
80

Indexed Types for a Statically Safe WebAssembly
ADAM T. GELLER, University of British Columbia, Canada

JUSTIN FRANK, University of British Columbia, Canada and University of Maryland, USA

WILLIAM J. BOWMAN, University of British Columbia, Canada

We present Wasm-precheck, a superset of WebAssembly (Wasm) that uses indexed types to express and check

simple constraints over program values. This additional static reasoning enables safely removing dynamic

safety checks from Wasm, such as memory bounds checks. We implement Wasm-precheck as an extension of

the Wasmtime compiler and runtime, evaluate the run-time and compile-time performance of Wasm-precheck

vs Wasm configurations with explicit dynamic checks, and find an average run-time performance gain of

1.71x faster in the widely used PolyBenchC benchmark suite, for a small overhead in binary size (7.18% larger)

and type-checking time (1.4% slower). We also prove type and memory safety of Wasm-precheck, prove Wasm

safely embeds into Wasm-precheck ensuring backwards compatibility, prove Wasm-precheck type-erases to

Wasm, and discuss design and implementation trade-offs.
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1 INTRODUCTION
WebAssembly (Wasm) is a low-level language designed to work well in the browser environ-

ment [Haas et al. 2017]. It has a small binary footprint and supports streaming execution (i.e.,
execution can safely begin before the entire program has been downloaded). Wasm is also designed

to be fast, outperforming JavaScript, and can be used to speed-up intensive computations within

webpages. It is also safe—Wasm enforces a separation of code and data, uses a simple static types

system, and is proven type and memory safe.

Although Wasm is type and memory safe, it relies on potentially costly dynamic checks for these

safety guarantees in some important instructions. Errors raised by these checks are always fatal for

Wasm, ensuring safety, although possibly complicating software development. They can be costly

in terms of run-time performance, too. Jangda et al. [2019] measured that Wasm runs between

1.45–1.55x slower than corresponding native code. Their root cause analysis attributes part of

this to the dynamic checks required by Wasm runtimes, particularly dynamic checks on indirect

function calls. Our analysis, discussed in Section 6, finds explicit dynamic memory bounds checks

cause an average of 1.76x slowdown. This demonstrates the significance of finding a strategy to

safely avoid performing these explicit dynamic checks.
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To mitigate the costs of dynamic checks on memory operations, the runtime for a Wasm module

can reserve sufficient virtual memory to represent an entire 32-bit address space (4GiB
1
), and

mark addresses outside the memory bounds as inaccessible. In many environments, such as in the

browser, this works well, since browsers often use a lot of memory and run on end-user machines

with a 64-bit address space and therefore plenty of virtual memory. In practice, this makes memory

bounds checks essentially free
2
.

While this approach may work in the browser, it relies on the following assumptions:

• Wasm modules can address only a 32-bit address space.

• Wasm modules are running on a 64-bit architecture and operating system.

• 4GiB of virtual memory is available.

• The system provides efficient virtual memory with permissions.

However, these assumptions do not hold in some contexts, andmay not continue to hold in general.

Wasm has become popular as an intermediate language and efficient virtual machine/sandbox for

many purposes, and has continued to grow beyond its original design. The Memory64 proposal
3

extends Wasm to include 64-bit addressable memory. Some embedded systems only provide 32-bit

(or smaller) address spaces
4
. Wasm is being experimented with as a replacement for high-overhead

containers in serverless applications
5
; in this context, limiting virtual memory is useful to provide

a hard resource limit to a Wasm module. Wasm is used as an intermediate language for optimizing

GPGPU computations [Ginzburg et al. 2023], and GPUs do not provide the necessary virtual

memory abstractions for efficient bounds checks.

We claim that Wasm can be redesigned with a stronger type system to mitigate the performance

overhead of dynamic safety checks without the above assumptions of the runtime environment. To

test our hypothesis, we design, implement, and evaluate Wasm-precheck, an extension of Wasm

with an indexed type system that can statically check the safety preconditions for each Wasm

instruction that requires dynamic checks. Indexed types equip a type system with the ability to

statically enforce constraints on run-time values, refining a type to a subset of values of that

type [Zenger 1997]. This ability is key to static reasoning about the low-level patterns in Wasm.

Using Wasm-precheck’s stronger type system, we can safely remove dynamic checks both in

theory and in practice. We prove type safety of Wasm-precheck Section 4.3, which implies well-

typed programs without (some or all) dynamic checks never get “stuck” (or access uninitialized

memory). We implement Wasm-precheck in an extension of the Wasmtime compiler [Bytecode

Alliance 2019] and evaluate run-time and compile-time performance on the PolyBenchC benchmark

suite [Pouchet and Yuki 2016]. The type system enables safely removing most dynamic checks, in

practice by moving checks out of loops. This yields an average performance speed-up of 1.71x over

Wasm_dyn, a configuration of Wasm with explict dynamic checks. This speed-up comes with a

small overhead in binary size (7.18% larger) and time taken to type-check the program (1.4% slower)

Section 6.

We pay attention to design decisions that would affect adoption and implementation of Wasm-

precheck. To ensure backwards compatibility, we show that Wasm programs can be automatically

embedded into Wasm-precheck, and that all Wasm-precheck programs erase to well-typed Wasm

programs (possibly with more dynamic checks). Wasm-precheck does not fix a particular constraint

1
In practice, implementations reserve 8GiB to mitigate compiler bugs.

2
Except for the omnipresent cost of virtual memory [Zagieboylo et al. 2020].

3
https://github.com/WebAssembly/memory64

4
WAMR supports 32-bit architectures used in the embedded and IoT space: https://github.com/bytecodealliance/wasm-

micro-runtime.

5
This was the explicit goal of Fastly’s Lucet project, now replaced by Wasmtime: https://www.fastly.com/blog/announcing-

lucet-fastly-native-webassembly-compiler-runtime.
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solving algorithm, although we provide a prototype implementation; developers may choose their

own trade-offs between the compile-time cost of a more expressive type system vs. the benefits of

additional static reasoning. We elaborate on this in Section 2 and Section 3.3.2. We also discuss

how Wasm-precheck could be interpreted as a specification of a sound static analysis of Wasm, in

case the addition of annotations to the surface language is undesirable or infeasible (Section 8).

In short, our contributions are:

• The formal model of Wasm-precheck, an extension of Wasm that, provided sufficient type

annotations, requires no dynamic checks for type and memory safety (Section 3).

• An implementation of Wasm-precheck in an extension of the Wasmtime compiler, and a

reference implementation of the Wasm-precheck formal model in Redex (Section 5).

• A performance analysis comparing Wasm-precheck to various configurations of Wasm

(Section 6).

• A proof of type safety for Wasm-precheck (Section 4.3).

• A proof of backwards compatibility—all well-typed Wasm programs automatically embed

into Wasm-precheck, possibly with more dynamic checks than necessary (Section 4.1).

• A proof that Wasm-precheck introduces no new dynamic behaviours—all well-typed Wasm-

precheck programs erase to well-typed Wasm, potentially with extra dynamic checks (Sec-

tion 4.2).

2 MAIN IDEAS
Wasm is unusual for low-level performance-oriented languages in that it provides a strong type

safety guarantee. Wasm programs are guaranteed to be type and memory safe—if a well-typed

program terminates, it either runs to a value of the expected type, or raises a well-defined dynamic

error [Haas et al. 2017]. Importantly, this rules out undefined behaviour such as accessing out-of-

bounds memory, or casting integers to labels.

Unfortunately, not all undefined behaviour can be caught statically by Wasm’s type system.

Consider the reduction rule for a binary operation.

(𝑡 .const 𝑐1) (𝑡 .const 𝑐2) 𝑡 .𝑏𝑖𝑛𝑜𝑝 ↩→ 𝑡 .const 𝑐 where 𝑐 = 𝑏𝑖𝑛𝑜𝑝 (𝑐1, 𝑐2)

This small-step relation 𝑒∗ ↩→ 𝑒∗ reduces instructions in a stack machine. A sequence 𝑒∗ (0 or

more instructions 𝑒) represents the stack of values and instructions to be executed. The instruction

𝑡 .const 𝑐2 indicates a value 𝑐2 of type 𝑡 on the stack. The 𝑡 .𝑏𝑖𝑛𝑜𝑝 instruction expects 2 operands of

type 𝑡 on the top of the stack, and reduces them to the value 𝑐 produced by the binary operation.

Since all programs are well typed, this operation must succeed and produce a constant of type 𝑡 , so

our semantics need not perform any dynamic checks on the values 𝑐1 and 𝑐2.

Except when 𝑏𝑖𝑛𝑜𝑝 is division, in which case there is a well-typed value for which 𝑏𝑖𝑛𝑜𝑝 (𝑐1, 𝑐2)
is undefined, namely, when 𝑐2 = 0. 0 is a valid value of type i32, so the type system allows an

undefined operation. We require a second reduction rule for 𝑏𝑖𝑛𝑜𝑝 to make division well defined.

(𝑡 .const 𝑐1) (𝑡 .const 𝑐2) 𝑡 .𝑏𝑖𝑛𝑜𝑝 ↩→ trap where 𝑏𝑖𝑛𝑜𝑝 = div and 𝑐2 = 0

This is unfortunate; now every division operation must perform a dynamic check, possibly raising

an error in production we could have caught in development, and costing run-time performance

(although, this cost is irrelevant for division).

Idea: The safe dynamic semantics are a specification for a static reasoning system.

While Wasm has a strong static type system, it only provides coarse reasoning about types such

as i32, but cannot express the fine-grained precondition for the well-definedness of division. The

type judgement has the shape 𝐶 ⊢ 𝑒∗ : 𝑡∗
1
→ 𝑡∗

2
, which checks that the instruction sequence 𝑒∗

has the given instruction type 𝑡∗
1
→ 𝑡∗

2
under the environment 𝐶 . The instruction type 𝑡∗

1
→ 𝑡∗

2
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expresses a precondition that values of type 𝑡∗
1
are on the stack prior to executing the instruction

(sequence), and a postcondition that values of type 𝑡∗
2
are on the stack after execution.

For example, this is the Wasm typing rule for binary operations:

𝐶 ⊢ 𝑡 .𝑏𝑖𝑛𝑜𝑝 : 𝑡 𝑡 → 𝑡

A binary operation, such as division, expects two values of type 𝑡 (either 32-bit integer or float) on

the stack; after executing the operation, there should be a single value of type 𝑡 on the stack. This

is insufficient to reason about whether 𝑐2 = 0.

We use division as a running example, but Wasm features several instructions with the same

problem. These include memory accesses, which require dynamic memory bounds checks, and

indirect function calls, which require dynamic type checks.

Wasm has a strong type system, but it is simple (in the sense of simply-typed 𝜆-calculus). It is

capable only of expressing invariants such as “a binary operation takes two integers”, but not all

safety conditions required by the run-time system. In particular, it is insufficient to express the true

type of division: a binary operation on two integers such that the divisor is non-zero. However,

there are some kinds of type systems that are capable of expressing such invariants.

Idea: An indexed type system suffices to express the conditions under which dynamic

checks can be removed from each Wasm instruction.

An indexed type system essentially changes the language of types from simple types to a (typically

decidable) predicate logic with constraints between (representations of) values. Types are indexed

by a name representing the run-time value for the term of that type. The type system collects and

solves constraints between these values. For example, the following is (a simplification of) the

typing rule for statically safe division.

𝜙 ⇒ ¬(= 𝛼2 (𝑡 0))
𝐶 ⊢ 𝑡 .div✓ : (𝑡 𝛼1) (𝑡 𝛼2); 𝜙 → (𝑡 𝛼3); 𝜙, (= 𝛼3 (div 𝛼1 𝛼2))

A type (𝑡 𝛼) represents a value 𝛼 of type 𝑡 on the stack. The name 𝛼 is initially unconstrained,

representing an unknown value. We modify the type system to collect a system of constraints 𝜙

between these names. In this typing rule, the safe division operation is well typed if the constraint

set 𝜙 guarantees that the second operand, named 𝛼2 in the type system, cannot be 0. This is easily

decided by a solver for our logic. In the postcondition, we add a new constraint that 𝛼3 is equal to

𝛼1 divided by 𝛼2. This does not perform the division at type checking time, since 𝛼1 and 𝛼2 may

not have known concrete values, but adds this constraint to the constraint set.

This typing rule prechecks all the safety criteria for the division instruction statically; once the

type system is satisfied, this instruction can never be the source of a trap, and requires no dynamic

checks. Formally, we see this by needing only the one reduction rule, instead of the two for div.

(𝑡 .const 𝑐1) (𝑡 .const 𝑐2) 𝑡 .div✓ ↩→ 𝑡 .const 𝑐 where 𝑐 = 𝑑𝑖𝑣 (𝑐1, 𝑐2)

We define similar rules for memory accesses without dynamic bounds checks and indirect function

calls without dynamic type checks. We prove type safety for Wasm-precheck, guaranteeing that

the new typing rules are sufficient to imply the well-definedness of these reduction rules.

Statically proving that a dynamic value is non-zero may be difficult in general, so we keep

the original div instruction with its dynamic check and under-specified typing rule. While we

could replace the original instruction with div✓ in all cases, and require that the check is inserted

explicitly when necessary, it is useful for Wasm-precheck to remain a strict superset of Wasm.

Idea: Wasm-precheck need not be implemented as a new language with a separate syntax,

but could be read as a specification for a sound static analysis over Wasm.
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𝑡𝑒𝑠𝑡𝑜𝑝 ::= eqz 𝑏𝑖𝑛𝑜𝑝 ::= add | sub | shl | or | ... 𝑟𝑒𝑙𝑜𝑝 ::= eq | ne | gt | ge | ...

