provide a reflection API—a metalanguage API to
the Curnel implementation—for language extensions to use. We

explain the API functions that we use in the rest of this paper.
Note that these API functions are added to the metalanguage, not
the object language, and can only be used by extensions during
expansion and before object language code is checked in the core
language.

(cur-expand syn id ...) Ñ SyntaxObject
syn : SyntaxObject
id : Identifier

The cur-expand function runs the macro expander on syn until
the expander encounters a base form or one of the identifiers in
the id ... list. The resulting term is not a fully expanded Curnel
term; expansion halts when the top-level form begins with any of
the identifiers in the id list or any of the Curnel base forms. For
instance, (cur-expand #'(λ (x : t) e)) does not expand t
or e since λ is a base form. This function lets users write extensions
by only considering certain syntactic forms. Since users can arbi-
trarily extend the syntax of Cur, using cur-expand before pattern
matching in a new extensions ensures all unexpected extensions are
already expanded.

(cur-type-check? term type) Ñ Boolean
term : SyntaxObject
type : SyntaxObject

The cur-type-check? function returns true when term ex-
pands to e, type expands to t, and Δ;Γ ⊢ e ⇐ t holds, and returns
false otherwise. Note that this function is not meant to provide an
error message; it is meant to be used by extensions that catch type
errors in surface syntax and provide their own error messages.

(cur-type-infer term) Ñ (Maybe SyntaxObject)
term : SyntaxObject

The cur-type-infer function returns a syntax representation of t
when term expands to the term e and Δ;Γ ⊢ e ⇒ t holds, and false
otherwise. This function allows users to build type inference into
extensions and reduce annotation burden.
(cur-normalize term) Ñ SyntaxObject

term : SyntaxObject

The cur-normalize function is Cur’s version of eval, but us-
able only by extensions at compile-time. It essentially calls the
implementation of module semantics explained earlier: it expands
all extensions, type checks the result, then normalizes the term in
the Curnel. Specifically, the function returns a syntax representa-
tion of e1 when term expands to a well-typed term e0 and e1 =
reduce⟦Δ, e0⟧. This lets users explicitly reduce terms or simplify
proofs when the type system or other extensions might not evaluate
far enough.

This is similar to a feature in Zombie (Casinghino et al. 2014);
Zombie users can write potentially non-terminating program to
compute proofs, but to do so must explicitly force evaluation and
thus act as a termination oracle. As Cur is terminating, the similar-
ity is fleeting.

This function also enables us to implement staged meta-programming
and run-time reflection without extending the core language.

4. Growing a Surface Language
Cur provides an object language with no more convenience than
Curnel. It contains only features necessary for expressivity and
nothing that is macro expressible in terms of other features (Felleisen
1990). By contrast, Gallina, the core language of Coq, includes ex-
tensions that are macro expressible in terms of other features, such
as a non-dependent arrow and multi-arity functions.

Let us now take on the role of a Cur user (more precisely, an
extension author) and begin implementing a surface language.
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We begin by implementing the simple syntactic sugar like the
non-dependent arrow notation. We then implement more sophis-
ticated syntax sugar: we implement a let form with optional type
annotations, and a pattern matching form for eliminating induc-
tive types. We conclude with some extensions that go beyond
syntax—extensions that add compile-time behaviors but do not
necessarily generate code, like debugging features and staged meta-
programming.

4.1 Simple Syntax

Alias for (Type 0)
Writing (Type 0) for all these examples is somewhat tedious.
We start with a simple example macro that elaborates Type to
(Type 0). Eventually, a more sophisticated extension could re-
solve all universe levels automatically, but this will do for now.
First, let us import a renamed copy of the default form:
require
only-in curnel

Type default-Type
Next we define a simple macro with two syntaxes: one applied to
an argument, one without any argument. In the first case, we simply
expand to the default form. In the second case, we provide level 0
as a default. Note that the choice of surface syntax does not affect
how we write syntax objects.
define-syntax (Type syn)

syntax-case syn ()
[(Type i) #'(default-Type i)]
[Type #'(default-Type 0)]

Multi-Arity Syntax
Cur provides only single-arity functions in the base language. As
mentioned in section 3, we can redefine existing forms like func-
tion and application syntax, so we redefine them to support multi-
arity functions via automatic currying. First, let us import renamed
copies of the default forms:
require

only-in curnel
#%app default-app
λ default-λ

With these renamed copies, we can redefine #%app and λ while still
generating code that uses the original forms.

