
Profile-Guided Meta-Programming

William J. Bowman ˚

Northeastern University, USA and
Cisco Systems, Inc, USA

wjb@williamjbowman.com

Swaha Miller :

Cisco Systems, Inc, USA
swaham@vmware.com

Vincent St-Amour
Northeastern University, USA

stamourv@ccs.neu.edu

R. Kent Dybvig
Cisco Systems, Inc, USA

dyb@cisco.com

Abstract

Contemporary compiler systems such as GCC, .NET, and LLVM
incorporate profile-guided optimizations (PGOs) on low-level in-
termediate code and basic blocks, with impressive results over
purely static heuristics. Recent work shows that profile informa-
tion is also useful for performing source-to-source optimizations
via meta-programming. For example, using profiling information
to inform decisions about data structures and algorithms can poten-
tially lead to asymptotic improvements in performance.

We present a design for profile-guided meta-programming in
a general-purpose meta-programming system. Our design is para-
metric over the particular profiler and meta-programming system.
We implement this design in two different meta-programming
systems—the syntactic extensions systems of Chez Scheme and
Racket—and provide several profile-guided meta-programs as us-
ability case studies.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors

General Terms Design, Performance, Languages

Keywords Optimization, profiling, profile-guided optimization,
PGO, meta-programming

1. Introduction

Profile-guided optimization (PGO) is an optimization technique in
which a compiler uses profile information gathered at run time to
improve the performance of the generated code. The profile infor-
mation acts as an oracle for run-time behavior. For example, a pro-
filer might count how many times a program calls each function

˚ Author’s current affiliation: Northeastern University, USA
: Author’s current affiliation: VMware, Inc, USA

[Copyright notice will appear here once ’preprint’ option is removed.]

to inform decisions about function inlining. Compilers use profile
information to guide decisions about reordering basic blocks, func-
tion inlining, reordering conditional branches, and function layout
in memory [18]. Contemporary compiler systems that support PGO
include GCC, .NET, and LLVM [26]. Code generated using PGOs
usually exhibits improved performance, at least on the represented
class of inputs, compared to code generated with static optimization
heuristics. For example, Arnold et al. [1] show that using profiling
information to guide inlining decisions in Java resulted in up to
59% improvement over static heuristics.

Profile information has also proven useful to implement profile-
guided meta-programs, i.e., PGOs on source programs. Meta-
programs are programs that operate on programs. Languages
with general-purpose meta-programming systems include C, C++,
Haskell [32], Java [13], ML [35], OCaml [24], Racket [15],
Scala [5], and Scheme [12]. Meta-programming is used to im-
plement high-level yet efficient abstractions. Boost libraries [9]
make heavy use of C++ meta-programming. Sujeeth et al. [33]
and Rompf and Odersky [31] implement high-performance do-
main specific languages using staged meta-programming in Scala.
Chen et al. [7] implement process placement for SMP clusters us-
ing profile-guided meta-programming. Liu and Rus [27] provide
tools that use profile information to identify suboptimal usage of
the STL in C++ source code.

Current meta-programming systems do provide profile in-
formation to meta-programs. Therefore, to implement a profile-
guided meta-program, programmers must introduce new special-
purpose toolkits for profiling and meta-programming. Instead,
meta-programming systems should provide access to profile in-
formation from existing profilers. Then programmers could reuse
existing and familiar meta-programming and profiling tools.

This paper presents a design for supporting profile-guided meta-
programming in general-purpose meta-programming systems. To
demonstrate the generality of our design, we implement it for both
Racket and Scheme. Both implementations reuse existing meta-
programming and profiling infrastructure.

The rest of the paper is organized as follows. In Section 2, we
introduce a running example and Scheme-style meta-programming.
In Section 3, we describe our requirements on the underlying
profiling system and an API for supporting profile-guided meta-
programming. In Section 4, we present two implementations of the
specification in Section 3: one in Chez Scheme and one in Racket.
In Section 5, we sketch implementations for other general-purpose
meta-programming systems. In Section 6, we demonstrate that our
design is general enough to implement and extend existing PGOs

1 2017/1/3

and profile-guided meta-programs. In Section 7, we relate to exist-
ing work on PGOs and profile-guided meta-programming.

The source code for our case studies and Racket implementation
is available online1.

2. A Running Example

We first introduce a simple syntax extension to familiarize readers
with Scheme and Racket style meta-programming and to provide
a running example. The transformation we present is not a mean-
ingful optimization and is used only for illustrative purposes. The
structure of this transformation strongly resembles the optimization
we present in Section 6.1.

(define-syntax (if-r stx)

(syntax-case stx ()

[(if-r test t-branch f-branch)

; This let expression runs at compile time

(let ([t-prof (profile-query #'t-branch)]

[f-prof (profile-query #'f-branch)])

; This cond expression runs at

; compile time, and conditionally

; generates run-time code based on profile

; information.

(cond

[(< t-prof f-prof)

; This if expression would run at

; run time when generated.

#'(if (not test) f-branch t-branch)]

[(>= t-prof f-prof)

; So would this if expression.

#'(if test t-branch f-branch)]))]))

; Example use of if-r
(define (classify email)

(if-r (subject-contains email "PLDI")

(flag email 'important)

(flag email 'spam)))

Figure 1: Example syntax extension

In Figure 1, define-syntax introduces a new syntax extension
if-r (for reordering if). A syntax extension can be thought of
as a function from source expressions to source expressions. The
compiler rewrites any uses of if-r using the code in the body of
the extension.

When used at the bottom of Figure 1, the syntax extension if-r

receives the argument:
#'(if-r (subject-contains-ci email "PLDI")

(flag email 'important)

(flag email 'spam))

This is a data representation of a term called a syntax object.
The forms #', #`, and #, provide a templating system for syn-
tax objects,2 and syntax-case performs pattern matching on
syntax objects.

The syntax extension if-r expands at compile time, while the
resulting if expression runs at run time. At compile time, the if-r

expression uses profile-query to look up the profile informa-
tion attached to each branch. Using this profile information, the
if-r expression conditionally generates an if expression whose
branches are ordered by how likely they are to be executed. When
the false branch is executed more frequently than the true branch,
the if-r expression generates an if expression by negating the test

1 http://dx.doi.org/10.5281/zenodo.16784
2 Specifically, these forms implement Lisp’s quote, quasiquote, and unquote
on syntax objects instead of lists.