𝑒 ::= unreachable | nop | drop | select | block 𝑡∗
1
→ 𝑡∗

2
𝑒∗ end | loop 𝑡∗

1
→ 𝑡∗

2
𝑒∗ end

| if 𝑡∗
1
→ 𝑡∗

2
𝑒∗ else 𝑒∗ end | br 𝑖 | br if 𝑖 | br table 𝑖+ | return | call 𝑖 | call indirect 𝑡𝑖∗

1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2

| get local 𝑖 | set local 𝑖 | tee local 𝑖 | get global 𝑖 | set global 𝑖 | current memory | grow memory
| 𝑡 .const 𝑐 | 𝑡 .𝑡𝑒𝑠𝑡𝑜𝑝 | 𝑡 .𝑟𝑒𝑙𝑜𝑝 | 𝑡 .𝑏𝑖𝑛𝑜𝑝 | 𝑡 .load (𝑡𝑝 𝑠𝑥)? 𝑜 | 𝑡 .store 𝑡𝑝? 𝑜
| 𝑡 .div✓ | 𝑡 .call indirect✓ 𝑡𝑖∗

1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2 | 𝑡 .load✓ (𝑡𝑝 𝑠𝑥)? 𝑜 | 𝑡 .store✓ 𝑡𝑝? 𝑜

Fig. 1. Wasm-precheck instruction syntax

While we formalize Wasm-precheck as a language, one could also view it as a specification for a

proven-correct static analysis. Wasm-precheck is fully backwards compatible with Wasm, meaning

that any well-typedWasm program is also well typed inWasm-precheck (although old code may not

automatically inherit improved static reasoning). Thus, programmers are not required to fight with

the new type system. We prove this formally: all Wasm programs embed trivially into the new type

system and run to the same result (Section 4.1). However, one could implement a static analysis over

Wasm, which provides Wasm-precheck annotations without developer intervention and without

modifying the surface syntax of Wasm. Using Wasm-precheck in this way would be a conservative

approximation of the type system. If a tool can infer these annotations, or the programmer is willing

to add annotations or rewrite code to help the type system, then Wasm-precheck can remove some

dynamic checks while type and memory safety are still guaranteed for all programs. We discuss

this further in Section 8.

Idea: Wasm-precheck can improve performance by safely removing dynamic checks in

practice, as well as in theory.

We implement Wasm-precheck and show it can improve performance by reducing the number

of dynamic checks required while maintaining safety. Our evaluation shows that, using Wasm-

precheck, we can remove 97% of the performance overhead of explicit dynamic checks on aver-

age, resulting in an average performance speed-up of 1.71x. The performance evaluation uses

PolyBenchC, memory-intensive benchmarks, which are manually annotated with sufficient type

information to check, as well as a few explicit dynamic checks when insufficient information

is available statically. In effect, the type system enables moving dynamic checks out of a loop,

replacing them with a single dynamic check before the loop. The programs used in the evaluation

were the output of a the Emscripten compiler from C to Wasm, showing that Wasm-precheck can

support patterns in compiled output, which is important since Wasm is generally used as a compiler

target.

3 Wasm-precheck
3.1 Syntax
Wasm-precheck is a superset of Wasm with a different representation of types and four statically

safe versions of Wasm instructions added. Figure 1 shows the syntax of Wasm-precheck, with

changes compared to Wasm highlighted. Four administrative instructions, which can only appear

during evaluation, are omitted here, as we do not discuss them in detail. Like Wasm, Wasm-prechk

is a stack-based language. Dynamic operands to instructions are passed on the stack and are not

part of the instruction syntax. Since Wasm-precheck uses an indexed type system, some type

annotations are enriched compared to Wasm type annotations; we discuss these differences later in

Section 3.3.1.

The key changes to the syntax are four new instructions, referred to as prechecked instructions

and denoted with a ✓ at the end of the operator. Prechecked instructions are equivalent to their

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 80. Publication date: January 2024.
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𝑠 ; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠
′; 𝑣 ′∗; 𝑒′∗

(𝑡 .const 𝑐1) (𝑡 .const 𝑐2) 𝑡 .𝑏𝑖𝑛𝑜𝑝 ↩→ 𝑡 .const 𝑐 if 𝑐 = 𝑏𝑖𝑛𝑜𝑝 (𝑐1, 𝑐2)
(𝑡 .const 𝑐1) (𝑡 .const 𝑐2) 𝑡 .𝑏𝑖𝑛𝑜𝑝 ↩→ trap otherwise

𝑠 ; (i32.const 𝑗) call indirect (𝑡𝑖∗
1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2) ↩→𝑖 call 𝑠tab (𝑖, 𝑗)

if 𝑠
tab

(𝑖, 𝑗)
code

= (func (𝑡𝑖∗
1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2) ...)

𝑠 ; (i32.const 𝑗) call indirect (𝑡𝑖∗
1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2) ↩→𝑖 trap otherwise

𝑠 ; (i32.const 𝑘) (𝑡 .load 𝑜) ↩→𝑖 𝑡 .const 𝑐𝑜𝑛𝑠𝑡𝑡 (𝑏∗) if 𝑠mem (𝑖, 𝑘 + 𝑜, |𝑡 |) = 𝑏∗

𝑠 ; (i32.const 𝑘) (𝑡 .load 𝑜) ↩→𝑖 trap otherwise

𝑠 ; (i32.const 𝑘) (𝑡 .const 𝑐) (𝑡 .store 𝑜) ↩→𝑖 𝑠
′; 𝜖 if 𝑠′ = 𝑠 with mem(𝑖, 𝑘 + 𝑜, |𝑡 |) = 𝑏𝑖𝑡𝑠𝑡 (𝑐)

𝑠 ; (i32.const 𝑘) (𝑡 .const 𝑐) (𝑡 .store 𝑜) ↩→𝑖 trap otherwise

New rules
(𝑡 .const 𝑐1) (𝑡 .const 𝑐2) 𝑡 .div✓ ↩→ 𝑡 .const 𝑐 where 𝑐2 ≠ 0 and 𝑐 = 𝑐1/𝑐2

𝑠 ; (𝑡 .const 𝑗) 𝑡 .call indirect✓ (𝑡𝑖∗
1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2) ↩→𝑖 call 𝑠tab (𝑖, 𝑗)

where 𝑠
tab

(𝑖, 𝑗) = (func (𝑡𝑖∗
1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2) ...)

𝑠 ; (i32.const 𝑘) (𝑡 .load✓ 𝑜) ↩→𝑖 𝑡 .const 𝑐𝑜𝑛𝑠𝑡𝑡 (𝑏∗) where 𝑠𝑚𝑒𝑚 (𝑖, 𝑘 + 𝑜, |𝑡 |) = 𝑏∗

𝑠 ; (i32.const 𝑘) (𝑡 .const 𝑐) (𝑡 .store✓ 𝑜) ↩→𝑖 𝑠
′; 𝜖 where 𝑠′ = 𝑠 with mem(𝑖, 𝑘 + 𝑜, |𝑡 |) = 𝑏𝑖𝑡𝑠

|𝑡 |
𝑡 (𝑐)

Fig. 2. Wasm reduction rules (with dynamic checks) and their Wasm-precheck counterparts

Wasm counterparts, but they don’t require dynamic checks. We discuss how their safety is statically

checked later in Section 3.3. But first, we present the dynamic semantics of Wasm-precheck.

3.2 Dynamic Semantics
Wasm-precheck’s reduction relation has the same structure asWasm.We briefly explain the dynamic

semantics of all Wasm-precheck instructions; however, since most instructions are unchanged from

Wasm, we only present the formal rules of new instructions and some helpful for understanding

the indexed type system. For full definitions of Wasm evaluation rules, see Figure 2 of Haas et al.

[2017].

The reduction relation, 𝑠 ; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠
′; 𝑣 ′∗; 𝑒′∗ is defined on configurations consisting of a run-

time store 𝑠 , which holds module instance information (the 𝑖 decorating the reduction arrow

indicates which module instance is being reduced); a sequence of values 𝑣∗ representing local

variables; and the instruction stack 𝑒∗. We ignore the module instance information, which is not

critical for our work. A value 𝑣 is represented by the constant instruction (𝑡 .const 𝑐). As in Wasm,

the stack is represented as a sequence of values at the head of the instruction sequence 𝑒∗. Following
Wasm, the store 𝑠 , local variables 𝑣∗, and the instance subscript 𝑖 are elided when they are unchanged
and unused (hence, 𝑠 and 𝑣∗ do not appear in Figure 3).

Prechecked instructions require no dynamic checks, since their safety preconditions are en-

forced statically by the Wasm-precheck type system. This can be seen in the reduction rules for

the prechecked instructions in Figure 2: unlike their non-prechecked counterparts, prechecked

instructions do not have rules to trap (a trap is the Wasm run-time error).

Figure 3 shows instructive excerpts unchanged fromWasm. The simplest are nop, which removes

itself from the stack, and unreachable, which unconditionally evaluates to trap. When trap appears

as an operand or operator, all evaluation rules produce trap; trap is a fatal error.

Most instructions manipulate values on the stack. The constant instruction 𝑡 .const 𝑐 intuitively
pushes a value onto the stack, but formally it is a value on the stack. Numeric operators, 𝑏𝑖𝑛𝑜𝑝 ,

𝑡𝑒𝑠𝑡𝑜𝑝 , 𝑢𝑛𝑜𝑝 , and 𝑟𝑒𝑙𝑜𝑝 , consume either one or two values from the stack, and push one value as

the result. We present the 𝑏𝑖𝑛𝑜𝑝 instructions at the top of Figure 2. The division operator div traps
and the second argument is 0, whereas in the div✓ instruction, the second operand 𝑐2 is statically

guaranteed to be non-zero. drop consumes a value from the top of the stack and does nothing with
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𝑠 ; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠
′; 𝑣 ′∗; 𝑒′∗

nop ↩→ 𝜖

unreachable ↩→ trap
𝑣𝑛 block 𝑡𝑛

1
→ 𝑡𝑚

2
𝑒∗ end ↩→ label𝑚{𝜖} 𝑣𝑛 𝑒∗ end

𝑣𝑛 loop 𝑡𝑛
1
→ 𝑡𝑚

2
𝑒∗ end ↩→ label𝑛{loop 𝑡𝑛

1
→ 𝑡𝑚

2
𝑒∗ end} 𝑣𝑛 𝑒∗ end

i32.const 0 if 𝑡𝑛
1
→ 𝑡𝑚

2
𝑒∗
1
else 𝑒∗

2
end ↩→ block 𝑡𝑛

1
→ 𝑡𝑚

2
𝑒∗
2
end

i32.const 𝑘 + 1 if 𝑡𝑛
1
→ 𝑡𝑚

2
𝑒∗
1
else 𝑒∗

2
end ↩→ block 𝑡𝑛

1
→ 𝑡𝑚

2
𝑒∗
1
end

label𝑛{𝑒∗} 𝑣∗ end ↩→ 𝑣∗

label𝑛{𝑒∗} trap end ↩→ trap
label𝑛{𝑒∗} 𝐿 𝑗 [𝑣𝑛 br 𝑗] end ↩→ 𝑣𝑛 𝑒∗

𝑣𝑛 (call 𝑐𝑙) ↩→𝑖 local𝑚{𝑐𝑙inst; 𝑣𝑛 (𝑡 .const 0)𝑘 } block (𝜖 → 𝑡𝑚
2
) 𝑒∗ end end

where 𝑐𝑙
func

= (func 𝑡𝑛
1
; 𝜙1 → 𝑡𝑚

2
; 𝜙2 local 𝑡∗ 𝑒∗)

Fig. 3. Wasm-precheck reduction rules (excerpts)

it. Finally, select is a ternary operator that consumes three values and pushes either the first or

second value based on the truthiness of the third value—0 is false, and other values are truthy.

There are three control flow blocks that introduce a label—block, loop, and if. Their reduction
rules, given in Figure 3, are unchanged from Wasm, but we explain them to clarify how labels are

introduced, as indexed typing for labels is tricky. Each block instruction introduces a new evaluation

context, which binds a label as a de Bruijn index to a sequence of instructions. Instructions 𝑒∗ in
the body of the block are reduced in the this evaluation context. Intuitively, labels point to where

evaluation should continue when jumped to. The loop block binds the label to the loop itself, while

block (and therefore if) bind the label to an empty instruction sequence. Jumping to a loop’s label

repeats the loop; control exits the loop by default. Jumping to a block’s label exits the block early.

Branching (br 𝑗 ) takes some values 𝑣𝑛 , jumps to the 𝑗th (zero-indexed) label in the evaluation

context of the instruction, and continues executing with 𝑣𝑛 on the stack but the labels discarded.

Execution continues with the code bound to the label of the 𝑗th outer block, inside the remaining

evaluation context, as seen in the second-to-last rule of Figure 3. We elide formal rules for other

branching instructions, but explain them briefly. The conditional branch, br if, consumes a value

from the stack and only branches if the value is truthy. Finally, br table is essentially a br 𝑗
where 𝑗 is determined by indexing into a statically provided table (no relation to the function

table) of branching indices 𝑖+ based on the instruction’s dynamic operand (br table resembles a

switch statement). Returning (return) is similar to branching, but jumps to a separate class of label

introduced by a function call.

Function calls, both direct and indirect, must first determine which closure represents the function

being called, and then the body of the closure will be evaluated in an environment specified by the

closure. A direct function call, call , uses a statically provided function index to get the closure from

the list of functions in the current module. An indirect function call, call indirect , first dynamically

looks up the function index; this process is explained more below.