Next, we define a simple recursive macro for λ that curries all
arguments using default-λ.
define-syntax λ

syntax-rules (:)
[(λ b) b]
[(λ (a : t) (ar : tr) ... b)
(default-λ (a : t) (λ (ar : tr) ... b))]

define-syntax lambda
make-rename-transformer #'λ

The syntax-rules form is similar to syntax-case, but special-
ized to support writing simple syntactic rewrites rather than ar-
bitrary metalanguage computation. The syntax ... is part of the
pattern and template languages for syntax objects. In a pattern, it
matches a list of the preceding pattern. In a template, it splices in
the list indicated by the preceding pattern.

Next, we redefine application. The macro automatically curries
applications using default-app.
define-syntax #%app

syntax-rules ()
[(#%app e1 e2)
(default-app e1 e2)]
[(#%app e1 e2 e3 ...)
(#%app (#%app e1 e2) e3 ...)]

These forms are automatically integrated into the object lan-
guage, replacing the old forms, and are ready to use even later in
the same module:
define id $ lambda (A : Type) (a : A) a
id Nat z

Non-dependent Arrow Syntax
Now let us define a non-dependent arrow form. We start by defining
a single-arity arrow syntax arrow:
define-syntax (arrow syn)

syntax-case syn ()
[(arrow t1 t2)
#`(Π (#,(gensym) : t1) t2)]

Note that in Cur we must explicitly generate a fresh name using
gensym, due to a limitation in the representation of names in
our object language. We use syntax quasiquote #` to create a
syntax template that supports escaping to compute parts of the
template, and use syntax unquote #, to escape the template and
run metalanguage expressions.

Now we can easily define the multi-arity arrow, with both ASCII
and unicode names.
define-syntax ->

syntax-rules ()
[(-> a) a]
[(-> a a* ...)
(arrow a (-> a* ...))]

define-syntax Ñ make-rename-transformer(#'->)

; Usage:
data Nat : 0 Type

z : Nat
s : {Nat Ñ Nat}

Top-level Function Definition Syntax
Writing top-level function definitions using lambda is verbose.
Most languages features special syntax for conveniently defining
top-level functions, so let us add this to Cur:
define-syntax define

syntax-rules (:)
[(define (id (x : t) ...) body)
(default-define id (lambda (x : t) ... body))]
[(define id body)
(default-define id body)]

define (id (A : Type) (a : A)) a

Notation for Formal Models and Proofs
Recall that our original goal was to provide better support for
user-defined notation in formal models and proofs. Thus far, we
have merely defined a surface language, which users should not
be expected to do. However, the same language-extension facilities
serve both purposes. As language implementers, we use language
extension to build a surface language. As users, we use language
extension to define our own notation—and we have the same power
as language implementers when defining new notation.

For instance, suppose we as a user model the simply-typed λ-
calculus. After writing a small-step evaluation relation and a type-
checking relation, we want to use standard notation while doing
proofs about the model. We define this notation as follows:
define-syntax-rule (ÞÑ e1 e2) (steps-to e1 e2)

define-syntax $

syntax-rules (:)
[($ Γ e : t) (type-checks Γ e t)]
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define-syntax nfx
syntax-rules ($ :)

[(nfx Γ $ e : t) ($ Γ e : t)]
The form define-syntax-rule is simply syntax sugar using
define-syntax followed by syntax-rules. The nfx macro
is used by the sweet-expression reader to extend the reader with
new infix notation. The reader can automatically parse some infix
notation, but the type-checks notation is irregular so we define
the nfx macro to assist the reader.

Now we can use the notation to state a lemma:
define lemma:type-preservation
(forall (e1 : STLC-Term) (e2 : STLC-Term)

(Γ : STLC-Env) (t : STLC-Type)
{{Γ $ e1 : t} -> {e1 ÞÑ e2} -> {Γ $ e2 : t}})

The sweet-expression reader provides some support for infix
notation, but other work has implemented more sophisticated
support for non-s-expression based syntax extensions. Jon and
Matthew (2012) used the extensible reader to implement syntax-
extension for algebraic notation. Other work has even developed
language-extension via syntactic macros based on parsing expres-
sion grammars, rather than on pre-parsed s-expressions representa-
tions (Allen et al. 2009).

4.2 Sophisticated Syntax
The extensions in the previous section are simple syntactic rewrites,
but recall that our goal is to support sophisticated user-defined ex-
tensions. The extensions we study in this section use metalanguage
computation to compute parts of the object language code.