; Assuming profile information tells us:

; (flag email 'important) runs 5 times

; (flag email 'spam) runs 10 times

; Then the code after expanding if-r is:

(define (classify email)

(if (not (subject-contains email "PLDI"))

(flag email 'spam)

(flag email 'important)))

Figure 2: Example output of if-r

and swapping the branches. Otherwise, the if-r expression gener-
ates an if expression by keeping the original test and branches.
Figure 2 shows an example of the code the if-r expression from
Figure 1 could generate.

3. Design

Profile-guided meta-programming requires that the underlying lan-
guage comes with a profiling system and that the meta-programming
system can associate profile information with source expressions.
This section presents the abstractions introduced by our design
and sketches an API that suffices to support profile-guided meta-
programming. For simplicity, our explanations refer to counter-
based profiling. Our design should work for other point profiling
systems, but does not extend to path profiling.

3.1 Profile Points

As the profiling system may not understand source expressions,
our design introduces profile points as an abstraction of source ex-
pressions for the profiler. Each profile point uniquely identifies a
counter. Any expression can be associated with at most one pro-
file point. Associating a profile point with an expression indicates
which counter to increment when profiling the expression. For in-
stance, if two expressions are associated with the same profile
point, then they both increment the same counter when executed.
Conversely, if two expressions are associated with different pro-
file points, then they increment different profile counters when ex-
ecuted. The profiling system uses profile points when a program is
instrumented to collect profile information. When the program is
not instrumented to collect profile information, profile points need
not introduce any overhead.

For fine-grained profiling, each node in the AST of a program
can be associated with a unique profile point. In the case of our run-
ning example, the AST nodes for if, subject-contains, email,
"PLDI", etc, are each associated with separate profile points. Note
that flag and email appear multiple times, but each occurrence is
associated with different profile point.

A profiler may implicitly insert profile points on certain nodes in
the AST, but it is also important that meta-programs can manufac-
ture new profile points. Meta-programmers may want to generate
expressions that are profiled separately from any other expression
in the source program.

Meta-programs can access profile information by passing a pro-
file point, or an object with an associated profile point, to an API
call, such as the function profile-query in our running example.

3.2 Profile Weights

Our design introduces profile weights as an abstraction of the pro-
file information provided by the underlying profiling system. Pro-
file weights serve two purposes.

First, a profile weight provides a single value identifying the rel-
ative importance a profile point. The profile weight is represented
as a number in the range [0,1]. The profile weight of a profile point

2 2017/1/3

is the ratio of the counter for that profile point to the counter of the
most executed profile point in the same data set.

Second, profile weights simplify merging multiple profile data
sets. Multiple data sets are important to ensure PGOs can optimize
for multiple classes of inputs expected in production. However, ab-
solute profile information is generally incomparable across differ-
ent data sets. On the other hand, merging the profile weights com-
puted from multiple data sets is straightforward—the computation
is essentially a weighted average across the data sets.

(flag email 'important)Ñ 5/10

(flag email 'spam) Ñ 10/10

(flag email 'important)Ñ (0.5 + 100/100)/2

(flag email 'spam) Ñ (1 + 10/100)/2

Figure 3: Example profile weight computations

Consider the running example from Figure 1. Suppose in
the first data set, (flag email 'important) runs 5 times
and (flag email 'spam) runs 10 times, while in the sec-
ond data set, (flag email 'important) runs 100 times and
(flag email 'spam) run 10 times. Figure 3 shows the resulting
profile weights and how to merge the profile weights of these two
data sets.

3.3 API

This section presents an example of an API that implements our de-
sign. We assume an object, (current-profile-information),
exists in the meta-programming system. Figure 4 documents the
methods of this object. The API assumes that the underlying pro-
filer has some way to profile expressions that are associated with
profile points. The API is concerned only with interfacing meta-
programs and the profiler. The type SyntaxObject stands for the
type of source expressions on which meta-programs operate.

4. Implementations

To validate the design principles from Section 3, we provide two
implementations. This section describes implementations in Chez
Scheme and Racket and discusses some implementation concerns.
While both languages belong to the Lisp family, they differ in their
meta-programming and profiling facilities.

4.1 Chez Scheme Implementation

Chez Scheme implements precise counter-based profiling, using
standard and efficient block-level profiling techniques [2, 4]. The
Chez Scheme profiler effectively profiles every source expression
and provides profiles in terms of source-code locations.

In Chez Scheme, we implement profile points using source
objects [12] which can be attached to syntax objects. Chez Scheme
uses source objects to report errors at their precise source location.
Chez Scheme source objects contain a filename and starting and
ending character positions. The Chez Scheme reader automatically
creates and attaches source objects to each syntax object it reads
from a file.

Chez Scheme provides an API to programmatically manipu-
late source objects and attach them to syntax objects [11, Chap-
ter 11]. We use this API to implement make-profile-point

and annotate-expr. The former deterministically generates fresh
source objects by adding a suffix to the filename of a base source
object. This scheme has the added benefit of preserving source lo-
cations for error messages when errors occur in the output of a
profile-guided meta-programs.

type ProfilePoint

type ProfileWeight

type ProfileInformation

(make-profile-point) Ñ ProfilePoint

Generates a profile point deterministically so meta-programs can
access the profile information of the generated profile point across

multiple runs.

(annotate-expr e pp) Ñ SyntaxObject

e : SyntaxObject

pp : ProfilePoint

Associates the expression e with the profile point pp. The profile
point pp replaces any other profile point with which e is

associated. The underlying profiling system increments the
counter for pp any time e is executed.

(profile-query e) Ñ ProfileWeight

e : SyntaxObject

Retrieves the profile weight associated with the profile point for
the expression e.

(store-profile f) Ñ Null

f : Filename

Stores the current profile information from the underlying profile
system in the file with the filename f .

(load-profile f) Ñ ProfileInformation

f : Filename

Loads the profile information stored in the file with the filename f .

Figure 4: API Sketch

We modify the meta-programming system to maintain an as-
sociative map of source objects to profile weights, which imple-
ments (current-profile-information). We implement the
function profile-query by simply querying this map. The func-
tion load-profile updates this map from a file. To write this map
to a file, the function store-profile first retrieves the profile in-
formation from the profiler and computes the profile weights for
each source object.