Closures in Wasm are a combination of a function and a pointer to the module environment that

the function should operate within. The module environment contains all of the global variables,

table, memory, and functions that can be referred to within the closure. Evaluating a closure

introduce a return label in the form of a local administrative block instruction, which also holes

the local variables for the function, and the module environment pointer 𝑖 . The local variables in

the local block represent arguments consumed by the function call (𝑣𝑛), and a number of additional

local variables specified as part of the function, which are initialized to zero ((𝑡 .const 0)𝑘 ).
The instructions for local and global variables are similar to each other, except for scope: local

variables are local to functions, whereas global variables are global to all functions in a module

instance. Both have instructions to push the value of the 𝑖th variable onto the stack (get local 𝑖
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𝑙 ::= 𝑡𝑖∗ 𝑙 ::= 𝑡𝑖∗ 𝜙 ::= ∅ | 𝜙, 𝑃 Γ ::= ∅ | Γ, (𝑡 𝛼) tfi ::= 𝑡𝑖∗; 𝜙 → 𝑡𝑖∗; 𝜙

𝐶 ::= {func tfi∗, global (mut
? 𝑡)∗, table (𝑛, tfi∗)?, memory𝑚?, local 𝑡∗, label(𝑡𝑖∗; 𝑙 ; 𝜙)∗, return (𝑡𝑖∗; 𝜙)?}

𝑡 ::= i32 | i64
𝛼 ∈ 𝐼𝑛𝑑𝑒𝑥𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑟 ::= 𝛼 | (𝑡 𝑐) | (𝑢𝑛𝑜𝑝 𝑟 ) | (𝑏𝑖𝑛𝑜𝑝 𝑟 𝑟 ) | (𝑡𝑒𝑠𝑡𝑜𝑝 𝑟 ) | (𝑟𝑒𝑙𝑜𝑝 𝑟 𝑟 )
𝑃 ::= (= 𝑟 𝑟 ) | (if 𝑃 𝑃 𝑃) | ¬𝑃 | 𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃

Fig. 4. Wasm-precheck Typing and Index Language Syntax

and get global 𝑖). Although there are mutation instructions for both kinds of variables, (set local 𝑖
and set global 𝑖), not all global variables are mutable, whereas all local variables are. The tee local
is a combined set local and get local that consumes and returns a value while also setting the 𝑖th

local variable to that value, like the Unix tool tee; this instruction only exists for local variables.

An indirect function call, call indirect, consumes a value from the stack, and attempts to call the

function at that index in the table—a list of functions, defined statically as part of the module. Since

the target of call indirect is not necessarily statically known, indirect calls use a run-time check

against the statically provided expected type (𝑡𝑖∗
1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2). call indirect✓ relies on the fact

that the function from the table has the expected type (𝑡𝑖∗
1
; 𝜙1 → 𝑡𝑖∗

2
; 𝜙2) (see Figure 2).

Memory in Wasm-precheck is a linear sequence of bytes. There are the standard instructions

for loading and storing values, load and store, respectively. The prechecked memory operations

load✓ and store✓ rely on static bounds checks (see Figure 2). Memory operations also include

static operands: the representation of the value being loaded or stored, 𝑡𝑝_𝑠𝑥 or 𝑡𝑝 , respectively;

the offset, 𝑜 ; and alignment, 𝑎 (the alignment does not affect the semantics in any way, so we

omit this from the formal model). The current memory returns the current memory size, while

grow memory can increase size, returning either the new size of memory, or -1 if memory cannot

be increased.

3.3 Type System
3.3.1 Index Language. In Wasm, instruction types 𝑡∗ → 𝑡∗ express the number and types of values

expected on the stack before and after an instruction. In Wasm-precheck, the instruction type has

the form 𝑡𝑖∗; 𝑙 ; Γ; 𝜙 → 𝑡𝑖∗; 𝑙 ; Γ; 𝜙 , whose non-terminals are defined in Figure 4. The stack type is
a sequence of indexed types 𝑡𝑖∗, representing the number and types of values on the stack. The

local variable environment 𝑙 tracks the indexed types of local variables, so constraints can refer to

local variables. The locals environment has the same representation as a stack type: a sequence

of indexed types. A constraint set 𝜙 is, well, a set of constraints between index terms. The index

environment Γ describes which index variables are in scope before or after the instruction executes;

it is represented as a set of indexed types. This is a formal detail used to reason about the scope of

index variables; we omit it from the presentation of typing rules in this section. The full typing

details are available as part of the supplementary material [Geller et al. 2023].

Constraints in an instruction type are written in the index language, given in Figure 4:

• 𝑃 is a constraint about index terms: either an equality constraint, or a proposition combining

constraints using a simple first-order logic;

• 𝑟 is an index term: either an index type variable, a constant with an explicit value type, or a

model of a Wasm operation on values;

• 𝛼 is an index variable, representing a specific run-time value;

• 𝑡 is a value type, which coarsely classifies a run-time value;

Finally, the whole module instance is typed under amodule environment 𝐶 , with type information

about the module and the execution context. 𝐶 is a partial record containing:

• 𝐶func, the types of functions in the module;

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 80. Publication date: January 2024.



Indexed Types for a Statically Safe WebAssembly 80:9

• 𝐶global, the types of global variables in the module;

• 𝐶table, the number and types of functions in the table if the module has one, and undefined

otherwise;

• 𝐶memory, the (initial) size of memory if the module has one, and undefined otherwise;

• 𝐶local, the value types of the local variables, which is defined when typing a function body

(this is redundant with the local variables environment in the instruction type, but retained

for backwards compatibility);

• 𝐶label, the stack of label types, which is used for typing branching instructions. Label types

are either the precondition for loops, and postcondition for other blocks.

• 𝐶return, the return type used to type the return instruction. Return types are just the postcon-

dition stack type and constraint set, since local variables leave scope after a return.

3.3.2 Implication. Unlike in a simple type system, we cannot simply syntactically compare a

postcondition to precondition to type check two instructions. For example, a function expecting

a value greater than zero might be given a value that is greater than ten. That should be fine, as

semantically a value greater than ten is greater than zero, but these types differ syntactically.

We use a notion of logical implication for the logic corresponding to our index language for

checking agreement between constraint sets. We define logical implication in Wasm-precheck

as follows: Γ ⊢ 𝜙1 ⇒ 𝜙2 if every valid variable assignment for 𝜙1 is also valid for 𝜙2. Formally:

Γ ⊢ 𝜙1 ⇒ 𝜙2 ≜ ∀(𝑡 𝛼) ∈ Γ. ∀𝑦 ∈ 𝑡 . 𝜙1 [𝛼 := 𝑦]∗ implies 𝜙2 [𝛼 := 𝑦]∗. This can be read as saying

that a constraint set 𝜙1 implies another constraint set 𝜙2 under Γ if, given the type declarations for

index variables in Γ, the set of possible assignments to those variables under 𝜙1 is a subset of the

set of possible assignments under 𝜙2.

The type system is parameterized by the implementation of ⇒, denoted using ⇝. We do

not require ⇝ to be complete (always returning true if one constraint set does in fact imply

another), but we do require it to be sound (never returning true when one constraint set does not

imply another), allowing any implementation⇝ to be an under-approximation of ⇒. Formally:

∀Γ, 𝜙1, 𝜙2. Γ ⊢ 𝜙1 ⇝ 𝜙2 implies Γ ⊢ 𝜙1 ⇒ 𝜙2 This allows flexibility, as an implementation can use a

faster constraint solver that may not be as precise as the theoretical notion of implication. While

this may reduce the static reasoning ability, safety is maintained.

3.3.3 Typing Judgement. The typing judgment 𝐶 ⊢ 𝑒∗ : 𝑡𝑖∗
1
; 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2 states that under

the module environment 𝐶 , the instruction sequence 𝑒∗ produces the configuration described by

𝑡𝑖∗
2
; 𝑙2; 𝜙2 if it is executed in a configuration described by 𝑡𝑖∗

1
; 𝑙1; 𝜙1. The stack must have type 𝑡𝑖∗

2

after execution if it had type 𝑡𝑖∗
1
before execution; the local variable types must be 𝑙2 if they were 𝑙1;

the constraint set 𝜙2 must hold if 𝜙1 held. Viewing the the stack type as a function, 𝜙1 would be a

refinement of the function inputs, and 𝜙2 a refinement of the outputs.

We gradually present the (simplified to elide Γ) typing rules inline; the complete definitions are

available as part of the supplementary material [Geller et al. 2023].

The typing rules are presented in a declarative form, so they describe what types different

instructions can have, but are not always sufficient for constructing a type for an instruction. This

causes a minor difference between our model and the implementation. In the model, we merely

require the existence of a constraint set relating the label type to the pre or postcondition of the

block. In practice, we require this be a user-provided annotation, discussed in Section 5.

When implementing these rules, we add syntactic annotations on block instructions (see Sec-

tion 5.1 and Section 6.4), so type checking is syntax directed. However, adding syntactic annotations

is straightforward, so we omit them for simplicity. Further, by omitting them, we give our model

more flexibility for different implementations. For example, instead of using annotations, it may

also be possible to construct the types using an inference algorithm, discussed in Section 8.
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We first discuss some simple rules that do not use indexed type information. Rule Unreachable

accepts any precondition and guarantees any postcondition since it causes a trap. The instruction

nop makes no changes from the pre to the postcondition because the instruction does nothing.

Rule Drop consumes the top value from the stack, represented by 𝛼 , and does not change anything.

Unreachable

𝐶 ⊢ unreachable : 𝑡𝑖∗
1
; 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2

Nop

𝐶 ⊢ nop : 𝜖 ; 𝑙 ; 𝜙 → 𝜖 ; 𝑙 ; 𝜙

Drop

𝐶 ⊢ drop : (𝑡 𝛼); 𝑙 ; 𝜙 → 𝜖 ; 𝑙 ; 𝜙

The constant instruction is a simple example of indexed types. Intuitively, 𝑡 .const 𝑐 pushes

the constant value 𝑐 of type 𝑡 onto the stack. The typing rule Rule Const reflects this: in the

postcondition, the first value on the stack has indexed type (𝑡 𝛼) for fresh index variable 𝛼 . The

postcondition includes a constraint that 𝛼 is equal to the constant 𝑐 , resulting in constraint set

𝜙, (= 𝛼 (𝑡 𝑐)). The locals environment 𝑙 is unchanged.

Const

𝛼 fresh

𝐶 ⊢ 𝑡 .const 𝑐 : 𝜖 ; 𝑙 ; 𝜙 → (𝑡 𝛼); 𝑙 ; 𝜙, (= 𝛼 (𝑡 𝑐))

Typing rules for binary, test, and relational operations are all similar except for the operators and

number of operations; we explain binary operations in detail. Rule Binop adds constraints between

new and old program values. In the post condition, the fresh index variable 𝛼3 is constrained to be

equal to the result of applying the operator to the two index variables (𝛼1 and 𝛼2) on the stack in

the precondition: (= 𝛼3 (∥𝑏𝑖𝑛𝑜𝑝 ∥ 𝛼1 𝛼2). We use ∥𝑏𝑖𝑛𝑜𝑝 ∥ to indicate that we are moving 𝑏𝑖𝑛𝑜𝑝 (or

𝑟𝑒𝑙𝑜𝑝 or 𝑡𝑒𝑠𝑡𝑜𝑝) from a Wasm-precheck to the index language, where it is modeled as a function

rather than a stack machine instruction. Again, the locals environment 𝑙 is unchanged.

Rule Div-Prechk, for the prechecked division operator, requires that the second operand is non-

zero. The premise 𝜙 ⇝ ¬(= 𝛼2 0) requires that the index constraints satisfy the proposition 𝛼2 ≠ 0.

Since divide-by-zero is proven absent statically, it is safe to use div✓ without dynamic checks.

Binop

𝛼3 fresh

𝐶 ⊢ 𝑡 .𝑏𝑖𝑛𝑜𝑝 : (𝑡 𝛼1) (𝑡 𝛼2); 𝑙 ; 𝜙 → (𝑡 𝛼3); 𝑙 ; 𝜙, (= 𝛼3 (∥𝑏𝑖𝑛𝑜𝑝 ∥ 𝛼1 𝛼2))

Div-Prechk

𝜙 ⇝ ¬(= 𝛼2 0) 𝛼3 fresh

𝐶 ⊢ 𝑡 .div✓ : (𝑡 𝛼1) (𝑡 𝛼2); 𝑙 ; 𝜙 → (𝑡 𝛼3); 𝑙 ; 𝜙, (= 𝛼3 (div 𝛼1 𝛼2))

Relop

𝛼3 fresh

𝐶 ⊢ 𝑡 .𝑟𝑒𝑙𝑜𝑝 : (𝑡 𝛼1) (𝑡 𝛼2); 𝑙 ; 𝜙 → (𝑡 𝛼3); 𝑙 ; ; 𝜙, (= 𝛼3 (∥𝑟𝑒𝑙𝑜𝑝∥ 𝛼1 𝛼2))

Testop

𝛼2 fresh

𝐶 ⊢ 𝑡 .𝑡𝑒𝑠𝑡𝑜𝑝 : (𝑡 𝛼1); 𝑙 ; 𝜙 → (𝑡 𝛼2); 𝑙 ; 𝜙, (= 𝛼2 (∥𝑡𝑒𝑠𝑡𝑜𝑝 ∥ 𝛼1))

Unop

𝛼2 fresh

𝐶 ⊢ 𝑡 .𝑢𝑛𝑙𝑜𝑝 : (𝑡 𝛼1); 𝑙 ; 𝜙 → (𝑡 𝛼2); 𝑙 ; 𝜙, (= 𝛼2 (∥𝑢𝑛𝑜𝑝 ∥ 𝛼1))

Recall that select is a ternary operator that consumes three values from the stack (𝛼1, 𝛼2, and 𝛼3)

and returns the first value, 𝛼1, if the third value, 𝛼3 is truthy (non-0), and otherwise returns the

second value 𝛼2. The third value must be an i32. Rule Select uses the type-level “if” to constrain

the result variable 𝛼 to depend on the truthiness of 𝛼3: (if (= 𝛼3 (i32 0)) (= 𝛼 𝛼2) (= 𝛼 𝛼1)). Note
that this “if” only introduces syntax that is only evaluated when checking constraint satisfaction

between constraint sets.

Select

𝛼 fresh

𝐶 ⊢ select : (𝑡 𝛼1) (𝑡 𝛼2) (i32 𝛼3); 𝑙, 𝜙 → (𝑡 𝛼); 𝑙 ; 𝜙, (if (= 𝛼3 (i32 0)) (= 𝛼 𝛼2) (= 𝛼 𝛼1))
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Control flow blocks. The three block instructions check their bodies with additional information

added to the environment 𝐶 to handle branching instructions within the bodies. The body of a

block instruction is not type checked with the same module type context 𝐶 of the block, but rather
with a modified context with a label type pushed onto the stack of label types𝐶label. Any branching

instruction within the block is typed against the new 𝐶label (this is described more below when

discussing Rule Br).