Let Syntax
Let us begin by defining let in terms of application. Note that
a proper dependent let requires changing the type system, so
this let is only a programming convenience. We define the let
construct with two syntaxes: one expects a type annotation, while
the other attempts to infer the type. In the first syntax, when there
is a type annotation, we manually type check the annotated term
before generating code so that we can report an error in the surface
syntax. In the second syntax, when there is no annotation, we
attempt to infer a type and report an error if we cannot.
define-syntax (let syn)

syntax-case syn (: =)
[(let ([x = e : t]) body)
(unless (cur-type-check? #'e #'t)

(error 'let
"„a does not have expected type „a"
#'e
#'t)

#'((λ (x : t) body) e))]
[(let ([x = e]) body)
(unless (cur-type-infer #'e)

(error 'let
"Could not infer type for „a; „a"
#'e
"try adding annotation via [x = e : t]")

#`((λ (x : #,cur-type-infer(#'e)) body)
e))]

Pattern variables are only bound inside syntax templates, so we
use syntax quote to refer e and t in metalanguage code. The
metalanguage function error takes a symbol naming the form in
which the error occurred, a format string where „a is a formatting
escape, and a list of arguments for the format string. Syntax objects
have associated source location information, so we could even
report error messages with the file name and line number of the
let expression, but we omit this for clarity.

Pattern Matching Syntax

Recall the addition function for natural number we defined in
section 2, which we redefine as + below:
define (+ [n1 : Nat] [n2 : Nat])

elim Nat
lambda (x : Nat) Nat
(n2
lambda (x : Nat) (ih : Nat) $ s ih)
n1

This version of + is easier to read and write now that we have
multi-arity functions, but still requires a lot of annotations and other
syntactic overhead. Instead, we would like to define plus using
pattern matching and to avoid writing obvious annotations, like the
motive, when they can be inferred. We would like to define plus,
for instance, like so:
define (+ [n1 : Nat] [n2 : Nat])

match n1
z n2
(s (x : Nat)) s $ recur x

In this definition we use match, which we present shortly. The
match form automatically infers the motive, the annotations on
elim, and inductive hypotheses. It also provides the recur form
to allows users to refer to generated inductive hypotheses by the
name of the recursive argument from which they are derived.

Figure 3 presents the definition of the match extension. This
simplified version demonstrates how to coordinate two different ex-
tensions, namely the match and recur forms, and how to generate
and compose multiple syntax templates. It makes use of nontrivial
metalanguage features, like state and user-defined datatypes struc-
tures. We omit parts of the implementation that do not contribute
to the goal of demonstrating these features, and features like error
checking code. Recall that ... is an identifier used in patterns and
templates, so we use .... to indicate omitted code.

First, we transform the syntax representing a sequence of
clauses into a list of syntax using syntax->list. We parse each
clause into a structure using clause-parse. Each clauses consist
of a pattern and a body. The pattern must be either a construc-
tor name for constructors that take no arguments, or a constructor
name followed by names with type annotations for all arguments to
the constructor. We store the list of arguments and the body of the
clause in a clause structure, to be used when generating methods
for the eliminator.

After parsing each clause, we compute the motive. The body
of the motive is the type R of the result of the match, and the
argument to the motive has type D of the discriminant. Note that
in this implementation, we do not attempt to handle indexed or
parameterized inductive types. The full implementation can infer
parameters and some indexed inductive types and supports optional
annotation syntax for when inference fails.

Finally, we generate a method for each clause using clause-
>method. While generating methods, we infer which arguments
are recursive arguments and compute the inductive hypotheses. We
update a compile-time dictionary ih-dict that associates the name
of the recursive argument to the generated name for that inductive
hypothesis. The recur form looks up its argument in ih-dict.

4.3 Beyond Syntax
Thus far, all our examples demonstrate syntactic transformations.
Our sophisticated language-extension system also supports creat-
ing syntactic forms that have semantic behavior at compile-time
and do not necessarily generate object language code.

For example, we can create a type assertion form that allows
users to check that an expression has a particular type and receive
a type error if not:
define-syntax (:: syn)
syntax-case syn ()
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define-syntax (match syn)
syntax-case syn ()

; expects discriminant e and list of clauses clause*
(_ e clause* ...)
let* ([clauses (map clause-parse (syntax->list #'(clause* ...)))]

[R (infer-result clauses)]
[D (cur-type-infer #'e)]
[motive #`(lambda (x : #,D) #,R)]
[U (cur-type-infer R)])

#`(elim #,D #,motive
#,(map (curry clause->method D motive) clauses)
e)

define-syntax (recur syn)
syntax-case syn ()

(_ id)
dict-ref ih-dict $ syntax->datum #'id

begin-for-syntax
define-struct clause (args body)
define ih-dict (make-hash)

define (clause-parse syn)
syntax-case syn

(pattern body)
make-clause (syntax-case pattern (:)

[c '()]
[(c (x : t) ...) (syntax->list #'((x : t) ...))])