4.2 Racket Implementation

Racket includes an errortrace profiling library. The error-

trace library provides counter-based profiling and returns profiles
in terms of source code locations, similar to the Chez Scheme pro-
filer. Note that in contrast to the Chez Scheme profiler, the error-

trace library profiles only function calls.
In Racket, we implement profile points in essentially the same

way as in Chez Scheme—by using source information attached to
each syntax object. The Racket reader automatically attaches the
filename, line number, etc to every syntax object it reads from a file.

Racket provides an API for attaching source information when
building a new syntax object. A separate library exists that pro-
vides a more extensive API for manipulating source informa-
tion. We use this library to implement make-profile-point and
annotate-expr in essentially the same way as in Chez Scheme.
There is one key difference because the errortrace library pro-
files only functions calls. When annotating an expression e with
profile point p, we generate a new function f whose body is e. The
result of annotate-expr is a call to the generated function f. This
call to f is annotated with the profile point p. While this results in
different performance characteristics while profiling, it does not
change the counters used to calculate profile weights.

3 2017/1/3

We implement a library that maintains the associative map from
source locations to profile weights. The library provides our API as
simple Racket functions that can be called by meta-programs. We
are able to implement the entire API as a user-level library due to
Racket’s advanced meta-programming facilities and the extensive
API provided by the errortrace profiler.

4.3 Source and Block-level PGO

One goal of our approach is to avoid interfering with traditional,
e.g., basic-block-level PGO, which Chez Scheme also supports.
However, since meta-programs may generate different source code
after optimization, the low-level representation would have to
change when meta-programs perform optimizations. The differ-
ent low-level code would invalidate the low-level profile infor-
mation. To solve this problem, the source code is compiled three
times in a specific order, instead of the usual two times. Doing
so ensures that profile information remains consistent at both the
source-level and the block-level. First, we compile while instru-
menting the code to profile source expressions. After running the
instrumented program on representative inputs, we get the profile
weights as in Figure 3. Second, we recompile, using those profile
weights to perform profile-guided meta-program optimizations,
while instrumenting the code to profile basic blocks. After running
this instrumented program, we get the profile weights for the ba-
sic blocks generated from the optimized source program. These
block-level profile weights will not be invalidated as long as we
continue to optimize using the source-level profile weights. That is,
the high-level code generated by the meta-program optimizations,
e.g., Figure 2, will remain stable as long as we continue to optimize
using the source profile weights. Because the generated high-level
code remains stable, the generated low-level code also remains
stable. Third (the final compilation), we recompile using both the
profile weights for the source expressions and for the basic blocks
to do both profile-guided meta-programming and low-level PGOs.

4.4 Compile-Time and Profiling Overhead

As with any technique for performing profile-guided optimizations,
our approach introduces compile-time overhead for optimizations
and run-time overhead when profiling.

The compile-time overhead of our API is small. In our im-
plementations, loading profile information is linear in the num-
ber of profile points, and querying the weight of a particular
profile point is amortized constant-time. Since they run at com-
pile time, a profile-guided meta-program might slow down or
speed up compilation, depending on the complexity of the meta-
program and whether it produces more or less code as a result of
the optimization.

The API does not directly introduce run-time overhead; how-
ever, a meta-programming system using our technique inherits
overhead from the profiler used in the implementation. Previous
work measured about 9% run-time overhead introduced by the
Chez Scheme profiler [4]. According to the errortrace docu-
mentation, the profiler introduces a factor of 4 to 12 slowdown.
This does not include the additional instrumentation our imple-
mentation of annotate-expr performs, i.e., wrapping each anno-
tated expression in a function call. Typically, profiling is disabled
for production runs of a program, so this overhead affects only
profiled runs.

5. Beyond Scheme and Racket

Our design should work in most meta-programming systems. Lan-
guages such as Template Haskell [32], MetaOCaml [24], and
Scala [29] feature powerful meta-programming facilities. They al-
low executing expressive programs at compile-time, support direct

access to input expressions, and provide templating systems for
manipulating expressions. In this section, we briefly sketch im-
plementation strategies for these meta-programming systems to
validate the generality of our design.

5.1 Template Haskell

Template Haskell [32] adds general-purpose meta-programming to
Haskell, and comes with the current version of the Glasgow Haskell
Compiler (GHC).

GHC’s profiler attributes costs to cost-centers. By default, each
function defines a cost-center, but users can define new cost-centers
by adding an annotation to the source code:
{#- SCC "cost-centre-name" #-}

Cost-centers map easily to profile points.
Implementing our API using Template Haskell would be sim-

ple. Template Haskell, as of GHC 7.7, supports generating and
querying annotations. Since cost-centers are defined via annota-
tions, implementing make-profile-point, annotate-expr,
and profile-query would be straightforward. Implementing
load-profile is a simple matter of parsing profile files. The GHC
profiler is called via a system call, and not inside the language as in
Chez Scheme and Racket. Therefore, it would be useful to imple-
ment store-profile, which stores profile information to a file.
Instead, profile information is stored to a file by the GHC profiler.

5.2 MetaOCaml

MetaOCaml [24] provides general-purpose meta-programming
based on multi-stage programming for OCaml.

OCaml features a counter-based profiler that associates counts
with the locations of certain source expressions. To implement
make-profile-point and annotate-expr, MetaOCaml would
require the ability to manipulate source locations and attach them
to source expressions. Then implementing profile-query should
be straightforward. Like in Haskell, implementing load-profile

simply requires parsing profile files, and profile information is
stored to a file outside of the language.

5.3 Scala

Scala features powerful general-purpose meta-programming [5],
multi-stage programming [31], and various reflection libraries.

Existing profilers for Scala work at the level of the JVM. How-
ever, it should be possible to map the profiling information at the
JVM level back to Scala source code. With such a mapping, a Scala
implementation of our API should be similar to the implementation
sketches for Haskell and MetaOCaml.

6. Case Studies

To evaluate the expressive power and usability of our design, we
carry out three case studies. In the first study, we demonstrate
an implementation of case expressions, which are analogous to
C’s switch statements, that performs a well-known PGO. In the
second study, we equip an embedded object system with profile-
guided receiver class prediction [17, 21]. In the the third and final
study, we present libraries that recommend and automate high-level
changes to data structures, similar to the recommendations given by
tools like Perflint [27].

6.1 Profile-Guided Conditional Branch Optimization

In C#, switch statements must be mutually exclusive and do
not allow fall through—each case must end in a jump such as
break. The .NET compiler features a profile-guided optimization
of switch statements that uses profile information to reorder the
branches according to which branch is most likely to succeed.