The end of an block can be reached either through a branching instruction or by the body 𝑒∗

being evaluated to a sequence of values. Thus, the label type and postcondition of the body 𝑒∗ must

agree, so that the postcondition of the block is guaranteed to hold no matter how the end of the

block is reached. To ensure this, the label type and body’s postcondition must have the same stack

and index local store ((𝑡2 𝛼2)𝑚 and (𝑡𝑙 𝛼𝑙2)∗), and the constraint set 𝜙3 from the postcondition of

the body 𝑒∗ must imply the label type’s constraint set 𝜙2, which is then the same constraint set in

the postcondition of the block. Thus, 𝜙2 represents the point of agreement between executing the

body, 𝑒∗, and any branching instruction from within the body. The premise says that executing the

body, 𝑒∗, must be well typed at the current precondition, (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)𝑛 ; 𝜙1, and then results in

the aforementioned postcondition (𝑡2 𝛼2)𝑚 ; (𝑡𝑙 𝛼𝑙2)∗; 𝜙3.

Rule If similarly checks both possible branches with an updated context, but with extra informa-

tion based on whether the condition variable 𝛼 is true or not, depending on the branch. In the “true”

branch 𝑒∗
1
, the index variable 𝛼 consumed by the if is known to be truthy, i.e., non-zero, whereas in

the “false” branch 𝑒∗
2
, 𝛼 is zero. Thus, the two branches do start from the same precondition 𝜙1, but

with the added constraint ¬(= 𝛼 (i32 0)) in the true branch, and (= 𝛼 (i32 0)) in the false branch.

For if, the two branches must agree as well, so they are required to have the same postcondition,

except for the resulting constraint sets, which both must imply an agreed upon constraint set 𝜙2

from the label type.

Branching from within a loop re-executes the loop from the beginning, so the precondition is

essentially the loop invariant. Thus, the label type and precondition must agree, in contrast to

others blocks where the label type and postcondition must agree. If the body 𝑒∗ is reduced to a

sequence of values, these values are returned and the loop exits, as described by the postcondition.

When type checking the loop body, the label type is the precondition, and the postcondition of

the loop as a whole, (𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)𝑛 ; 𝜙2 is the same as the postcondition of the body 𝑒∗ up

to implication (𝜙4 ⇝ 𝜙2). Instead of checking the body 𝑒∗ against the precondition of the loop,
(𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)𝑛 ; 𝜙1, it is instead checked with the precondition (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)𝑛 ; 𝜙3, which is

reachable either from branching or the first time the loop is executed.

Block

𝐶, label ((𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙2) ⊢ 𝑒∗ : (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)∗; 𝜙1 → (𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙3 𝜙3 ⇝ 𝜙2

𝐶 ⊢ block (𝑡∗
1
→ 𝑡∗

2
) 𝑒∗ end : (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)∗; 𝜙1 → (𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙2

Loop

𝐶, label ((𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)∗; 𝜙3) ⊢ 𝑒∗1 : (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)∗; 𝜙3 → (𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙4
𝜙1 ⇝ 𝜙3 𝜙4 ⇝ 𝜙2

𝐶 ⊢ loop 𝑡∗
1
→ 𝑡∗

2
𝑒∗ end : (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1); 𝜙1 → (𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙2

If

𝐶, label ((𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙2) ⊢ 𝑒∗1 : (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)∗; 𝜙1,¬(= 𝛼 (i32 0)) → (𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙3
𝐶, label ((𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙2) ⊢ 𝑒∗2 : (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1)∗; 𝜙1, (= 𝛼 (i32 0)) → (𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙4

𝜙3 ⇝ 𝜙2 𝜙4 ⇝ 𝜙2

𝐶 ⊢ if 𝑡∗
1
→ 𝑡∗

2
𝑒∗
1
else 𝑒∗

2
end : (i32 𝛼) (𝑡1 𝛼1)∗; (𝑡𝑙 𝛼𝑙1); 𝜙1 → (𝑡2 𝛼2)∗; (𝑡𝑙 𝛼𝑙2)∗; 𝜙2

Branching (br 𝑗 ) consumes values 𝑣𝑛 and jumps to the 𝑗th label in the evaluation context,

continuing executing with 𝑣𝑛 on the stack. The instructions following a branch are not executed, so

the postcondition, 𝑡𝑖∗
2
; 𝑙2; 𝜙2, is arbitrary. Similarly, in addition to the consumed values (represented
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by 𝑡𝑖∗
3
), the stack may contain arbitrary other values 𝑡𝑖∗

1
, which are discarded when branching. The

precondition of br checks that the current program state satisfies the 𝑗-th (counting backwards

from the top) label type on the stack 𝐶label, ensuring that the condition for branching is met.

Rule Return is similar to Rule Br, except that return is checked against the current return type

𝐶return instead of against a label type. Return types do not include a locals environment, since local

variables are only scoped within functions; after a return, they all go out of scope. Like br, code
after a return is dead, so the postcondition of return is arbitrary: 𝑡𝑖∗

2
; 𝑙2; 𝜙2.

The conditional branch instruction, br if, consumes a value 𝛼 from the stack and branches if it is

truthy. In contrast to Rule Br, execution can continue after br if, specifically when 𝛼 is zero and

branching doesn’t occur. If the consumed value is constrained to be non-zero in the type system,

then this causes a contradiction in the constraint set 𝜙 , indicating dead code. This conditional

information is captured by Rule Br-If: the check against the label type can assume that 𝛼 is truthy,

and the instructions following the br if can assume that 𝛼 .

Finally, br table is essentially a br 𝑗 where 𝑗 is determined by indexing into a statically provided

list of branching indices 𝑖+ using the operand from the stack. We must ensure that every possible

label type that might be the target is implied by the precondition of the br table instruction. Like
br, br table must branch, so the postcondition is arbitrary.

Return

𝐶return = 𝑡𝑖∗
3
; 𝜙3 𝜙1 ⇝ 𝜙3

𝐶 ⊢ return : 𝑡𝑖∗
1
𝑡𝑖∗
3
; 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2

Br

𝐶
label

(𝑖) = 𝑡𝑖∗
3
; 𝑙1; 𝜙3 𝜙1 ⇝ 𝜙3

𝐶 ⊢ br 𝑖 : 𝑡𝑖∗
1
𝑡𝑖∗
3
; 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2

Br-If

𝐶
label

(𝑖) = 𝑡𝑖∗
1
; 𝑙 ; 𝜙3 𝜙1,¬(= 𝛼 (i32 0)) ⇝ 𝜙3

𝐶 ⊢ br if 𝑖 : 𝑡𝑖∗
1
(i32 𝛼); 𝑙 ; 𝜙1 → 𝑡𝑖∗

1
; 𝑙 ; 𝜙1, (= 𝛼 (i32 0))

Br-Table

(𝐶
label

(𝑖) = 𝑡𝑖∗
1
; 𝑙1; 𝜙𝑖 )∗ 𝜙1 ⇝ 𝜙∗𝑖

𝐶 ⊢ br table 𝑖+ : 𝑡𝑖∗
1
(i32 𝛼); 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2

Direct function calls call 𝑖 look up the type annotation of the function, 𝑡𝑖∗
1
; 𝜙3 → 𝑡𝑖∗

2
; 𝜙2, in the

environment 𝐶 . The current state, 𝜙1 must satisfy the precondition constraints of the function, 𝜙3,

which ensures that the assumptionsmade by the function hold.We omit the locals environment from

the type annotation, since local variables are not preserved or accessible across function calls. The

postcondition of call extends the constraint set from the precondition, 𝜙1, with the postcondition

from the function we are calling 𝜙2, producing a union of the two constraint sets. Note, this union

is different from most other rules where a single constraint is added to a constraint set using the

syntactic constructor form 𝜙, 𝑃 . We extend the constraint set because the type annotation on the

function can only contain constraints about the arguments, so simply copying the postcondition

from the annotation would result in the loss of information about all other index variables.

Typing an indirect function call call indirect, is similar to typing a direct call, except that the

expected type is based on the statically provided type annotation (𝑡𝑖∗
1
; 𝜙2 → 𝑡𝑖∗

2
; 𝜙3). This is

because call indirect does not know, statically, the type of the function being called, so must be

provided with the expected type to be able to check the type and compute the resulting state. Rule

Call-Indirect also ensures that there is a table defined for the module using the side condition

𝐶table = (𝑛, tfi𝑛), which ensures that a table is present for the module which contains 𝑛 functions

and provides the associated function types tfi𝑛 .
Proving the safety of a prechecked indirect function call is more complex. This involves statically

checking that the actual precondition satisfies the precondition on every possible function that

could be called. Rule Call-Indirect-Prechk checks that the type of every function at every possible

index value has the expected type: ∀0 ≤ 𝑖 < 𝑛.(𝜙 ⇝ ¬(= (i32 𝑖) 𝛼)) ∨ tfi𝑛 (𝑖) = tfi
2
. tfi𝑛 (𝑖) is a

shorthand for looking up the 𝑖th function type in the sequence tfi𝑛 . Note that the ∀ and ∨ are at the

meta level and not within the index language, and that the size of the table 𝑛 is statically known.

The rule also checks that the operand is within the table bounds: 𝜙 ⇝ (lt 𝛼 𝑛).
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Call

𝐶
func

(𝑖) = 𝑡𝑖∗
1
; 𝜙3 → 𝑡𝑖∗

2
; 𝜙2 𝜙1 ⇝ 𝜙3

𝐶 ⊢ call 𝑖 : 𝑡𝑖∗
1
; 𝑙 ; 𝜙1 → 𝑡𝑖∗

2
; 𝑙 ; 𝜙1 ∪ 𝜙2

Call-Indirect

𝐶
table

= (𝑛, tfi𝑛) 𝜙1 ⇝ 𝜙2

𝐶 ⊢ call indirect (𝑡𝑖∗
1
; 𝜙2 → 𝑡𝑖∗

2
; 𝜙3) : 𝑡𝑖∗1 (i32 𝛼); 𝑙 ; 𝜙1 → 𝑡𝑖∗

3
; 𝑙 ; 𝜙1 ∪ 𝜙3

Call-Indirect-Prechk

𝐶
table

= (𝑛, tfi𝑛)
𝜙1 ⇝ 𝜙2 𝜙 ⇝ (lt 𝛼 𝑛) ∀𝑖 < 𝑛. (𝜙1 ⇝ ¬(= (i32 𝑖) 𝛼)) ∨ tfi∗ (𝑖) = 𝑡𝑖∗

1
; 𝜙2 → 𝑡𝑖∗

2
; 𝜙3

𝐶 ⊢ call indirect✓ (𝑡𝑖∗
1
; 𝜙2 → 𝑡𝑖∗

2
; 𝜙3) : 𝑡𝑖∗1 (i32 𝛼); 𝑙 ; 𝜙1 → 𝑡𝑖∗

2
; 𝑙 ; 𝜙1 ∪ 𝜙3

Typing instructions for local variables, Rule Get-Local, Rule Set-Local, and Rule Tee-Local, all

dereference the type from the locals environment 𝑙 at the statically de Bruijn index 𝑖 , denoting the

𝑖th local variable. Rule Get-Local puts a fresh index variable, 𝛼2, on the stack with the value type 𝑡

of the 𝑖th local, and constrains it to be equal to the 𝑖th local variable. Rule Set-Local works in the

reverse direction, replacing the index variable associated with the local variables being assigned.

For set local, we replace the indexed type of the local variable with the indexed type from stack;

since the index variables in these types identify the value from the stack, this reflects the value

being moved from the stack to the store. Finally, Rule Tee-Local is a combination of the above two

rules, as the instruction is a combination of get local and set local.

Get-Local

𝐶
local

(𝑖) = 𝑡 𝑙 (𝑖) = (𝑡 𝛼) 𝛼2 fresh

𝐶 ⊢ get local 𝑖 : 𝜖 ; 𝑙 ; 𝜙 → (𝑡 𝛼2); 𝑙 ; 𝜙, (= 𝛼 𝛼2)

Set-Local

𝐶
local

(𝑖) = 𝑡 𝑙2 = 𝑙1 [𝑖 := (𝑡 𝛼)]
𝐶 ⊢ set local 𝑖 : (𝑡 𝛼); 𝑙1; 𝜙 → 𝜖 ; 𝑙2; 𝜙

Tee-Local

𝐶
local

(𝑖) = 𝑡 𝑙2 = 𝑙1 [𝑖 := (𝑡 𝛼)] 𝛼2 fresh

𝐶 ⊢ tee local 𝑖 : (𝑡 𝛼); 𝑙1; 𝜙 → (𝑡 𝛼2); 𝑙2; 𝜙, (= 𝛼 𝛼2)

Global variables are shared between modules and can be mutable, so we do not track constraints

on globals; we discuss this limitation more in Section 8. Rule Set-Global checks that the global

being set is mutable and has the same type as the operand. Rule Get-Global introduces a fresh

index variable 𝛼 with the type 𝑡 of the 𝑖th global variable from the context.

Get-Global

𝐶
global

(𝑖) = mut
? 𝑡 𝛼 fresh

𝐶 ⊢ get global 𝑖 : 𝜖 ; 𝑙 ; 𝜙 → (𝑡 𝛼); 𝑙 ; 𝜙
Set-Global

𝐶
global

(𝑖) = mut 𝑡

𝐶 ⊢ set global 𝑖 : (𝑡 𝛼); 𝑙 ; 𝜙 → 𝜖 ; 𝑙 ; 𝜙

We do not reason about the contents of memory, so the non-prechecked memory instructions

do not add constraints. All the memory instruction typing rules ensure the module has a declared

memory using the side condition 𝐶memory = 𝑛, which looks up the initial size of memory in the

module type context 𝐶 . Rule Mem-Load and Rule Mem-Store ensure that the alignment fits the type

being loaded or stored 2
𝑎 ≤ (|𝑡𝑝 | <)? |𝑡 |. RuleMem-Store simply checks that the second operand has

the expected type 𝑡 . Rule Grow-Memory simply consumes a 32-bit integer (the additional amount

of memory the user would like to allocate), and returns a 32-bit integer value, representing the

updated amount of memory if the allocation was successful, and −1 otherwise.
Prechecked memory instructions are statically checked to take place within the static memory

bounds. We currently do not reason about dynamically increasing memory size, which we discuss

further in Section 8. The initial memory size is some number of 64 Ki pages (65, 536 bytes), so we

check that the constraint set in the precondition implies that the memory index 𝛼 plus the static

offset 𝑜 is less than 65, 536 −𝑤𝑖𝑑𝑡ℎ (memory indices are unsigned, so they cannot be less than 0).