#'body

define (infer-result clauses)
for/or ([clause clauses])

cur-type-infer $ clause-body clause

define (infer-ihs D motive args-syn)
syntax-case args-syn () ....

; D needed to detect recursive arguments
; motive needed to compute type of inductive hypotheses
define (clause->method D motive clause)

let* ([ihs (infer-ihs D motive (clause-args clause))])
dict-for-each ihs

lambda (k v)
dict-set! ih-dict k $ car v

#`(lambda
#,@clause-args(clause)
#,@(dict-map ihs (lambda (k v) #`(#,(car v) : #,(cdr v))))
#,clause-body(clause))

Figure 3: A Pattern Matcher for Inductive Types

(_ e t)
if $ cur-type-check? #'e #'t

#'(void)
(error '::
"Inferred „a; expected „a."
#'t
(cur-type-infer #'e))

; Usage:
{z :: Nat}

We check during expansion that e has type t. If the check succeeds,
we generate the no-op expression #'(void). If the check fails, it
reports an error similar to what we do for checking annotations in
the let form. This form has no behavior in the object language but
provides extra behavior at compile-time to support debugging.

We can also create a syntactic form that forces normalization at
compile-time:
define-syntax (run syn)

syntax-case syn ()
(_ expr) $ cur-normalize #'expr

The run form does not provide new syntactic sugar, but transforms
the syntax by normalization via the reflection API.

This can be used to simplify proofs or perform staged meta-
programming. For example, we specialize the exponentiation func-
tion exp to the square function at compile-time:

define square $ run $ exp (s (s z))

5. Tactics
In this section we describe a tactic system called ntac implemented
in Cur. We begin with an example of using the tactic system to
prove a trivial theorem:
ntac $ forall (A : Type) (a : A) A

by-intro A
by-intro b
by-assumption

This example shows the type of the polymorphic identity function
written using tactics. We use ntac, a form that builds an expression
given an initial goal followed by a tactic script. This is similar
to Goal in Coq, which introduces an anonymous goal that can
be solved using an Ltac script. In this example we use the by-
intro tactic, which takes a single optional argument representing
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the name to bind as an assumption in the local proof environment.
Then we conclude the proof with by-assumption, which takes
no arguments and searches the local environment for a term that
matches the current goal. Since all goals are complete at this point,
we end the proof.
define-theorem id $ forall (A : Type) (a : A) A

by-obvious
We can also use define-theorem to define a new identifier
using an ntac script. The form (define-theorem name goal
script ...) is simply syntax sugar for (define name (ntac
goal script ...)). In this example, we use the by-obvious
tactic which solves certain trivial theorems.

We begin implementing ntac by implementing the ntac form:
define-syntax (ntac stx)

syntax-case stx ()
[(_ goal . script) (ntac-interp #'goal #'script)]

The ntac form runs, at compile-time, the metalanguage function
ntac-interp to generate an object language term. The function
ntac-interp takes syntax representing an object language type,
#'goal and syntax representing a sequence of tactics, #'script.

In ntac, we use proof trees ntt to represent partial terms in
the object language with multiple holes and contextual information
such as assumptions, and then use the ntac proof tree zipper nttz
to navigate the tree and focus on a particular goal. Tactics are
metalanguage functions on nttzs. We will not discuss this design
or these data structures in more details here; the design is described
in the Cur documentation.

Since tactics are just metalanguage functions, we can create
syntactic sugar for defining tactics as follows:
define-syntax $ define-tactic syn

syntax-rules ()
[(_ e ...)
(begin-for-syntax

(define e ...))]
The form define-tactic is simply a wrapper for conveniently
defining a new metalanguage function. Note that this extension
generates metalanguage code, by generating a new metalanguage
block containing a metalanguage definition. Until now, we have
only seen extensions that compute using the metalanguage and
generate code in object language, but recall from section 3 that Cur
supports an infinite hierarchy of language extension.

Now let us write the tactic script interpreter. We begin by defin-
ing the function run-tactic, which takes a proof tree zipper and
a syntax object representing a call to a tactic.
begin-for-syntax

define $ run-tactic nttz tactic-stx
define tactic $ eval tactic-stx
tactic nttz

We use eval to evaluate the syntax representing the function name
and get a function value. Then we simply apply the tactic to the
proof tree zipper.