4 2017/1/3

(define (parse stream)

(case (peek-char stream)

[(#\space #\tab) (white-space stream)]

[(0 1 2 3 4 5 6 7 8 9) (digit stream)]

[(#\() (start-paren stream)]

[(#\)) (end-paren stream)]

....))

Figure 5: An example using case

In this section, we describe a similar optimization for Scheme
and Racket case expressions. The implementation is straightfor-
ward and just 81 lines long. More importantly, it is not baked into
the compiler and can be adapted to other forms of conditional ex-
pressions without changes to the underlying compiler.

The case expression takes an expression key-expr and an
arbitrary number of clauses, followed by an optional else clause.
Each clause consists of a list of constants on the left-hand side
and a body expression on the right-hand side. A case expression
executes the body of the first clause in which key-expr is equal?

to some element of the left-hand side. For simplicity, we present a
version of case that does not support an else clause and assumes
no constant appears in the left-hand side of more than one clause3.
Figure 5 shows an example case expression. Since ... is a literal
expression used by syntax-case and syntax templates to indicate
a sequence of elements, we use to indicate elided code.

Figure 6 shows the profile-guided implementation of case

that reorders branches according to which clause is most likely
to succeed. It creates an invocation of another meta-program,
exclusive-cond, which reorders its branches based on profile
information. The implementation rewrites each case clause into an
exclusive-cond clause. The form #,@ splices the list of rewrit-
ten clauses into the template for the exclusive-cond expression.
An exclusive-cond clause consists of a boolean expression on
the left-hand side and a body expression on the right-hand side.
Each case clause is transformed by converting the left-hand side
into an explicit membership test for key-expr, while leaving the
body unchanged. The implementation of case in Racket is 50 lines
long, not including the implementation of exclusive-cond.

Figure 7 shows the implementation of the exclusive-cond

expression. This is a multi-way conditional branch similar to Lisp’s
cond, except that all branches must be mutually exclusive. Because
the branches are mutually exclusive, exclusive-cond can safely
reorder them. The implementation of exclusive-cond simply
sorts each clause by profile weight and generates a regular cond.
Since each exclusive-cond clause is also a cond clause, the
clauses do not need to be transformed. Figure 8 shows the code gen-
erated after expanding case and then after expanding exclusive-

cond in the example case expression in Figure 5. The full imple-
mentation of exclusive-cond in Racket, which also handles ad-
ditional cond syntaxes and an optional else clause that is never
reordered, is 31 lines long.

Separating the implementation of exclusive-cond and case

in this way simplifies the implementation of case. The exclusive-

cond expression also demonstrates an important feature of profile-
guided meta-programming—meta-programming allows the pro-
grammer to encode their domain-specific knowledge, e.g., that
the branches of this conditional are mutually exclusive, in or-
der to take advantage of optimizations that would have otherwise
been impossible.

3 The implementation available online handles the full generality of
Scheme’s case

(define-syntax (case syn)

; Internal definition

(define (rewrite-clause key-expr clause)

(syntax-case clause ()

[((k ...) body)

; Take this branch if the key expression

; is a equal? to some element of the list

; of constants

#`((key-in? #,key-expr '(k ...)) body)]))

; Start of code transformation.

(syntax-case syn ()

[(_ key-expr clause ...)

; Evaluate the key-expr only once, instead of

; copying the entire expression in the

; template.

#`(let ([t key-expr])

(exclusive-cond

; transform each case clauses

; into an exclusive-cond clause

#,@(map (curry rewrite-clause #'key-expr)

#'(clause ...))))]))

Figure 6: Implementation of case

(define-syntax (exclusive-cond syn)

; Internal definitions
(define (clause-weight clause)

(syntax-case clause ()

[(test e1 e2 ...) (profile-query #'e1)]))

(define (sort-clauses clause*)
; Sort clauses greatest-to-least by weight

(sort clause* > #:key clause-weight))

; Start of code transformation

(syntax-case x ()

[(_ clause ...)

; Splice sorted clauses into a cond

; expression

#`(cond #,@(sort-clause #'(clause ...)))]))

Figure 7: Implementation of exclusive-cond

(define (parse stream)

(let ([t (peek-char stream)])

(exclusive-cond

[(key-in? t '(#\space #\tab))

(white-space stream)]

[(key-in? t '(0 1 2 3 4 5 6 7 8 9))

(digit stream)]

[(key-in? t '(#\()) (start-paren stream)]

[(key-in? t '(#\))) (end-paren stream)]

....)))

(define (parse stream)

(let ([t (peek-char stream)])

(cond
[(key-in? t '(#\space #\tab))

(white-space stream)] ; Run 55 times

[(key-in? t '(#\())

(start-paren stream)] ; Run 23 times

[(key-in? t '(#\)))

(end-paren stream)] ; Run 23 times

[(key-in? t '(0 1 2 3 4 5 6 7 8 9))

(digit stream)] ; Run 10 times

....)))

Figure 8: Generated code from Figure 5

5 2017/1/3

6.2 Profile-Guided Receiver Class Prediction

Profile-guided receiver class prediction [17, 21] is a well-known
PGO for object-oriented languages. However, when an object-
oriented language is implemented via meta-programming as a
domain-specific language (DSL), the host language may not be
able to implement this PGO. In this second case study, we imple-
ment a simplified object system as a syntax extension. Using our
design, we easily equip this object system with profile-guided re-
ceiver class predication. This demonstrates that our design is both
expressive enough to implement well-known PGOs and power-
ful enough to provide DSLs with PGOs not available in the host
language. The full implementation of profile-guided receiver class
prediction is 44 lines long, while the implementation of the entire
object system (including the PGO) is 129 lines long.

Figure 9 shows the implementation of profile-guided receiver
class prediction. A method call such as (method s area) is
actually a meta-program that generates code as follows. First, it
generates a new profile point for each class in the system. When
profile information is not available, the method call generates a
cond expression with a clause for each class in the system4. Each
clause tests if s is an instance of a specific class, ignores the result,
and uses normal dynamic dispatch to call the area method of s.
However, a different profile point is associated with each branch.
That is, each method call site is instrumented by generating a multi-
way branch to the standard dynamic dispatch routine, but with a
separate profile point in each branch. When profile information is
available, the method call generates a cond expression with clauses
for the most frequently used classes at this method call site. Each
clause again tests if s is an instance of a specific class, but the body
of the clause is generated by inlining the method for that class—that
is, it performs polymorphic inline caching for the most frequently
used classes based on profile information. The full implementation
of profile-guided receiver class prediction is 44 lines long. The rest
of the object system implementation is an additional 87 lines long.