𝑤𝑖𝑑𝑡ℎ is a shorthand for the number of bytes being stored or loaded. It is equal to the length in
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bytes of the type value 𝑡 , if 𝑡𝑝 is not provided (𝑡𝑝? = 𝜖), and otherwise equal the length in bytes of

𝑡𝑝 , a packed type used to load or store a slice of 8 bits, 16 bits, or 32 bits.

Mem-Load

𝐶memory = 𝑛 𝛼2 fresh

𝐶 ⊢ 𝑡 .load (𝑡𝑝_𝑠𝑥)? 𝑜 : (i32 𝛼1); 𝑙 ; 𝜙 → (𝑡 𝛼2); 𝑙 ; 𝜙

Mem-Store

𝐶memory = 𝑛

𝐶 ⊢ 𝑡 .store 𝑡𝑝? 𝑜 : (i32 𝛼1) (𝑡 𝛼2); 𝑙 ; 𝜙 → 𝜖 ; 𝑙 ; 𝜙

Load-Prechk

𝐶memory = 𝑛 𝛼2 fresh 𝜙 ⇝ (le (add 𝛼1 (i32 𝑜 +𝑤𝑖𝑑𝑡ℎ)) (i32 𝑛 ∗ 64Ki))
𝐶 ⊢ 𝑡 .load✓ (𝑡𝑝 𝑠𝑥)? 𝑜 : (i32 𝛼1); 𝑙 ; 𝜙 → (𝑡 𝛼2); 𝑙 ; 𝜙

Store-Prechk

𝐶memory = 𝑛 𝜙 ⇝ (le (add 𝛼1 (i32 𝑜 +𝑤𝑖𝑑𝑡ℎ)) (i32 𝑛 ∗ 64Ki))
𝐶 ⊢ 𝑡 .store✓ 𝑡𝑝? 𝑜 : (i32 𝛼1) (𝑡 𝛼2); 𝑙 ; 𝜙 → 𝜖 ; 𝑙 ; 𝜙

Current-Memory

𝐶memory = 𝑛 𝛼 fresh

𝐶 ⊢ current memory : 𝜖 ; 𝑙 ; 𝜙 → (i32 𝛼); 𝑙 ; 𝜙

Grow-Memory

𝐶memory = 𝑛 𝛼2 fresh

𝐶 ⊢ grow memory : (i32 𝛼1); 𝑙 ; 𝜙 → (i32 𝛼2); 𝑙 ; 𝜙

The last rules handle composing sequences of instructions. Rule Empty types the empty instruction

sequence 𝜖 , which simply has the same pre and postcondition 𝜖 ; 𝑙 ; 𝜙 . Rule Stack-Poly allows a

prefix of the stack to be ignored (or added, depending on your perspective); this adds polymorphism

in “the rest” of the stack to all the other typing rules. Rule Composition composes a sequence of

instructions 𝑒∗
1
with another instruction 𝑒2, checking that pre and postconditions match up.

Empty

𝐶 ⊢ 𝜖 : 𝜖 ; 𝑙 ; 𝜙 → 𝜖 ; 𝑙 ; 𝜙
Stack-Poly

𝐶 ⊢ 𝑒∗ : 𝑡𝑖∗
1
; 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2

𝐶 ⊢ 𝑒∗ : 𝑡𝑖∗ 𝑡𝑖∗
1
; 𝑙1; 𝜙1 → 𝑡𝑖∗ 𝑡𝑖∗

2
; 𝑙2; 𝜙2

Composition

𝐶 ⊢ 𝑒∗
1
: 𝑡𝑖∗

1
; 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2 𝐶 ⊢ 𝑒2 : 𝑡𝑖∗2 ; 𝑙2; 𝜙2 → 𝑡𝑖∗

3
; 𝑙3; 𝜙3

𝐶 ⊢ 𝑒∗
1
𝑒2 : 𝑡𝑖

∗
1
; 𝑙1; 𝜙1 → 𝑡𝑖∗

3
; 𝑙3; 𝜙3

4 METATHEORY
First, we show how to automatically translate Wasm programs to Wasm-precheck programs and

vice versa. Then, we prove the type safety of Wasm-precheck. We provide key insights and details

here; complete definitions and proofs are provided in the supplementary material [Geller et al.

2023].

4.1 Embedding Wasm into Wasm-precheck
The embedding function takes a Wasm module and replaces all type annotations with indexed

types that have no constraints on the index variables. Intuitively, this works because the type

annotations are the only part of the surface syntax of Wasm that differs in Wasm-precheck, and

the constraints are only necessary to type check prechecked instructions. While this embedding

requires no additional developer effort, it provides no information to the indexed type system

beyond what can be trivially inferred, so it may not automatically improve static reasoning, and

does not automatically provide prechecked instructions. More sophisticated embeddings could

attempt to insert prechecked instructions; we discuss this Section 8.

First, we define embedding over modules: the top-level object of both the Wasm and Wasm-

precheck surface syntax. Embedding a module𝑚 means embedding all functions 𝑓 ∗ and globals

𝑔𝑙𝑜𝑏∗ in the module. The definition of embedding is not interesting; we recur over the syntax

looking for type annotations, and enriching them to indexed types with fresh index variables and

empty constraint sets. The definition can be found in the anonymous supplementary material. We
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do not transform the table 𝑡𝑎𝑏?, or the memory𝑚𝑒𝑚?
as Wasm and Wasm-precheck use the same

syntax to define them (although Wasm-precheck represents the types of tables differently).

For clarity, we typesetWasm-precheck instructions in a blue sans serif font andWasm instructions

in a bold red serif font.

Definition 1. 𝑒𝑚𝑏𝑒𝑑𝑚 (𝑚) =𝑚

𝑒𝑚𝑏𝑒𝑑𝑚 (module 𝑓 ∗ 𝑔𝑙𝑜𝑏∗ 𝑡𝑎𝑏? 𝑚𝑒𝑚?) = module 𝑒𝑚𝑏𝑒𝑑𝑓 (𝑓 )∗ 𝑒𝑚𝑏𝑒𝑑𝑔 (𝑔𝑙𝑜𝑏)∗ 𝑡𝑎𝑏? 𝑚𝑒𝑚?

For example, the Wasm program on the left below embeds into the Wasm-precheck program

seen on the right below.

module
func (i32 → i32) local 𝜖

get local 0
i32.const 1
i32.div

end

module
func ((i32 𝛼1); ∅ → (i32 𝛼2); ∅) local 𝜖

get local 0
i32.const 1
i32.div

end

Theorem 1 (Well Typed Embedding).
If ⊢ module 𝑓 ∗ 𝑔𝑙𝑜𝑏∗ 𝑡𝑎𝑏? 𝑚𝑒𝑚?

, then ⊢ 𝑒𝑚𝑏𝑒𝑑𝑚 (module 𝑓 ∗ 𝑔𝑙𝑜𝑏∗ 𝑡𝑎𝑏? 𝑚𝑒𝑚?)
Proof. (Sketch) The proof follows by induction on the structure of the Wasm typing derivation.

The full proof is available as part of the supplementary material [Geller et al. 2023] □

4.2 Erasing Wasm-precheck Annotations
We provide an erasure function from Wasm-precheck programs to Wasm programs by discarding

the extra type information and replacing prechecked instructions with their non-prechecked

counterparts. Erasure is defined not just for the surface syntax, but also for typing constructs (such

as the module environment), administrative instructions, and run-time data structures (such as the

store). This extended definition of erasure allows us to reason about the behavior of Wasm-precheck

run-time programs in Wasm, which is useful in the type safety proof.

Erasure is best illustrated with an example. Full erasure definitions and proofs can be found in

the anonymous supplementary material, but their formal details are not insightful. The function

annotation constrains the input 𝛼1 to be greater than 0. This lets a div✓ be used with the input as

a divisor. The annotation also includes the primitive Wasm types, which is the only information

needed for type checking under Wasm, so we get rid of all other information to produce a Wasm

type annotation, as well as replacing div✓ with the Wasm instruction div.
module

func ((i32 𝛼1); (= (i32 1) (i32.gt_u 𝛼1 (i32 0)))
→ (i32 𝛼2); (i32.gt_u 𝛼2 (i32 0))) local 𝜖

get local 0
i32.const 1
i32.div✓

end

module
func (i32 → i32) local 𝜖

get local 0
i32.const 1
i32.div

end

The key theorem is that erasing a well-typed Wasm-precheck (run time) machine configuration

produces a well-typed Wasm (run time) machine configuration, so all Wasm-precheck programs

erase to running, type safe Wasm programs. This is useful in showing type safety, since intuitively,

no reduction rule is type directed, so if erasing the types results in a type safe Wasm program, then

reduction in Wasm-precheck is also type safe. Note that 𝑒𝑟𝑎𝑠𝑒𝑣 (𝑣∗) = 𝑣∗ trivially. The proofs are
available in Section 4.2.
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Theorem 2 (Erasure Preserves Typing). If ⊢𝑖 𝑠 ; 𝑣∗; 𝑒∗ : (𝑡 𝛼)∗; 𝑙 ; 𝜙 ,
then ⊢𝑖 𝑒𝑟𝑎𝑠𝑒𝑠 (𝑠); 𝑣∗; 𝑒𝑟𝑎𝑠𝑒𝑒∗ (𝑒∗) : 𝑡∗

For compile-time typing, the key lemma is that erasure for instructions preserves typing.

Lemma 1 (Instruction Erasure Preserves Typing). If 𝐶 ⊢ 𝑒∗ : (𝑡1 𝛼1)∗; 𝑙1; 𝜙1 → (𝑡2 𝛼2)∗; 𝑙2; 𝜙2,

then 𝑒𝑟𝑎𝑠𝑒𝐶 (𝐶) ⊢ 𝑒𝑟𝑎𝑠𝑒𝑒∗ (𝑒∗) : 𝑡∗1 → 𝑡∗
2

4.3 Type Safety
Type safety is the property that a well-typed machine state either reduces to another well-typed

state (perhaps infinitely), a sequence of values, or evaluates to the well-defined error trap. Type
safety of Wasm-precheck guarantees a number of important properties, including memory safety.

In addition, since prechecked instructions cannot trap, as it is not part of their semantics, the type

safety of Wasm-precheck ensures that they always successfully reduce to a value.

To reason about the run-time store 𝑠 , a run-time store type 𝑆 is introduced. The store context 𝑆

contains the type information for everything in 𝑠: module instances, tables, and memories. Every

module instance in 𝑠 has an associated module type context in 𝑆 , for example, the 𝑖th module

instance would have the type 𝑆inst (𝑖). The module type context 𝑆inst (𝑖) is familiar to us as 𝐶 .

Additional administrative typing judgments necessary for the proof are available as part of the

supplementary material [Geller et al. 2023].

For the type safety proof, we define an evaluation function 𝑒𝑣𝑎𝑙 (𝑠 ; 𝑣∗; 𝑒∗) using ↩→∗
𝑖 , the transitive,

reflexive closure of 𝑠 ; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠
′; 𝑣 ′∗; 𝑒′∗. The evaluation function has three possible outcomes:

the program may terminate, returning a sequence of values 𝑣∗; the program may trap, returning

the trap instruction which represents a fatal run-time error; or the program may not terminate.

Definition 2. 𝑒𝑣𝑎𝑙 (𝑠 ; 𝑣∗; 𝑒∗)
𝑒𝑣𝑎𝑙 (𝑠 ; 𝑣∗; 𝑒∗) = 𝑣∗, if 𝑠 ; 𝑣∗; 𝑒∗ ↩→∗

𝑖
𝑠′; 𝑣 ′∗; 𝑣∗

𝑒𝑣𝑎𝑙 (𝑠 ; 𝑣∗; 𝑒∗) = trap, if 𝑠 ; 𝑣∗; 𝑒∗ ↩→∗
𝑖
𝑠′; 𝑣 ′∗; trap

Theorem 3 (Type Safety). If ⊢𝑖 𝑠 ; 𝑣∗; 𝑒∗ : 𝑡𝑖∗; 𝑙 ; 𝜙 , then either 𝑒𝑣𝑎𝑙 (𝑠 ; 𝑣∗; 𝑒∗) = 𝑣∗, 𝑒𝑣𝑎𝑙 (𝑠 ; 𝑣∗; 𝑒∗) =
trap, or 𝑒𝑣𝑎𝑙 (𝑠 ; 𝑣∗; 𝑒∗) doesn’t terminate.

Proof. Follows from Lemma 4 (Progress) and Lemma 2 (Subject Reduction). □

Subject reduction, also known as type preservation, ensures that if a machine state 𝑠 ; 𝑣∗; 𝑒∗ has a
given type, then the machine state 𝑠′; 𝑣 ′∗; 𝑒′∗ after a reduction step (𝑠 ; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠

′; 𝑣 ′∗; 𝑒′∗) will
have an equivalent type. The main theorem for subject reduction allows the machine state after

reduction, 𝑠′; 𝑣 ′∗; 𝑒′∗, to have the same type up to implication (the reduced expression may have a

stronger postcondition).

Lemma 2 (Subject Reduction).
If ⊢𝑖 𝑠 ; 𝑣∗; 𝑒∗ : 𝑡𝑖∗; 𝑙 ; Γ; 𝜙, (= 𝑎 𝑐)∗ and 𝑠 ; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠

′; 𝑣 ′∗; 𝑒′∗, then ⊢𝑖 𝑠′; 𝑣 ′∗; 𝑒′∗ : 𝑡𝑖∗; 𝑙 ; Γ; 𝜙 .

Proof. (Sketch) We use our inversion lemmas to gain information about the type of the store 𝑠

and the local variables 𝑣∗, then hand that information to Lemma 3, which does most of the work.