Finally, we define ntac-interp to interpret a tactic script and
solve a goal.
begin-for-syntax

define $ ntac-interp goal script
define pt $ new-proof-tree $ cur-expand goal
define last-nttz

for/fold ([nttz (make-nttz pt)])
([tactic-stx (syntax->list script)])

run-tactic nttz tactic-stx
proof-tree->term $ finish-nttz last-nttz

We begin by generating a fresh proof tree which starts with one
goal. The for/fold form folds run-tactic over the list of tactic
calls with a starting proof tree zipper over the initial proof tree.

After running all tactics, we check that the proof has no goals left,
then generate a term from the proof tree.

Many operations work directly on the current proof tree, so it
is cumbersome to define each tactic by first extracting the proof
tree from the proof tree zipper. We introduce a notion of tacticals,
metalanguage functions that take a context and a proof tree and
return a new proof tree. We define a tactic fill to take a tactical
and apply it at the focus of the proof tree zipper. With a notion of
tacticals, we can easily define the tactical intro as follows:
define-tactical ((intro [name #f]) env pt)

ntac-match $ ntt-goal pt
[(forall (x:id : P:expr) body:expr)
define the-name (syntax->datum (or name #'x))
make-ntt-apply
goal
λ (body-pf)

#`(λ (#,the-name : P) #,body-pf)
list
make-ntt-env
λ (old-env)

(hash-set old-env the-name #'P)
make-ntt-hole #'body]

We define a new tactical intro, which takes one optional argument
from the user name, and will be provided the local environment and
proof tree from the ntac interpreter. In intro, we start by extracting
the current goal from the proof tree. To pattern match on the goal
we use the form ntac-match, a simple wrapper around the Racket
match form that hides some boilerplate such as expanding the goal
into a Curnel form and raising an exception if no patterns match.
If the goal has the form of a dependent function type, we make
a new node in the ntac proof tree that solves goal by taking a
solution for the type of the body of the function and building a
lambda expression in the object language. This node contains a
subtree that makes the solution of #'body the new goal and adds
the assumption that name has type P in the scope of this new goal.

To make the intro tactical easier to use at the top level, we
define the by-intro tactic:
begin-for-syntax
define-syntax $ by-intro syn
syntax-case syn ()
[_
#`(fill (intro))]
[(_ name)
#`(fill (intro #'name))]

We create a metalanguage macro by-intro that takes a name as
an optional argument. This macro expands to an application of the
fill tactic to the intro tactical. We define by-intro as a macro
so the user can enter a name for the assumption as a raw symbol,
like (by-intro A), rather than as a syntax object like (by-intro
#'A).

Since tactics are arbitrary metalanguage functions, we can de-
fine tactics in terms of other tactics, define recursive tactics, and
even call to external programs or solvers in the metalanguage or
even through the foreign-function interface of our metalanguage.
Our next tactic, by-obvious, demonstrates these first two fea-
tures. It will solve any theorem that follows immediately from its
premises.
define-tactical $ obvious env pt
ntac-match $ ntt-goal pt
[(forall (a : P) body)
((intro) env pt)]
[a:id
(assumption env pt)]

define-tactic $ by-obvious ptz
define nptz $ (fill obvious) ptz
if $ nttz-done? nptz
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nptz
by-obvious nptz

First we define the obvious tactical, which simply matches a goal
and uses either intro or assumption to solve it. Then we define
the by-obvious tactic which fills the hole using the obvious
tactical and recurs until there are no goals left.

As we have the entire metalanguage available, we can define
sophisticated tactics that do arbitrary metalanguage computation.
For instance, since our metalanguage provides I/O and reflection,
we can define interactivity as a user-defined tactic. We begin im-
plementing interactive by first implementing the print tactic. This
tactic will print the state of the focus of the proof tree zipper and
return it unmodified.
define-tactic $ print ptz

match $ nttz-focus ptz
[(ntt-hole _ goal)
for ([(k v) (in-hash (nttz-context tz))])

printf "„a : „a\n" k (syntax->datum v)
printf "-----------------------------\n"
printf "„a\n\n" (syntax->datum goal)]
[(ntt-done _ _ _)
printf "Proof complete.\n"]

ptz
We first match on the focus of proof tree zipper. If there is a
goal, then we print all assumptions in the context followed by a
horizontal line and the current goal. If the zipper indicates the proof
has no goals left, then we simply print "Proof Complete".

Now we define the interactive tactic. This tactic uses the
print tactic to print the proof state, then starts a read-eval-print-
loop (REPL).
define-tactic $ interactive ptz

print ptz
let ([cmd (read-syntax)])

syntax-case cmd (quit)
[(quit) ....]
[tactic
(define ntz (run-tactic ptz tactic))
(interactive ntz)]

The REPL reads in a command and runs it via run-tactics if it
is a tactic. The REPL also accepts quit as a command that exits
the REPL and returns the final proof state.