Figure 10 shows an example code snippet using this object sys-
tem. Figure 11 demonstrates the resulting code after instrumenta-
tion, and the resulting code after optimization. Note that each oc-
currence of (instrumented-dispatch x area) has a different
profile point, so each occurrence is profiled separately.

As a further improvement, we could reuse exclusive-cond to
test for classes in the the most likely order.

6.3 Data Structure Specialization

In this final case study, we show that our approach is expressive
enough to implement and improve upon state-of-the-art profile-
guided tools such as Perflint [27], which provides high-level rec-
ommendations for changes in data structures and algorithms that
may result in asymptotic improvements. We describe implementa-
tions of list and vector libraries that warn the programmer when a
different representation may lead to asymptotic performance gains.
The new libraries wrap the standard list and vector functions. These
wrappers use generated profile point to separately profile each
instance of the data structures. Finally, we develop a sequence
datatype that will automatically specialize to a list or vector based
on profiling information. As this is done via a library, program-
mers can easily opt-in to such automated high-level changes with-
out many changes to their code. The full implementation of the list
library is 80 lines long, the vector library is 88 lines long, and the
sequence library is 111 lines long.

4 A production implementation would create a table of instrumented dy-
namic dispatch calls and dynamically dispatch through this table, instead of
instrumenting code with cond. However, using cond simplifies visualiz-
ing the instrumentation.

Figure 13 shows the implementation of the profiled list con-
structor. This constructor has the same interface as the standard
Scheme list constructor—it takes an arbitrary number of elements
and returns a representation of a linked list. The representation of a
profiled-list is a pair of the underlying linked list and a hash
table of profiled operations. That is, each instance of a profiled-

list contains a table of instrumented calls to the underlying list
operations. The profiled list constructor generates these instru-
mented operations by wrapping the underlying list operations with
the appropriate profile point. The constructor generates two profile
points for each profiled list. One is used to profile operations that
are asymptotically fast on lists and the other is used to profile op-
erations that are asymptotically fast on vectors. Finally, the library
exports new versions of the list operations that work on the pro-
filed list representation. For instance, it exports car, which takes a
profiled-list, and uses the instrumented call to car from the
hash table of the profiled list on the underlying linked list. When
profiling information already exists, for instance, after a profiled
run, this list constructor emits a warning (at compile time) if fast
vector operations were more common than fast list operations. We
provide an analogous implementation of vectors. This approach
would scale to the other data structures analyzed by Perflint.

Our approach enables us to go beyond just providing recom-
mendations. Because our meta-programs are integrated into the
language, rather than separate tools outside the language, we can
easily provide libraries that automatically follow these recommen-
dations rather than asking programmers to change their code. To
demonstrate this point, we implement a profiled sequence datatype
that will automatically specialize each instance to a list or vector,
at compile-time, based on profile information.

Figure 14 shows the implementation of the profiled sequence
constructor. The code follows the same pattern as the profiled list.
The key difference is we conditionally generate wrapped versions
of the list or vector operations, and represent the underlying data
using a list or vector, depending on the profile information.

7. Related Work

In Section 1, we briefly discussed some related work in the
areas of profile-guided optimization and profile-guided meta-
programming. In this section, we relate in more detail to work
on PGO and meta-programming.

7.1 Profile-Guided Optimizations

Compiler systems such as GCC, .NET, and LLVM [26] use profile
information to guide decisions about code positioning, register
allocation, inlining, and conditional branch ordering.

GCC profiles at the level of an internal control-flow graph
(CFG). To maintain consistent CFGs across instrumented and
optimized builds, GCC requires similar optimization decisions
across builds [6]. This requirement is similar to how we ensure
consistency when using both source and block-level PGOs in
Chez Scheme.

In addition to the common optimizations noted previously, the
.NET profiler features special support for switch statements called
value probes. The .NET compilers use value probes to optimize
switch statement, similar to our optimization of case expressions
in Section 6.1. Our design can express this optimization at the user-
level via the same profiler machinery used in our other case studies.

LLVM takes a different approach to PGO. LLVM uses a run-
time reoptimizer that monitors the running program. The run-time
system can profile the program “in the field”. This run-time sys-
tem can perform simple optimizations on the machine code during
program execution. More complex optimization require running an
offline optimizer on the LLVM bytecode [25]. Burger and Dyb-
vig [4] develop a similar run-time recompilation mechanism that

6 2017/1/3

(define-syntax (method syn)

(syntax-case syn ()

[(_ obj m val* ...)

....

; Don't copy the object expression throughout the template.
#`(let* ([x obj])

(cond

#,@(if no-profile-data?

; If no profile data, instrument!

(for/list ([d instr-dispatch-calls] [class all-classes])

#`((instance-of? x #,class) (#,d x m val* ...)))

; If profile data, inline up to the top inline-limit classes

; with non-zero weights
(for/list ([class (take sorted-classes inline-limit)])

#`((instance-of? x #,class)

#,(inline-method class #'x #'m #'(val* ...)))))

; Fall back to dynamic dispatch

[else (dynamic-dispatch x m val* ...)]))]))

Figure 9: Implementation of profile-guided receiver class prediction

(class Square

((length 0))

(define-method (area this)

(sqr (field this length))))

(class Circle

((radius 0))

(define-method (area this)

(* pi (sqr (field this radius)))))

(class Triangle

((base 0) (height 0))

(define-method (area this)

(* 1/2 base height)))

....

(for/list ([s (list cir1 cir2 cir3 sqr1)])

(method s area))

Figure 10: Example of profile-guided receiver class prediction

; –-–-–-–-–-–-–-–-–-

; Generated code after instrumentation
....

(for/list ([s (list cir1 cir2 cir3 sqr1)])

(let* ([x s])

(cond

[(instance-of? x 'Square) ; Run 1 time
(instrumented-dispatch x area)]

[(instance-of? x 'Circle) ; Run 3 times

(instrumented-dispatch x area)]

[(instance-of? x 'Triangle) ; Run 0 times

(instrumented-dispatch x area)]

[else (dynamic-dispatch x area)])))

; –-–-–-–-–-–-–-–-–-

; Generated code after optimization

....