The full proof is available as part of the supplementary material [Geller et al. 2023]. □

Lemma 3 is the main lemma for subject reduction, and is the body of the “loop” that is type

safety. We show that if a machine state 𝑠 ; 𝑣∗; 𝑒∗, reduces to 𝑠′; 𝑣 ′∗; 𝑒′∗, then the type of the new

machine state matches. Formally, this means either 𝑒′∗ has the same type, or it has a different locals

environment 𝑙1 in the precondition that matches the types of the locals 𝑣 ′∗ after reduction. The local
variables 𝑣∗ are mutable, so the constraints on them 𝜙∗

𝑣 , are not preserved. Instead, the initial state,
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𝜙1, must have the initial constraints 𝜙∗
𝑣 as part of it, and 𝜙3 will instead have the new constraints

𝜙 ′∗
𝑣 , as expressed by 𝜙3 = 𝜙1

⋃
𝜙 ′∗
𝑣 . In addition, if the initial store 𝑠 has store type 𝑆 , as stated by

⊢ 𝑠 : 𝑆 , then the updated store 𝑠′ has the same store type 𝑆 , as stated by ⊢ 𝑠′ : 𝑆 .

Lemma 3 (Subject Reduction for Instructions). If 𝑆 ; 𝑆inst (𝑖) ⊢ 𝑒∗ : 𝑡𝑖∗
1
; 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2 and

𝑠 ; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠
′; 𝑣 ′∗; 𝑒′∗

(1) 𝑡𝑖∗
1
; 𝑙1; 𝜙1 → 𝑡𝑖∗

2
; 𝑙2; 𝜙2 is well formed (𝜙1 and 𝜙2 only reference bound index variables),

(2) ⊢ 𝑠 : 𝑆 ,
(3) (⊢ 𝑣 : (𝑡𝑣 𝛼𝑣); 𝜙𝑣)∗, where 𝑙1 = (𝑡𝑣 𝛼𝑣)∗ and 𝜙𝑣 ⊂ 𝜙1 (the local variables are well-typed and

their constraints are included in the precondition)

then 𝑆 ; 𝑆inst (𝑖) ⊢ 𝑒′∗ : 𝑡𝑖∗1 ; 𝑙3; 𝜙3, (= 𝛼 (𝑡 𝑐))∗ → 𝑡𝑖∗
2
; 𝑙2; 𝜙4 for some 𝛼∗

, 𝑡∗, and 𝑐∗ where

(1) 𝑡𝑖∗
1
; 𝑙3; 𝜙3, (= 𝛼 (𝑡 𝑐))∗ → 𝑡𝑖∗

2
; 𝑙2; 𝜙4 is well formed,

(2) ⊢ 𝑠′ : 𝑆 ,
(3) (⊢ 𝑣 ′ : (𝑡𝑣 𝛼 ′

𝑣); 𝜙 ′
𝑣)∗, 𝑙3 = (𝑡 ′𝑣 𝛼 ′

𝑣)∗, and 𝜙3 = 𝜙1

⋃
𝜙 ′∗
𝑣 (the resulting local variables are

well-typed),

(4) and 𝜙4 ⇒ 𝜙2 (the postcondition may be stronger, and imply the original postcondition)

Proof. (Sketch) The proof proceeds by case analysis on the reduction relation 𝑠 ; 𝑣∗; 𝑒∗ ↩→
𝑠′; 𝑣 ′∗; 𝑒′∗.

The full proof is available as part of the supplementary material [Geller et al. 2023]. □

The main difficulty is reasoning about stack values consumed as a program reduces. Intuitively,

after reduction, the constraints will be more specific, and thus stronger, than before reduction. We

can weaken the types to recover the original types.

Lemma 4 (Progress) ensures that if a machine state is well typed then it either: entirely consists

of values, is a trap, or it takes a step to another machine state. Lemma 4 is the key property that

shows the static guarantees allow ✓-tagged instructions to reduce without dynamic checks. By

proving that well-typed ✓-tagged instructions reduce, we are sure there is no undefined behaviour

by leaving out a reduction rule for division-by-zero, for example.

Lemma 4 (Progress). If ⊢𝑖 𝑠 ; 𝑣∗; 𝑒∗ : 𝑡𝑖∗; 𝑙 ; 𝜙 then either 𝑒∗ = 𝑣∗, 𝑒∗ = trap, or 𝑠 ; 𝑣∗; 𝑒∗ ↩→𝑖 𝑠
′; 𝑣 ′∗; 𝑒′∗.

As with subject reduction, the main lemma is showing progress for individual instructions. In

addition to the main typing premise, the lemma relies on some premises guaranteeing the well-

formedness of program states. These express that there is some well-typed value prefix on the

stack, that branches are statically well-bound, that the module instance’s run-time memory, table,

and store are well-typed w.r.t. to the module environment.

Lemma 5 (Progress for Instructions). If 𝑆 ; 𝑆inst (𝑖) ⊢ 𝑒∗ : 𝑡𝑖∗
2
; 𝑙2; 𝜙2 → 𝑡𝑖∗

3
; 𝑙3; 𝜙3, where 𝑒∗ ≠

(𝑡 .const 𝑐2)∗ (the instructions left on the stack are well typed),

and 𝑆 ; 𝑆inst (𝑖) ⊢ (𝑡 .const 𝑐)∗ : 𝜖 ; 𝑙1; 𝜙1 → 𝑡𝑖∗
2
; 𝑙2; 𝜙2 (the value prefix on the stack is well typed),

and if (𝑡 .const 𝑐)∗ 𝑒∗ = 𝐿𝑘 [br 𝑖], then 𝑖 ≤ 𝑘 (branches are well bound),

and 𝑠inst (𝑖)mem = 𝑏𝑛 , where 𝐶memory = 𝑛 (memory is well sized),

and 𝑠inst (𝑖)tab = {inst 𝑖, func func tfi ...}𝑛 , where 𝐶table = (𝑛, tfi𝑛) (the table is well sized and

well typed),

and (⊢ 𝑣 : (𝑡𝑣 𝛼𝑣); 𝜙𝑣)∗, where 𝑆inst (𝑖)local = 𝑡∗𝑣 (locals are well typed),
then, either ∃𝑠′; 𝑣 ′∗; 𝑒′∗ . 𝑠 ; 𝑣∗; (𝑡 .const 𝑐)∗ 𝑒∗ ↩→𝑖 𝑠

′; 𝑣 ′∗; 𝑒′∗ (the instruction take a step),

or 𝑒∗ = 𝜖 (evaluation has finished with values (𝑡 .const 𝑐)∗),
or 𝑒∗ = trap and (𝑡 .const 𝑐)∗ = 𝜖 (𝑒∗ has finished evaluating to a trap).
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Proof. (Sketch) By induction on 𝑆 ; 𝑆inst (𝑖) ⊢ 𝑒∗ : 𝑡𝑖∗2 ; 𝑙2; Γ2; 𝜙2 → 𝑡𝑖∗
3
; 𝑙3; Γ3; 𝜙3 (where 𝑆inst (𝑖) is

a module type context, usually denoted by 𝐶). Since most Wasm-precheck instructions have the

same dynamic semantics as in Wasm, and every Wasm-precheck type includes all the information

of a Wasm type, we conclude that the Wasm-precheck term takes a step by translating to Wasm

and using Wasm’s type safety proof. The intuition is that most Wasm-precheck instructions have

the same reduction rules in Wasm, so we can erase to Wasm, where Wasm’s type safety guarantees

the instructions satisfies progress. This does not work for prechecked instructions or inductive

cases. The full proof is available as part of the supplementary material [Geller et al. 2023]. □

5 IMPLEMENTATION
We implement Wasm-precheck as an extension of Wasmtime [Bytecode Alliance 2019], a fast,

secure, compliant, runtime system for Wasm with JIT and AOT compilation. The implementation

is straightforward, following the formal models. However, there are two details of interest: how we

resolve join-points, and how we implemented constraint solving. Our implementation is available

for use as part of the supplementary material [Geller et al. 2023].

5.1 Type Annotations for Join-Points
Recall from Section 3.3 that block, if, and loop all introduce code points reachable frommultiple paths

due to branching. In these cases, we must find a set of constraints—the postcondition constraint set

of blocks and ifs, and precondition constraint set for loops—that is implied by every path.

In our declarative formal model, we require only that such a set exists—the set does not come

from the program syntax or from a subderivation. In the implementation, we require user provided

type annotations specifying pre or postconditions on blocks to resolve these join-points.

The syntax of the annotations largely follows from the theory, except for how variables are

referred to within the constraints. Within the annotations, the user can refer to stack variables by

name, and locals by name or de Bruijn index.

For example, the annotation below denotes a type that takes a parameter 𝑎 on the stack, and

asserts that, in the precondition, the parameter 𝑎 is less than the local variable 𝑏. If the local

variable 𝑏 was known to be the 0th local variable, then it could alternatively be referenced using

(local 0). Because the index language can only express constraints through equality, and the less

than operator i32.lt_u returns a 32-bit integer, the output of the operator is explicitly checked for

equality against the number 1, effectively checking for truthiness.

(type (func (param a i32) (pre (eq (i32 1) (i32.lt_u a (local b))))))

Similar to the model, annotations are not checked against the current state syntactically, but

up to implication. The actual (as calculated by the type system) precondition at the start of the

block must imply the expected precondition given by the type annotation. Similarly, the actual

postcondition guaranteed by the body of the block must imply the expected postcondition from

the type annotation. The overall type of the block is the actual precondition (stronger than the

annotation) and the expected postcondition (weaker than the actual postcondition).

Type annotations are required to be well formed: a type annotation can only constrain the values

consumed and produced by a function/block (also the local variables for blocks). Formally, in the pre

and postcondition, all variables in the constraint set must appear in the stack type environment or

local index store of that type annotation. Further, the precondition constraint set can only refer to

parameters: variables that are part of the precondition stack or locals. However, the postcondition

constraint set can refer to variables that are either part of the precondition or postcondition, to

express relationships between parameters and results.
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5.2 Constraint Solving
Like Wasm-precheck is parameterized by implication⇝, so is our implementation in Wasmtime.

Any constraint solver can be used that implements the interface between the constraint solver and

the index language. This interface is a Rust trait in our Wasmtime extension.

We choose Z3 for constraint solving for ease of use [De Moura and Bjørner 2008]. Our im-

plementation uses Z3’s bitvectors, resulting in a straightforward 1-to-1 relationship between

Wasm-precheck operators and Z3 operators. In our Wasmtime implementation, we currently only

support prechecked memory instructions (so call indirect✓ and div✓ are disabled) for reasons

discussed in Section 6 and Section 8. However, we have separately implemented typing rules for

these instructions via an encoding to Z3 in our Redex model.

5.3 Redex Model
We provide a reference implementation of the formal model of Wasm-precheck in Redex [Felleisen

et al. 2009], which also uses Z3 for constraint solving. Our implementation includes a model of

the type system that checks whether a given typing derivation is valid in our model, and a syntax-

directed algorithm for generating typing derivations from Wasm-precheck programs. The former

can be used to validate type-inference algorithms for Wasm-precheck. The implementation also

includes each of these for plain Wasm, which are reused in the implementation of Wasm-precheck.

The key challenge in the reference implementation was encoding constraints for the function

table and indirect function calls. Recall that for call indirect✓ tfi, we have to encode constraints

about which functions in a table can be called. To encode this, we construct a Z3 array that is the

same size as the table. We chose Z3 arrays because they have a similar abstraction to tables. We fill

the array with boolean values which are true if the function at the table index is a suitable function

type, i.e., is a subtype of the expected type tfi, and false otherwise. Finally, we assert all of the

translated constraints from the constraint set about the table index, and constrain that the value in

the array at the table index is true.

6 EVALUATION
Our evaluation seeks to answer the following questions:

(1) What is the best case performance speed-up of removing dynamic checks from Wasm?

(2) What speed-up can we realistically get using Wasm-precheck?

(3) What is the added cost of the Wasm-precheck type system compared to Wasm’s?

In addition, we provide a description of the type annotation process for the benchmarks, and

what these annotations look like. This gives an idea of the amount of time and work required to

use Wasm-precheck in practice for improved performance, but also suggests the potential of using

a static analysis to generate/infer the annotations.

6.1 General Setup
We use the PolyBenchC benchmark suite [Pouchet and Yuki 2016] and the Wasmtime runtime and

compiler [Bytecode Alliance 2019] to perform our evaluation.

We compare four versions of Wasmtime: a “Wasm_dyn” version with virtual memory guard

pages disabled and dynamic bounds checks enabled (the baseline we want to improve); a “no-checks”

version with all safety checks disabled (used for run-time performance comparison, providing

a frame of reference for best case improvements); a “Wasm-precheck” version, our extension of

Wasmtime implementing Wasm-precheck; and a “Wasm_vm” version, the default configuration of

Wasmtime with virtual memory guard pages. We emphasize that this evaluation is just as much an

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 80. Publication date: January 2024.



80:20 Adam T. Geller, Justin Frank, and William J. Bowman

evaluation of the Wasmtime implementations as it is of the Wasm and Wasm-precheck languages,

and other compilers may perform differently.

Name Wasmtime Version

Wasm_dyn Wasmtime with guard pages removed, dynamic bounds checks enabled

Wasm-no-checks Wasmtime with dynamic memory checks disabled (unsafe)

Wasm-precheck Wasmtime extended to implement Wasm-precheck

Wasm_vm Unmodified Wasmtime, uses 8GBs of VM for checks (safe)

We use two versions of the PolyBenchC suite: one unmodified version compiled from C to Wasm

with Emscripten with emcc -Os [Emscripten Contributors 2015], and one version manually ported

from Wasm to Wasm-precheck with type annotations added and some instructions modified. The

annotation process is described in Section 6.4. The unmodified version is used with the “Wasm_dyn”,

“Wasm_vm”, and “no-checks” versions of Wasmtime.

The ported version is used in the Wasm-precheck version of Wasmtime. In the manually ported

version, we leave the Emscripten runtime unchanged, but do modify the generated functions for

each benchmark. For each benchmark, we annotate two of the functions: one which initialized the

data and one which performed the benchmark computation. In addition to adding type annotations,

we add an explicit dynamic check to the top of each benchmark function, which is necessary to

type check the dynamically allocated data. The type system tracks constraints from this explicit

dynamic check, and is able to use this one check to eliminate many checks.

For all benchmarks, we used Wasmtime in ahead-of-time (AOT) mode: first pre-compiling

benchmarks to .cwasm files using wasmtime compile, then measuring the run time of executing the

pre-compiled file using wasmtime –allow-precompiled.