Now we have defined not only a user-defined tactic system, but
a user-defined interactive tactic system. We can use the interactive
tactic just like any other tactic:
ntac $ forall (A : Type) (a : A) A
interactive

The following is a sample session in our interactive tactic:
–-–-–-–-–-–-–-–-–-–-–
(forall (A : Type) (forall (a : A) A))

> (by-intro A)
A : Type
–-–-–-–-–-–-–-–-–-–-–
(forall (a : A) A)

....

> by-assumption
Proof complete.

> (quit)

6. Olly - Ott-Like LibrarY
All the previous extensions are features of existing proof assistants.
In this section we present Olly, a domain-specific language (DSL)
for modeling programming languages, which provides features that

no other proof assistant supports. Olly provides BNF notation for
generating inductive types that represent programming language
syntax. The BNF notation automatically converts variables in the
syntax to de Bruijn indices. Olly also supports inference rule no-
tation for modeling relations. Both notations support extracting the
models to LaTeX and Coq, in addition to using the models directly
in Cur.

Olly is inspired by Ott (Sewell et al. 2007), a tool for generat-
ing models of programming language semantics in different proof
assistants from a single model written in a DSL. Ott is an exter-
nal tool that generates files for each proof assistant, while Olly is
integrated into the object language of Cur as a language extension.

BNF Notation
We begin with an example of defining of the syntax of the simply-
typed λ-calculus using the define-language form. This lan-
guage includes booleans, the unit type, pairs, and functions. Note
that the let form is the elimination form for pairs in this language,
and binds two names.

define-language stlc
#:vars (x)
#:output-coq "stlc.v"
#:output-latex "stlc.tex"
val (v) ::= true false unit
type (A B) ::= boolty unitty (-> A B) (* A A)
term (e) ::= x v (lambda (#:bind x : A) e)

(app e e) (cons e e)
(let (#:bind x #:bind x) = e in e)

The first argument to the form is a name for the language—stlc in
this case. The next three lines are optional keyword arguments. The
#:vars argument is a set of meta-variables that represent variables
in the syntax. The #:output-coq argument is a string representing
a file name; when given, a Coq representation of the language
syntax is written to the specified file during compilation. Similarly,
the #:output-latex argument is a string representing a file name;
when given, a Latex rendering of the BNF grammar is written to
the specified file during compilation. After the optional arguments,
define-language expects an arbitrary number of non-terminal
definitions from which it generates inductive types.

To better understand define-language non-terminal clauses,
let us first look at the code generated for the term non-terminal.

data stlc-term : 0 Type
Nat->stlc-term : {Nat -> stlc-term}
stlc-val->stlc-term : {stlc-value ->

stlc-term}
stlc-lambda : {stlc-type -> stlc-term ->

stlc-term}
stlc-app : {stlc-term -> stlc-term -> stlc-

term}
stlc-cons : {stlc-term -> stlc-term ->

stlc-term}
stlc-let : {stlc-term -> stlc-term ->

stlc-term}

References to other non-terminals, such as the reference to x, result
in conversion constructors which simply inject one non-terminal
into the other. The names of the conversion constructors are gener-
ated from the types of the non-terminals with the sigil -> between
them, indicating conversion. For example, Nat->stlc-term is
a stlc-term constructor that converts a Nat (representing a de
Bruijn index) to a stlc-term. Other constructor names are gen-
erated from the name of the language, stlc, and the name of the
constructor given in the syntax. For example, the constructor name
generated from the lambda syntax is stlc-lambda.

More formally, the syntax of a non-terminal definition is (nt-
name (meta-variables ...) ::= syn-clause ...). As
Cur does not currently support mutual inductive definitions, all
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non-terminal definitions must be appear in order of their dependen-
cies. Each syn-clause must be either a reference to a previously
defined non-terminal, a terminal represented by a unique identifier,
or an s-expression whose first element is a unique identifier.

For each non-terminal, we generate a new inductive type.
We generate a constructors for the inductive type for each syn-
clause. We prefix the name of each inductive type and each con-
structor by the language name. For references to previously defined
non-terminals, we generate a constructor that act as a tag and injects
the previous non-terminal into the new one.

For terminals, we generate a constructor that take no arguments
and whose name is based on the terminal.

For s-expressions, we create a new constructor whose name is
based on the identifier at the head of the s-expression and whose
arguments’ types are computed from the meta-variables that appear
in the rest of the s-expression. We only use the non-meta-variable
symbols such as : in the Latex rendering of the BNF grammar. The
syntax #:bind x declares x to be a binding position, so it is not
treated as an argument. Since we use de Bruijn indices for binding,
binding positions are erased.