(for/list ([s (list cir1 cir2 cir3 sqr1)])

(let* ([x s])

(cond
[(instance-of? x 'Square) ; Run 1 time

(sqr (field x length))]

[(instance-of? x 'Circle) ; Run 3 times

(* pi (sqr (field x radius)))]

[else (dynamic-dispatch x area)])))

Figure 11: Generated code from Figure 10

; –-–-–-–-–-–-–-–-–-

; After optimization
....

(for/list ([s (list cir1 cir2 cir3 sqr1)])

(let* ([x s])

(exclusive-cond

[(instance-of? x 'Square) ; Run 1 time

(sqr (field x length))]

[(instance-of? x 'Circle) ; Run 3 times

(* pi (sqr (field x radius)))]

[else (dynamic-dispatch x area)])))

; –-–-–-–-–-–-–-–-–-

; After more optimization
....

(for/list ([s (list cir1 cir2 cir3 sqr1)])

(let* ([x s])

(cond

[(instance-of? x 'Circle) ; Run 3 times

(* pi (sqr (field x radius)))]

[(instance-of? x 'Square) ; Run 1 time

(sqr (field x length))]

[else (dynamic-dispatch x area)])))

Figure 12: Profile-guided receiver class prediction, sorted.

allows simple optimizations to be performed at run time (during
garbage collection) but does not support source-level PGO.

Recent work is still discovering novel applications for profile
information. Furr et al. [16] use profile information to infer types in
dynamic languages to assist in debugging. Chen et al. [8] apply use
PGO to optimize garbage collection. Luk et al. [28] perform data
prefetching guided by profile information. Debray and Evans [10]
compress infrequently executed code based on profile information.

7.2 Meta-Program Optimizations

Meta-programming combines the ability to provide high-levels of
abstraction while producing efficient code. For instance, meta-
programming has been widely used to implement high perfor-
mance domain-specific languages [31, 33, 34]. Others use meta-
programming to implement whole general-purpose languages [3,
30, 36]. Keep and Dybvig [23] develop a production-quality com-
piler generator via Scheme meta-programming. Tobin-Hochstadt et
al. [37] implement the optimizer for the Typed Racket language as

7 2017/1/3

(struct list-rep (instr-op-table ls))

....

(define-syntax (profiled-list syn)

; Create fresh profile points.

; Use list-src to profile operations that are asymptotically fast on lists

; Use vector-src profile operations that are asymptotically fast on vectors
(define list-src (make-profile-point))

(define vector-src (make-profile-point))

....

(syntax-case syn ()

[(_ init-vals ...)

(unless (>= (profile-query list-src) (profile-query vector-src))

; Prints at compile time.

(printf "WARNING: You should probably reimplement this list as a vector: „a\n" syn))

#`(make-list-rep

; Build a hash table of instrumented calls to list operations

; The table maps the operation name to a profiled call to the

; built-in operation.

(let ([ht (make-eq-hashtable)])

(hashtable-set! ht 'car #,(instrument-call car list-src))

...

ht)

(list init* ...))]))

Figure 13: Implementation of profiled list

(struct seq-rep (instr-op-table s))
....

(define-syntax (seq syn)

(define list-src (make-profile-point))

(define vector-src (make-profile-point))

(define previous-list-usage (profile-query list-src))

(define previous-vector-usage (profile-query vector-src))

(define list>=vector (>= previous-list-usage previous-vector-usage))

....

(syntax-case syn ()

[(_ init* ...)

#`(let ()

(make-seq-rep

(let ([ht (make-eq-hashtable)])

#`(hashtable-set! ht 'car #,(pick-op list>=vector 'car))

...

ht)

(#,(if list>=vector #'list #'vector) init* ...)))]))

Figure 14: Implementation of profiled sequence

a meta-program. Farmer et al. [14] develop the HERMIT toolkit,
which provides an API for performing program transformations
on Haskell intermediate code before compiling and even allows
interactive experimentation. Hawkins et al. [19, 20] implement a
compiler for a language that generates C++ implementations of
data structures based on high-level specifications.

Previous work also integrates profiling to guide meta-program
optimizations. Chen et al. [7] perform process placement for
SMP clusters via profile-guided meta-programming. Šimunić et
al. [38] optimize source code using energy profiles, although
the bulk of the optimization requires programmer intervention.
Karuri et al. [22] optimize ASIP designs with fine-grained source
profile information.

In contrast, our own work introduces a single general-purpose
approach in which we can implement new general-purpose lan-
guages, domain-specific languages, efficient abstract libraries, and
arbitrary meta-programs, all of which can take advantage of profile-
guided optimizations. Further, our approach reuses existing meta-

programming and profiling facilities rather than implementing new
tools that interface with the compiler in ad-hoc ways.

8. Conclusion

Meta-programming is used to implement high-level optimizations,
generate code from high-level specifications, and create domain-
specific languages. Each of these can take advantage of PGO to
optimize before information is lost or constraints are imposed. Un-
til now, such optimizations have been implemented via tools de-
signed for a specific meta-program or a specific optimization. We
described how to build a general mechanism for implementing arbi-
trary profile-guided meta-programs. We also demonstrated the ex-
pressivity of this design by using it to implement several represen-
tative profile-guided meta-programs.

8 2017/1/3

Acknowledgments

We thank our anonynous reviewers for their thoughtful questions
and feedback. The first author is grateful to Matthias Felleisen,
Benjamin Greenman, and Max New, who provided valuable feed-
back on the presentation of this work.

References
[1] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter

F. Sweeney. A Comparative Study of Static and Profile-
based Heuristics for Inlining. In Proc. of the ACM SIG-
PLAN Workshop on Dynamic and Adaptive Compilation and
Optimization (DYNAMO), 2000. http://doi.acm.org/

10.1145/351397.351416

[2] Thomas Ball and James R. Larus. Optimally Profiling and
Tracing Programs. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 16(4), pp. 1319–1360, 1994.
http://doi.acm.org/10.1145/183432.183527

[3] Eli Barzilay and John Clements. Laziness Without All the
Hard Work: Combining Lazy and Strict Languages for Teach-
ing. In Proc. of the Workshop on Functional and Declarative
Programming in Education (FDPE), 2005. http://doi.

acm.org/10.1145/1085114.1085118

[4] Robert G. Burger and R. Kent Dybvig. An infrastructure
for profile-driven dynamic recompilation. In Proc. of the
International Conference on Computer Languages (ICCL),
1998. http://dx.doi.org/10.1109/ICCL.1998.