Benchmarks. PolyBenchC focuses on the performance of arithmetic and memory instructions,

and was used in the original Wasm work by Haas et al. [2017]. PolyBenchC benchmarks initialize

vectors and matrices (represented using arrays), and then compute over these structures. These

benchmarks perform many memory and arithmetic operations in tight, often nested, loops. They

may benefit more fromWasm-precheck than the average program. However, they are not unrealistic,

as we expect some computationally intensive Wasm programs to follow this pattern. For example,

the demo image classifier microservice for Dapr/WasmEdge has a similar structure.
6

Only dynamic memory bounds checks. Our run-time performance evaluation studies only dynamic

memory bounds checks. When surveying Wasm code, we found that memory accesses were

abundant, while indirect calls and integer division-by-zero checks seldom occurred. Checked

integer division was rare, in part, because the predominant datatype was floating point numbers.

We also found that memory access were the most expensive. We prototyped with pathological

microbenchmarks, which repeatedly execute instructions with dynamic checks in loop. We found

that memory bounds checks had much larger slowdown than dynamic type checks on indirect

calls, and measured no overhead on the integer division-by-zero check.

We believe dynamic memory bounds checks are the most expensive because they require the most

effort to check in comparison to the cost of the instruction they guard. They require a comparison

per operation. The check involves loading the current size of memory and performing an integer

check, which we found usually amounts to using an extra register; this agrees with Jangda et al.

[2019], who cite increased register pressure due to dynamic checks as a cause of performance issues.

While the run-time type check on call indirect also requires an extra comparison per instruction, it

is likely to be insignificant compared to all the computation involved in a function call.

Notably, Jangda et al. [2019] identify dynamic checks on indirect function calls as a significant

cost, which disagrees with our findings. There are several possible reasons for this disagreement.

6
https://github.com/second-state/dapr-wasm
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Fig. 5. Comparison of the average run time of PolyBenchC programs; Wasm vs Wasm-no-checks and Wasm
vs Wasm-prechk. The error bars show the Standard Error of the Mean.

First and most importantly is the difference in studying memory bounds checks. Jangda et al. [2019]

did not disable virtual memory guard pages to study dynamic memory bounds checks, and therefore

would not have seen overhead on such checks. Second, the implementation of indirect function

calls in the compiler we study could be more optimized then the version studied by Jangda et al.

[2019]. Third, it could be a difference in workflow, where our “pathological” microbenchmark is

not in fact the worst case scenario.

Therefore, we focus on eliminating dynamic memory bounds checks in our evaluation, and

ignore the other dynamic checks. We emphasize that Wasm-precheck is theoretically capable of

eliminating the cost of other dynamic checks, if those costs exist in practice.

Hyperfine. In general, for the benchmarks requiring timing data, we useHyperfine (hyperfine) [Pe-

ter 2023], a benchmarking tool that helps to control for noise. Using hyperfine, we fix the number

of warmups to 3, to ensure the benchmark program was warm in disk cache, and the number of

runs to 10, to account for variations in background processes, process randomization, etc.

Machine details. The benchmark machine is a cloud instance running on OpenStack version

Ussuri. The instance has 120 GiB of RAM, and 16 vCPUs (Intel Xeon Processor E5-2680 v4).

The instance runs Ubuntu 22.04.2-Jammy-x64-2023-02, with Rust 1.68.2 (6feb7c9cf 2023-03-26),

PolyBenchC 4.2.1, Wasmtime version v0.30.0, and wasm-tools (a subproject used by Wasmtime,

containing the type checker) version 1.0.16. The supplementary material includes environment

variables [Geller et al. 2023], which have been shown to affect cache behaviour [Curtsinger and

Berger 2013].

6.2 Run-time Performance Analysis
Wasm-no-checks vs Wasm_dyn. Compared to Wasm_dyn, the unsafe removal of dynamic checks

in Wasm-no-checks achieved an average speed-up of 1.76x, up to a maximum of 3.21x (Figure 5).

This is a significant increase and demonstrates the value of safely removing dynamic bounds checks.

However, how close can we get, safely, with Wasm-precheck?

Wasm_vm vs Wasm_dyn. Compared to Wasm_dyn, using virtual memory in Wasmtime to

optimize memory bounds checks led to an average speed-up of 1.73x, up to a maximum of 3.26x

(Figure 5). The run times generally correspond closely to Wasm-no-checks, with some outliers

where Wasm-no-checks (and Wasm-precheck) outperform Wasm_vm. We conjecture that in the
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short-lived benchmarks, there may be measurable cost associated with reserving the necessary

virtual memory.

Wasm-precheck vs the rest. Compared to Wasm_dyn, the safe removal of dynamic checks in

Wasm-precheck led to an average speed-up of 1.71x, up to a maximum of 3.18x (Figure 5). That is

about 97% of the speed-up achieved by Wasm-no-checks on average, and about 99% of the speed-up

achieved by Wasm_vm on average.

Discussion. Wasm-precheck can remove a large percentage of the overhead of dynamic memory

bounds checks. This is achieved without attempting to remove every dynamic check. Instead, we

focused on loops in computationally-intensive functions. In practice, Wasm-precheck enables the

type system to propagate information from dynamic checks outside a loop, so the loops can be free

of dynamic checks. The speed-up is achieved in compiled code that includes a memory manager,

modified only to include type annotations and an explicit dynamic check at the top of each function.

The PolyBenchC suite are memory intensive programs that access memory in nested loops.

Thus, the results of our benchmarks are not generally applicable: it is not fair to expect an arbitrary

program to benefit as much as our benchmarks. That said, memory intensive programs are a

prominent and useful class of programs, and we can see that Wasm-precheck can safely reap

significant performance benefits for such programs. For memory intensive programs, Wasm-

precheck can accomplish nearly the same mitigation of the costs of dynamic checks as the default

Wasm configuration, without the need for VM guard pages.

6.3 Type Checking Cost Analysis
For Wasm, fast compilation and a small binary footprint are key design points. Wasm-precheck can

achieve significant speed-ups over Wasm, but at the cost of a more complex type checker, additional

type annotations, and the possible addition of explicit dynamic checks in the code. To quantify

these costs, we measure and compare the compilation time and binary size of our PolyBenchC

suites. For this analysis, we only compare the baseline Wasm and the Wasmtime implementations.

6.3.1 Binary Footprint. We compare the size in bytes of the annotated Wasm-precheck program to

the size of the unmodified Wasm version. These sizes are of Wasm binary format, not the binary

output of the Wasmtime AOT compiler.

Results. On average, the total binary size is about 7.18% larger for Wasm-precheck then Wasm

(column 4 of Table 1). We also compare the code and type sections separately (available in the

anonymous supplementary material Section D.1). The code sections are barely larger, on average

about 0.84%. The type sections were significantly larger, with an average of 642%, as these required

explicit pre and postconditions. The smallest Wasm-precheck type section was only about 250%

larger than its Wasm counterpart (from 176 to 420 bytes), whereas the largest was a little over 18x

as large (from 206 to 3761 bytes).

Discussion. The added footprint of type annotations is relatively small compared to the full file

size. The overall increase in size of the final binary is small and is probably worth the improved

performance. The overall file size included runtime code added by emcc. Recall we only add annota-

tions for two functions. For programs where intensive computation is focused in a few functions,

the addition of type annotations for those functions is minor compared to the overall size of the

program. However, for a module with less runtime support code compared to code for intensive

computation, the increase in binary size may be more significant.

In addition, we found that some programs benefited from reuse between annotations, significantly

reducing annotation overhead. For example, in floyd-warshall we reuse the annotations between

the two functions, as they had extremely similar structures. This reuse in type annotations led to a

much smaller than average increase in overall code size of 1.83%.
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Benchmark Compilation Time (s) Validation Time (s) Binary Size (bytes)

Wasm prechk Wasm prechk Wasm prechk

correlation 16.49 ± 0.44 17.17 ± 0.20 14.00 ± 0.13 14.37 ± 0.14 20580 22377

covariance 16.03 ± 0.36 16.33 ± 0.28 14.17 ± 0.14 14.31 ± 0.22 20381 21556

2mm 16.43 ± 0.31 16.73 ± 0.28 14.75 ± 0.24 15.38 ± 0.26 20612 23340

3mm 15.91 ± 0.34 16.10 ± 0.30 14.91 ± 0.21 14.96 ± 0.43 20719 24586

atax 15.69 ± 0.30 15.17 ± 0.21 15.55 ± 0.21 16.00 ± 0.39 20188 21280

bicg 15.41 ± 0.45 15.03 ± 0.37 16.37 ± 0.27 15.40 ± 0.31 20300 21525

doitgen 16.09 ± 0.25 15.98 ± 0.42 14.95 ± 0.35 15.06 ± 0.21 20370 22141

mvt 15.75 ± 0.22 15.65 ± 0.31 15.69 ± 0.35 14.81 ± 0.12 20397 22021

gemm 13.86 ± 0.07 14.10 ± 0.05 13.81 ± 0.08 14.93 ± 0.27 20374 22081

gemver 14.12 ± 0.11 14.24 ± 0.09 14.60 ± 0.13 15.38 ± 0.18 20627 24343

gesummv 13.78 ± 0.11 13.72 ± 0.10 15.04 ± 0.17 14.80 ± 0.19 20277 21391

symm 13.84 ± 0.07 13.94 ± 0.09 15.67 ± 0.38 15.57 ± 0.47 20455 21938

syr2k 13.91 ± 0.09 13.85 ± 0.09 16.39 ± 0.37 16.52 ± 0.21 20375 21838

syrk 13.94 ± 0.10 14.02 ± 0.11 15.61 ± 0.18 17.44 ± 0.32 20283 21294

trmm 13.64 ± 0.10 13.64 ± 0.05 16.34 ± 0.26 15.73 ± 0.21 20242 21084

cholesky 14.00 ± 0.25 13.91 ± 0.08 16.44 ± 0.26 17.10 ± 0.30 20520 22003

durbin 14.26 ± 0.41 15.95 ± 0.31 16.26 ± 0.34 16.64 ± 0.18 20147 20792

gramschmidt 15.71 ± 0.35 16.24 ± 0.30 16.35 ± 0.35 16.38 ± 0.21 20560 21979

lu 15.68 ± 0.42 15.60 ± 0.16 17.02 ± 0.31 16.00 ± 0.24 20502 21899

ludcmp 16.72 ± 0.47 17.05 ± 0.36 16.18 ± 0.42 16.16 ± 0.20 20823 23533

trisolv 15.17 ± 0.17 15.57 ± 0.25 14.91 ± 0.16 15.95 ± 0.41 20113 20950

deriche 16.06 ± 0.24 16.72 ± 0.33 16.15 ± 0.41 17.38 ± 0.49 21343 22915

floyd-warshall 13.72 ± 0.11 13.88 ± 0.24 13.49 ± 0.19 13.89 ± 0.17 16758 17065

nussinov 12.97 ± 0.21 13.62 ± 0.20 14.52 ± 0.27 14.35 ± 0.39 16925 17602

adi 15.48 ± 0.17 16.16 ± 0.18 15.22 ± 0.31 16.77 ± 0.32 20725 22500

fdtd-2d 16.22 ± 0.27 16.43 ± 0.23 16.81 ± 0.31 16.41 ± 0.37 20802 22972

heat-3d 16.96 ± 0.29 15.77 ± 0.32 15.92 ± 0.36 15.33 ± 0.20 20639 21578

jacobi-1d 15.42 ± 0.13 16.28 ± 0.37 15.43 ± 0.28 15.75 ± 0.32 20083 20568

jacobi-2d 16.31 ± 0.38 15.48 ± 0.14 15.25 ± 0.31 15.42 ± 0.27 20332 20963

seidel-2d 16.18 ± 0.35 16.23 ± 0.32 15.05 ± 0.23 15.35 ± 0.17 20205 20608

Average 15.19 ± 0.25 15.35 ± 0.22 15.43 ± 0.27 15.65 ± 0.27 20222 21691

Table 1. Comparison of compile time, validation time, and binary size Wasm vs Wasm-precheck.

While the overhead of the type annotations may seem large, the encoding of annotations in our

implementation of Wasm-precheck is unoptimized. We believe that we can improve the encoding

and remove unnecessary annotations to reduce the size. Alternatively, annotations as a whole could

be omitted in favor of type inference/static analysis. We discuss these possibilities in Section 8.

6.3.2 Type Checking and Compile Time. We separately compare compile time and type-checking

time. Type-checking time is measured using wasm-tools validate on the file in Wasm text. Compile

time is measured using wasmtime compile on the file in Wasm text. We expect type-checking time

to dominate the additional increased cost of compilation, but other factors, such as reading or

compiling the larger binary, could increase compile time separately from type-checking time. A

significant part of the cost in the Wasm-precheck type checker is the constraint checker, so these

measurements are tied to the performance of our implementation with Z3.

Results. We found that the overhead in type-checking was relatively small, with Wasm-precheck

taking an average of 1.4%, or 220ms, longer (Table 1).

Unexpectedly, this overhead did not seem to be larger for programs with more type annotations.

For example, 3mm had above average binary size overhead in Wasm-precheck vs Wasm, but only

took an average of 47ms longer to type check with Wasm-precheck then Wasm, a hardly significant
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difference since the standard error of the mean was approximately 400ms with Wasm-precheck

and 200ms with Wasm. By contrast, syrk, with only 1100 lines of annotations (a bit below average),

had the most type-checking overhead at 1.8s, or 12%.

The overhead in compilation time was slightly smaller still, with Wasm-precheck taking an

average of 1%, or 160ms, longer to compile the benchmarks (Table 1). Interestingly, the compilation

time is slightly lower than the type-checking time for both Wasm-precheck and Wasm on average.

There could be a difference in the performance of the frontend between wasm-tools and wasmtime,

which use the same backend typechecker, but the difference is within the margin of error.

Discussion. The overhead of type checking and compiling is small, and probably worth the

run-time performance improvement. This may be related to the simple structure of the benchmarks,

with tight loops and simple constraints in the annotations keeping the constraint solving queries

small and simple. However, if large or complex constraints sets caused significant compile-time

overhead, a faster special purpose solver might provide less overhead, and this is supported by

both our theory and implementation.