The define-language form allows us to create the model us-
ing BNF notation, but working with the model requires using the
generated constructor names. Instead of using the constructors di-
rectly, we can write an extension that parses the stlc syntax into
the appropriate constructors2. Figure 4 presents an excerpt of the
parser. The form begin-stlc simply calls the metalanguage func-
tion parse-stlc with the syntax object e and a new hashtable.
The parse-stlc function declares each of the constructor names
and syntactic symbols as literals, and loops over the syntax object
generating the constructors that correspond to the stlc syntax.
It uses the hashtable to map variable names to de Bruijn indices.
When parsing a lambda, it shifts each index in the hashtable. For
convenience, the parser accepts the syntax (e1 e2) for application
instead of (app e1 e2) and 1 for the unit type instead of unitty.

Inference-rule Notation
Figure 5 presents an example of using the inference rule notation.
We use the define-relation form to model a type system for
stlc. The define-relation form takes as its first argument a
name for the new relation applied to the types of its arguments.
This example defines the inductive type has-type which relates a
list of stlc-types, an stlc-term, and an stlc-type. Like the
define-language form, define-relation takes optional argu-
ments for generating Coq and Latex output. The rest of the form is
interpreted as a sequence of inference rules. Each inference rule is
a list of assumptions, followed by a horizontal line represented by
an arbitrary number of hyphens, a name for the rule that will be-
come the name of the constructor, and a conclusion that must be
the relation applied to its arguments.

Figure 6 presents an excerpt of the implementation for define-
relation. To implement this form, we use syntax-parse (Culpep-
per 2012), but only present enough of syntax-parse to undeer-
stand the key ideas in our implementation.

The syntax-parse form allows parsing syntax objects rather
than merely pattern matching on them. The form allows specifying
patterns as in syntax-case, but also support refining the patterns
using syntax classes that specify subpatterns and side-conditions.
We can apply a syntax class to a pattern variable by using the
syntax pv:class, or by using the syntax („var pv class).
Both declare the pattern variable pv must match the syntax class
class, but the„var syntax is required when the syntax class takes
arguments.

2 It should be possible to generate this parser in the define-language
extension, but we have not yet implemented that feature.

define-syntax (begin-stlc syn)
syntax-case syn ()
[(_ e) (parse-stlc #'e (make-immutable-

hash))]

begin-for-syntax
define (parse-stlc syn d)
syntax-case syn (lambda : prj * ->

let in cons bool
unit true false)

[(lambda (x : t) e)
#`(stlc-lambda

#,(parse-stlc #'t d)
#,(parse-stlc #'e

(dict-set
(dict-shift d)
(syntax->datum #'x)
#`z)))]

[(e1 e2)
#`(stlc-app

#,(parse-stlc #'e1 d)
#,(parse-stlc #'e2 d))]

[(cons e1 e2)
#`(stlc-cons

#,(parse-stlc #'e1 d)
#,(parse-stlc #'e2 d))]

....
[false #'(stlc-val->stlc-term stlc-false)]
[bool #'stlc-boolty]

define (dict-shift d)
for/fold ([d (make-immutable-hash)])

([(k v) (in-dict d)])
dict-set d k #`(s #,v)

Figure 4: Parser for STLC Syntax (excerpt)

define-relation
(has-type (List stlc-type) stlc-term stlc-type)
#:output-coq "stlc.v"
#:output-latex "stlc.tex"
[(g : (List stlc-type))
------------------------ T-Unit
(has-type g (begin-stlc unit) (begin-stlc 1))]
....

; Generates:
data has-type : 0 (-> (List stlc-type)

stlc-term
stlc-type
Type)

T-Unit : (forall (g : (List stlc-type))
(has-type
g
(stlc-val->stlc-term stlc-unit)
stlc-unitty))

....

Figure 5: STLC Type System Model (excerpt)

In the definition of define-relation, we declare that the
name of the relation must be an identifier using the colon syntax
and the syntax class id.

We declare that the next two arguments are optional using the
special form „optional, which takes a pattern as its argument.
We specify the pattern is a sequence of the keyword #:output-
coq followed by a pattern variable coq-file. We use the syntax
class str to refine the coq-file pattern, indicating that it must be
a string literal. If this optional pattern matches, then the coq-file
pattern variable is bound in an attribute map. The form attribute
references the attribute map and returns false if the attribute is not
bound.
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define-syntax (define-relation syn)
syntax-parse syn
[(_ (name:id index ...)