674174

[5] Eugene Burmako. Scala Macros: Let Our Powers Combine!:
On How Rich Syntax and Static Types Work with Metapro-
gramming. In Proc. of the Workshop on Scala (SCALA),
2013. http://doi.acm.org/10.1145/2489837.

2489840

[6] Deheo Chen, Neil Vachharajani, Robert Hundt, Shih-wei
Liao, Vinodha Ramasamy, Paul Yuan, Wenguang Chen
, and Weimin Zheng. Taming Hardware Event Samples
for FDO Compilation. In Proc. of the IEEE/ACM Inter-
national Symposium on Code Generation and Optimiza-
tion (CGO), 2010. http://doi.acm.org/10.1145/

1772954.1772963

[7] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and
H. Kuhn. MPIPP: An Automatic Profile-guided Parallel Pro-
cess Placement Toolset for SMP Clusters and Multiclus-
ters. In Proc. of the International Conference on Supercom-
puting (ICS), 2006. http://doi.acm.org/10.1145/

1183401.1183451

[8] Wen-ke Chen, Sanjay Bhansali, Trishul Chilimbi, Xiaofeng
Gao, and Weihaw Chuang. Profile-guided Proactive Garbage
Collection for Locality Optimization. In Proc. of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2006. http://doi.acm.

org/10.1145/1133981.1134021

[9] B. Dawes and D. Abrahams. Boost C++ Libraries. 2009.
http://www.boost.org

[10] Saumya Debray and William Evans. Profile-guided Code
Compression. In Proc. of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), 2002. http://doi.acm.org/10.1145/

512529.512542

[11] R. Kent Dybvig. Chez Scheme Version 8 User’s Guide. 8.4
edition. Cadence Research Systems, 2011. http://www.

scheme.com/csug8

[12] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syn-
tactic Abstraction in Scheme. LISP and Symbolic Computa-
tion 5(4), pp. 295–326, 1993. http://dx.doi.org/10.

1007/BF01806308

[13] Sebastian Erdweg, Tillmann Rendel, Christian Kästner , and
Klaus Ostermann. SugarJ: Library-based Syntactic Language
Extensibility. In Proc. of the ACM International Conference
on Object Oriented Programming Systems Languages and
Applications (OOPSLA), 2011. http://doi.acm.org/

10.1145/2048066.2048099

[14] Andrew Farmer, Andy Gill, Ed Komp, and Neil Sculthorpe.
The HERMIT in the Machine: A Plugin for the In-
teractive Transformation of GHC Core Language Pro-
grams. In Proc. of the ACM SIGPLAN Haskell Sym-
posium (Haskell), 2012. http://doi.acm.org/10.

1145/2364506.2364508

[15] Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-
TR-2010-1, 2010. http://racket-lang.org/tr1/

[16] Michael Furr, Jong-hoon (David) An, and Jeffrey S. Fos-
ter. Profile-guided Static Typing for Dynamic Scripting Lan-
guages. In Proc. of the ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems Languages and Appli-
cations (OOPSLA), 2009. http://doi.acm.org/10.

1145/1640089.1640110

[17] David Grove, Jeffrey Dean, Charles Garrett, and Craig
Chambers. Profile-guided receiver class prediction. In
Proc. of the ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications
(OOPSLA), 1995. http://doi.acm.org/10.1145/

217838.217848

[18] Rajiv Gupta, Eduard Mehofer, and Youtao Zhang. Profile
Guided Code Optimization. 2002.

[19] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard,
and Mooly Sagiv. Data Representation Synthesis. In Proc. of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2011. http://doi.

acm.org/10.1145/1993498.1993504

[20] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard,
and Mooly Sagiv. Concurrent Data Representation Synthesis.
In Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2012. http:

//doi.acm.org/10.1145/2254064.2254114

[21] Urs Hölzle and David Ungar. Optimizing Dynamically-
dispatched Calls with Run-time Type Feedback. In Proc. of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1994. http://doi.

acm.org/10.1145/178243.178478

[22] Kingshuk Karuri, Mohammad Abdullah Al Faruque, Ste-
fan Kraemer, Rainer Leupers, Gerd Ascheid, and Heinrich
Meyr. Fine-grained application source code profiling for
ASIP design. In Proc. of the Design Automation Confer-
ence (DAC), 2005. http://doi.acm.org/10.1145/

1065579.1065666

[23] Andrew W. Keep and R. Kent Dybvig. A Nanopass Frame-
work for Commercial Compiler Development. In Proc. of the
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), 2013. http://doi.acm.org/10.

1145/2500365.2500618

[24] Oleg Kiselyov. The Design and Implementation of
BER MetaOCaml. Functional and Logic Programming
8475, pp. 86–102, 2014. http://dx.doi.org/10.

1007/978-3-319-07151-0_6

9 2017/1/3

http://doi.acm.org/10.1145/351397.351416
http://doi.acm.org/10.1145/351397.351416
http://doi.acm.org/10.1145/183432.183527
http://doi.acm.org/10.1145/1085114.1085118
http://doi.acm.org/10.1145/1085114.1085118
http://dx.doi.org/10.1109/ICCL.1998.674174
http://dx.doi.org/10.1109/ICCL.1998.674174
http://doi.acm.org/10.1145/2489837.2489840
http://doi.acm.org/10.1145/2489837.2489840
http://doi.acm.org/10.1145/1772954.1772963
http://doi.acm.org/10.1145/1772954.1772963
http://doi.acm.org/10.1145/1183401.1183451
http://doi.acm.org/10.1145/1183401.1183451
http://doi.acm.org/10.1145/1133981.1134021
http://doi.acm.org/10.1145/1133981.1134021
http://www.boost.org
http://doi.acm.org/10.1145/512529.512542
http://doi.acm.org/10.1145/512529.512542
http://www.scheme.com/csug8
http://www.scheme.com/csug8
http://dx.doi.org/10.1007/BF01806308
http://dx.doi.org/10.1007/BF01806308
http://doi.acm.org/10.1145/2048066.2048099
http://doi.acm.org/10.1145/2048066.2048099
http://doi.acm.org/10.1145/2364506.2364508
http://doi.acm.org/10.1145/2364506.2364508
http://racket-lang.org/tr1/
http://doi.acm.org/10.1145/1640089.1640110
http://doi.acm.org/10.1145/1640089.1640110
http://doi.acm.org/10.1145/217838.217848
http://doi.acm.org/10.1145/217838.217848
http://doi.acm.org/10.1145/1993498.1993504
http://doi.acm.org/10.1145/1993498.1993504
http://doi.acm.org/10.1145/2254064.2254114
http://doi.acm.org/10.1145/2254064.2254114
http://doi.acm.org/10.1145/178243.178478
http://doi.acm.org/10.1145/178243.178478
http://doi.acm.org/10.1145/1065579.1065666
http://doi.acm.org/10.1145/1065579.1065666
http://doi.acm.org/10.1145/2500365.2500618
http://doi.acm.org/10.1145/2500365.2500618
http://dx.doi.org/10.1007/978-3-319-07151-0_6
http://dx.doi.org/10.1007/978-3-319-07151-0_6