6.4 Annotation Burden
To give an idea of what annotation burden in Wasm-prechk is like, we relay the process for

annotating our PolyBench suite to run in Wasm-prechk, and walk through an example.

Type annotations were all added by a single junior author. We estimate that annotating the first

few benchmarks took on the scale of a few hours (some of which was spent debugging Wasm-

prechk). After a handful of benchmarks, when a clear pattern emerged and the implementation

was reliable, each benchmark took around 30 minutes to annotate, partly constrained by the speed

of typechecking when debugging the annotations.

The process of adding the annotations became rather formulaic:

(1) Identify the arrays and their sizes and constrain them to be within the memory bounds,

adding a hand-written check for this at the top of the function.

(2) Identify the loop iteration variables, constrain them based on the loop bounds.

(3) Constrain any "free variables" in inner loops based on their assignments in outer loops

A few of the benchmarks required extra annotations, usually for if blocks within the loops, which

generally just said that everything stayed the same, but in at least one instance had to do reasoning

about the condition for the if (the reasoning is performed automatically by Wasm-precheck).

The majority of the annotations in our suite followed from, in essence, a manual range analysis.

We conjecture that much of the analysis could be automated, and provide similar annotations for

these types of functions: loops (possibly nested) over an array whose size is known.

An example. The following is an annotation on an inner loop from the seidel_2d benchmark.

1 (pre

2 (eq (i32 1) (i32.lt_u (local 0) (i32 67108864)))

3 (eq (i32 1) (i32.lt_u (i32.add (local 0) (i32 32000000)) (i32 67108864)))

4 (eq (i32 1) (i32.lt_u (local 6) (i32 2000)))

5 (eq (i32 1) (i32.gt_u (local 6) (i32 1)))

6 (eq (local 12) (i32.sub (local 6) (i32 2)))

7 (eq (local 3) (i32.add (local 0) (i32.mul (i32 16000)

8 (i32.sub (local 6) (i32 1)))))

9 (eq (i32 1) (i32.lt_u (local 2) (i32 1999)))

10 (eq (i32 1) (i32.gt_u (local 2) (i32 0))))

11 (post

12 (eq (local 0) (old_local 0))

13 (eq (local 6) (old_local 6))))
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Recall that the precondition on a loop is essentially a loop invariant; the postcondition is only

taken into account for after the loop exits. Local 0 represents an array with a (statically known) size

of 32,000,000 bytes. The precondition checks that both the starts and ends of the array are within

the static size of memory, 67,108,864 bytes (1024 pages of 65536 bytes each), and the postcondition

ensures that the size is unchanged when the loop exits. Locals 2 and 6 are loop iteration variables

with respective statically known loop bounds of [1, 1998] and [2, 1999] (inclusive). The loop bounds
are reflected in the precondition. Because we are looking at an inner loop, the iteration variable

from the outer loop, local 6, should be unchanged when this inner loop exits.

Finally, locals 12 and 3 store the result of computations performed prior to this loop; they

are constrained using their respective computations. Essentially, they are the result of moving a

computation that is invariant in the loop to be calculated once before the loop instead of on every

iteration.

In some cases, these stored computations were constrained based on an upper bound rather

than how they were assigned. Using a maximum bound results in more succinct but less precise

annotations. Conversely, spelling out the constraints based on the computation, as on line 7 of the

above example, is more verbose but also more precise. In the above example, the extra precision

makes sense, as local 6 has a lower bound as well as an upper bound. However, there are other

cases where this extra precision is necessary, ussually when a stored computation is used to access

multiple arrays of different sizes. If we did not have the lower bound on local 6, we could substitute

the upper bounds for locals 0 and 6 in line 7 of the above example, resulting in the following more

compact constraint on local 3:

(eq (i32 1) (i32.lt_u (local 3) (i32 63968000)))

7 RELATEDWORK
Using types to improve static reasoning of low-level and compiler intermediate languages is not a

new idea. Tarditi et al. [1996] used strongly typed intermediate languages (TIL) to enable optimiza-

tion of SML code. Compiling SML involves many translations among intermediate languages, and

by preserving type information across those translations Tarditi et al. [1996] were able to safely

perform additional compiler optimizations. Using TIL led to up to 50% faster programs.

Morrisett et al. [1999] demonstrated how to preserve types through five representative com-

pilation passes to get from System F (a model of a high-level functional language) to a typed

assembly language (TAL). The focus of TAL was on safety. Morrisett et al. [1999] demonstrated

that untrusted code could be safely executed, so long as it was well typed and type checked first.

Although Morrisett et al. [1999] argued that the type-preserving compilation passes would permit

similar optimizations to TIL, they didn’t include further optimizations based on TAL.

The most closely related work is Xi and Harper [2001], which developed an indexed type system

for an assembly language, DTAL, that enabled static guarantees and optimizations such as safely

removing array bounds checks. The goal of DTAL, similar to TAL, was to support type-preserving

compilation from a high-level language for both optimizations and safety. DTAL was intended to

be a target for supporting type-preserving compilation from Dependent ML (an indexed typed

SML) and SML. DTAL is a register machine language, and the type system focuses on the flow

of constraints between registers and memory. By contrast, Wasm is a stack-based language, so

Wasm-precheck focuses on stack-based reasoning. Wasm also includes more structured control

flow operations, which pose some unique challenges. One of the major static reasoning hurdles

in Wasm, the call indirect instruction, is not present in DTAL, and the ability to reason about a

call indirect-like instruction statically is novel to Wasm-precheck.
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An alternative to typed intermediate languages is proof-carrying code (PCC), which uses a

logical framework over low-level code to statically prove safety properties [Necula 1997]. While

typed intermediate languages require types as part of the language, PCC uses a separate logical

framework, allowingmore flexibility to use the approachwith an existing language. A PCC approach

to removing dynamic safety checks from Wasm would still require Wasm to be extended with

instructions that lack dynamic checks, and would otherwise be quite similar.

Like the Wasm-precheck type system, Liquid Types are able to ensure safety properties and

eliminate dynamic checks, but unlike Wasm-precheck use sophisticated inference to reduce the

annotation burden. Liquid Types were introduced as an indexed type system in OCaml, focused on

combining strong static reasoning about program variables with low developer effort [Kawaguchi

et al. 2009]. Like Wasm, OCaml already had a strong static type system, but Liquid Types allowed

the efficient verification of a large set of libraries with low developer annotations. Since their

introduction, Liquid Types have been applied to many languages, including Haskell, Ruby, C,

JavaScript [Chugh et al. 2012; Kazerounian et al. 2018; Rondon et al. 2012, 2010; Vazou et al. 2014a,b;

Vekris et al. 2016]. It is possible that the Wasm-precheck type system could be converted to a Liquid

Type system, removing the need for annotations in the implementation of Wasm-precheck.

An alternate approach to the safety/performance tradeoff by Popescu et al. [2021] starts with

unsafe Rust code, and attempts to make it safer while maintaining the performance. They introduce

a tool which identifies code that has explicitly omitted dynamic safety checks, and reintroduce

such checks until a specified performance overhead threshold is met. In this way, more expensive

dynamic checks are less likely to be added. This approach allows library users to have more fine-

grained control over the safety/performance tradeoff that would normally be decided by the library

developer. However, safety is not maintained using this approach.

8 DISCUSSION AND FUTUREWORK
We briefly discuss limitations in the current model and implementation of Wasm-precheck and

how they may be addressed in future work.

Table Mutation. Wasm-precheck assumes that function tables are immutable by a Wasm module,

as they were in the original specification [Haas et al. 2017]. However, the most recent Wasm

specification now supports table mutation [Rossberg 2022]
7
. Furthermore, the table could always

be mutated by the host environment (e.g.,, using the JavaScript API in a browser). Table mutation

violates static guarantees for prechecked indirect function calls (call indirect✓), and functions

with incompatible types may be called. This is a limitation in safety of the Wasm-precheck model,

although not of our implementation, since call indirect✓ is disabled.

The most straightforward solution is to introduce a separate immutable table, and only allow

call indirect✓ with the immutable table. Attempting to use mutating instructions with an im-

mutable table could result in a static type error. Alternatively, instead of a static type error, every

call indirect✓ on the mutable table could be transparently downgraded to a call indirect instead,
invalidating the optimizations from Wasm-precheck, but allowing the safe execution of the code.

This approach allows fine-grained control over the table, providing additional static guarantees.

The host environment would be required to respect immutable tables.

Another approach is to modify the implementation of Wasm-precheck rather than specification.

JIT implementations could re-type-check programs when the table is mutated, either by instructions

or by the host environment. If the check fails, affected call indirect✓s on that table could be

downgraded to a call indirect. This idea is simpler for developers and requires no language redesign,

7
This was added in the reference types proposal https://github.com/WebAssembly/reference-types.
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but could be intractable if table mutation occurs often. If table mutation is infrequent (e.g., only at

the beginning of execution for dynamic linking), then this strategy could produce good results.

Global Variables. We do not support constraints on global variables because we cannot composi-

tionally track constraints across module boundaries. This is a limitation in expressivity, but not

in safety. Before linking, a module has no information about globals from another module, which

would be necessary for reasoning about the types of functions imported from the other module.

Concretely, imagine that the 𝑗th module calls a function 𝑓𝑖 that was imported from the 𝑖th module.

The call instruction is reduced to call {inst 𝑖, func 𝑓𝑖 } where 𝑖 is the index for the module instance

where 𝑓𝑖 is defined. 𝑓𝑖 cannot modify the global variables in the 𝑗th module directly. However, 𝑓𝑖
may call a function imported from 𝑗 th module that modifies the globals in the 𝑗 th module. We have

to assume the worst and can make no assumptions about the global variables after 𝑓𝑖 returns.

We might address this limitation with an effect system to track how functions modify global

variables. However, this could be undesirable or difficult to accomplish if global variables should

not be exposed as part of an interface.

Dynamic Resizing of Memory. Wasm-precheck only supports type checking ✓-tagged loads and

stores based on the static size of memory, but memory can grow monotonically via grow memory.
This is a limitation in expressivity, but not in safety. It should be possible to statically reason

about the dynamic size of memory by tracking a dependency on the result of the grow memory
instruction. If the result is−1, we know that the memory remains the same size. Otherwise, the result

is equal to the new memory size. For example, we could introduce an index variable 𝛼𝑚 to track the

size of memory, and after a grow memory, constrain the size of memory to be 𝛼𝑚 = 𝑜𝑙𝑑𝑠𝑖𝑧𝑒 if the

result is −1, and 𝛼𝑚 = 𝑛𝑒𝑤𝑠𝑖𝑧𝑒 otherwise. Then, in load✓ and store✓ , the bounds check would be

performed against 𝛼𝑚 . This would likely require passing the size of memory in the instruction type

rather than the module environment.

Support for Streaming Compilation. Although not an explicit goal, Wasm-precheck, like Wasm,

should support streaming execution. All type annotations are declared before the code section, and

this information is propagated forward during type checking (computing the strongest postcondi-

tion, rather than reasoning backwards to compute the weakest precondition). Each instruction is

checked, and its constraints solved, before checking the next instruction.

This relies on sufficient type annotations before execution, so it may be difficult to combine with

type inference. However, if steaming compilation is needed with type inference, one option is to

use the Wasm type system as a fast first compiler, and then run the Wasm-precheck type checker in

the background to eliminate dynamic checks where possible. This would mirror Firefox’s current

Wasm implementation, which provides a straightforward fast compiler to begin execution as soon

as possible, and a slower, optimizing compiler whose result is used once it finishes compilation.

Type Annotations. There is significant room for improvement in reducing the size of the anno-

tations in the implementation. Currently, each part of the index language is simply encoded into

binary, without any optimization, compression, sharing, or eliding parts that could be trivially

and locally inferred. Some space savings could be obtained by extending the binary format to

explicitly encode common forms, saving some bytes. Additionally, there is significant constraint

reuse, as nested blocks usually reuse the preconditions of the outer blocks with some additions. Most

postconditions simply specify that locals remain unchanged, even though no instructions inside

the annotated block can mutate them. This situation should be easily detectable by the typechecker,

which could allow omitting such constraints for local variables which are not modified.

Type Inference. Given the relatively straightforward constraints in Wasm-precheck, type infer-

ence may be sufficiently effective to improve the performance Wasm programs without developer

effort. For Wasm-precheck’s type system, this amounts to performing static analysis over Wasm
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that approximates Wasm-precheck’s type system and outputs relevant type annotations. Wasm-

precheck’s index language encodes a logic that corresponds to a straightforward data flow analysis,

so implementing an optimizing embedding should not be difficult using standard analysis tech-

niques Flanagan and Leino [2001]. Such techniques have been widely adapted to indexed and

refinement type systems, e.g., see Rondon et al. [2010] or Jhala and Vazou [2020] (Section 5).

Wasm-precheck provides correctness guarantees about any such analysis via type safety.

Alternative Constraint Solvers. Wasm-precheck is parametric over the definition of implication,

allowing us to use different constraint solvers with different tradeoffs between effectiveness and

efficiency. In our prototype implementation, we used Z3, which works well in practice but not in

theory. We conjecture that the octagonal abstract domain is sufficient for constraint satisfaction for

most our benchmarks [Mine 2001]. The octagonal abstract domain has a polynomial worst case

complexity, compared to the current exponential worst case complexity of arbitrary Z3 queries.

9 CONCLUSION
We introduce Wasm-precheck, a low-level language that uses an indexed type system to improve

static guarantees and therefore performance of Wasm code. To ensure the safety of Wasm-precheck,

we have proven the type safety of Wasm-precheck as well as showing backwards compatibility

with Wasm through a sound type erasure to Wasm and automatic embedding from Wasm to

Wasm-precheck. We implement Wasm-precheck in an extension of Wasmtime, and achieved an

average performance gain of 1.71x by safely removing explicit dynamic checks in the widely used

PolyBenchC benchmark suite. This demonstrates our hypothesis that Wasm can be equipped with

a type system that, by improving static guarantees to remove unnecessary dynamic checks, can be

used to improve performance while maintaining safety.
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