(„optional
(„seq #:output-coq coq-file:str))

(„optional
(„seq #:output-latex latex-file:str))

(„var rule (inference-rule
(attribute name)
(attribute index)))

...)
....]

begin-for-syntax
define-syntax-class horizontal-line
pattern
x:id
#:when (regexp-match?

#rx"-+" (syntax->string #'x))

define-syntax-class (conclusion n args r)
pattern
(name:id arg ...)
#:fail-unless

(equal? (syntax->symbol #'name)
(syntax->symbol #'n))

(format "Rule „a: conclusion mismatch" r)
....

define-syntax-class (inference-rule name
indices)

pattern (h ...
line:horizontal-line
rule-name:id
(„var t (conclusion

name
indices
(attribute rule-name))))

....

Figure 6: Implementation of define-relation (excerpt)

After the optional arguments, we declare a pattern variable rule
using the„var syntax, refine it using the inference-rule syntax
class, and use ... to match a list of inference rules.

Next we define the syntax class inference-rule. The inference-
rule syntax class takes two arguments: the name of the relation
and the list of indices. This syntax class matches when the syntax
has the pattern of a list of hypothesis, followed by a horizontal line,
a name, and a conclusion. The rule name must be an identifier.

The syntax class for a horizontal line converts the syntax to a
string and uses a regular expression to match when the string is an
arbitrary number of hyphens.

The syntax class for a conclusion uses the name of the relation
and the indices to ensure the conclusion is the original relation
applied to the right number of arguments.

7. Related Work
Proof assistants remain an active area of study, but much of this
work focuses on aspects other than notation.

VeriML features a proof assistant with a small core over which
the user can use ML for writing extensions (Stampoulis and Shao
2010). All extensions in VeriML are ML functions, and are there-
fore strongly typed. This enabled writing strongly typed tactics and
decision procedures to manipulate or generate proof terms. Our
work and the VeriML work would complement each other. Exten-
sions in VeriML are ML functions, so the user is limited to the
notation of function application but gets strongly typed extensions.
Our work enables advanced notation, but we do not consider the is-
sue of static guarantees for notation. A language extensions system

designed with a strongly typed language such as ML would enable
defining strongly typed notation.

Fisler et al. (1999) study the linguistic issues related to design-
ing a "plug-and-play" theorem prover, in which users can select a
set of logics and interfaces that can be that can be easily composed.
In their theorem prover, the users must write a plugin that is loaded
by the system. While their focus is on extending the logics of the
prover, each extensions can define its own notation. However, no-
tations from one extension cannot be used within the notation from
another extension.

We ensure safe language extension by checking all code in the
core language after expansion. This approach can result in type
errors in expanded code that the user did not write, if the extension
author is not careful. Alternative approaches ensure all type errors
occur in the source language rather than the expanded language.

Lorenzen and Erdweg (2016) demonstrates how to define well-
typed extensions that justify new typing rules in terms of the old
type system. Since each extension is well-typed, type checking hap-
pens in the extended language rather than after expansion. How-
ever, these extensions are currently limited to desugaring and do
not enable general purpose computation in a metalanguage.

Pombrio and Krishnamurthi (2015) develop techniques for re-
sugaring; rather than catch errors before expanding extensions,
these systems undo the expansion before reporting errors. Integrat-
ing this with a language-extension system could reduce the burden
of manually catching errors in new extensions.

The Milawa theorem prover (Myreen and Davis 2014) allows
the user to redefine the proof-checking function, after establishing
that the new proof checker is valid. The new proof checker may
admit new syntax and new axioms can report errors in terms of the
extended proof language. This enables sophisticated and safe ex-
tensions, and ensures type errors occur in the surface language, but
requires defining a new proof checker to define macro expressible
syntactic transformations.

While we focus on notation in this work, language extension
also provides support for meta-programming. As we saw in sec-
tion 4, we can add support for using Cur as its own dependently-
typed staged meta-programming language without extending the
core language.

Previous work on dependently-typed staged meta-programming
in Idris required extensions to the core language TT (Brady and
Hammond 2006). Similar work in Agda requires extending Agda
with a set of primitives (Devriese and Piessens 2013). Neither work
demonstrates the soundness of these extensions.

Later work on meta-programming in Idris adds the ability
to quote surface-language Idris, i.e. Idris code before elabora-
tion (Christiansen 2014). By starting from a language-extension
system with quasiquotation and syntactic macros, rather than
adding quasiquotation to an existing elaborator, Cur supports
not only quasiquoting surface syntax, but quasiquoting any user-
defined extension to the surface syntax.
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