[25] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transforma-
tion. In Proc. of the IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), 2004. http:

//dx.doi.org/10.1109/CGO.2004.1281665

[26] Chris Arthur Lattner. LLVM: An Infrastructure for Multi-
Stage Optimization. Master dissertation, University of Illi-
nois, 2002.

[27] Lixia Liu and Silvius Rus. Perflint: A Context Sensitive
Performance Advisor for C++ Programs. In Proc. of the
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 2009. http://dx.doi.org/

10.1109/CGO.2009.36

[28] Chi-Keung Luk, Robert Muth, Harish Patil, Richard Weiss, P.
Geoffrey Lowney, and Robert Cohn. Profile-guided Post-link
Stride Prefetching. In Proc. of the International Conference
on Supercomputing (ICS), 2002. http://doi.acm.org/

10.1145/514191.514217

[29] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak
Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay Mi-
haylov, Michel Schinz, Erik Stenman, and Matthias Zenger.
An Overview of the Scala Programming Language. EPFL
Lausanne, IC/2004/64, 2004. http://infoscience.

epfl.ch/record/52656?ln=en

[30] Jon Rafkind and Matthew Flatt. Honu: Syntactic Extension
for Algebraic Notation Through Enforestation. In Proc. of
the International Conference on Generative Programming
and Component Engineering (GPCE), 2012. http://doi.

acm.org/10.1145/2371401.2371420

[31] Tiark Rompf and Martin Odersky. Lightweight Modular Stag-
ing: A Pragmatic Approach to Runtime Code Generation
and Compiled DSLs. In Proc. of the International Confer-
ence on Generative Programming and Component Engineer-
ing (GPCE), 2010. http://doi.acm.org/10.1145/

1868294.1868314

[32] Tim Sheard and Simon Peyton Jones. Template Meta-
programming for Haskell. In Proc. of the ACM SIGPLAN
Workshop on Haskell (Haskell), 2002. http://doi.acm.

org/10.1145/581690.581691

[33] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark
Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
Delite: A Compiler Architecture for Performance-Oriented
Embedded Domain-Specific Languages. ACM Transactions
on Embedded Computing Systems (TECS) 13(4s), 2014.
http://doi.acm.org/10.1145/2584665

[34] Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, Hy-
oukJoong Lee, Tiark Rompf, Martin Odersky, and Kunle
Olukotun. Forge: Generating a High Performance DSL Im-
plementation from a Declarative Specification. In Proc. of the
International Conference on Generative Programming: Con-
cepts & Experiences (GPCE), 2013. http://doi.acm.

org/10.1145/2517208.2517220

[35] Walid Taha and Tim Sheard. MetaML and multi-stage pro-
gramming with explicit annotations. Theoretical Computer
Science 248(1–2), pp. 211–242, 2000. http://dx.doi.

org/10.1016/S0304-3975(00)00053-0

[36] Sam Tobin-Hochstadt and Matthias Felleisen. The Design
and Implementation of Typed Scheme. In Proc. of the ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), 2008. http://doi.acm.org/

10.1145/1328438.1328486

[37] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpep-
per , Matthew Flatt, and Matthias Felleisen. Languages
As Libraries. In Proc. of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), 2011. http://doi.acm.org/10.1145/

1993498.1993514

[38] Tajana Šimunić, Luca Benini, Giovanni De Micheli, and Mat
Hans. Source Code Optimization and Profiling of Energy
Consumption in Embedded Systems. In Proc. of the Interna-
tional Symposium on System Synthesis (ISSS), 2000. http:

//dx.doi.org/10.1109/ISSS.2000.874049

10 2017/1/3

http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2009.36
http://dx.doi.org/10.1109/CGO.2009.36
http://doi.acm.org/10.1145/514191.514217
http://doi.acm.org/10.1145/514191.514217
http://infoscience.epfl.ch/record/52656?ln=en
http://infoscience.epfl.ch/record/52656?ln=en
http://doi.acm.org/10.1145/2371401.2371420
http://doi.acm.org/10.1145/2371401.2371420
http://doi.acm.org/10.1145/1868294.1868314
http://doi.acm.org/10.1145/1868294.1868314
http://doi.acm.org/10.1145/581690.581691
http://doi.acm.org/10.1145/581690.581691
http://doi.acm.org/10.1145/2584665
http://doi.acm.org/10.1145/2517208.2517220
http://doi.acm.org/10.1145/2517208.2517220
http://dx.doi.org/10.1016/S0304-3975(00)00053-0
http://dx.doi.org/10.1016/S0304-3975(00)00053-0
http://doi.acm.org/10.1145/1328438.1328486
http://doi.acm.org/10.1145/1328438.1328486
http://doi.acm.org/10.1145/1993498.1993514
http://doi.acm.org/10.1145/1993498.1993514
http://dx.doi.org/10.1109/ISSS.2000.874049
http://dx.doi.org/10.1109/ISSS.2000.874049

	1 Introduction
	2 A Running Example
	3 Design
	3.1 Profile Points
	3.2 Profile Weights
	3.3 API

	4 Implementations
	4.1 Chez Scheme Implementation
	4.2 Racket Implementation
	4.3 Source and Block-level PGO
	4.4 Compile-Time and Profiling Overhead

	5 Beyond Scheme and Racket
	5.1 Template Haskell
	5.2 MetaOCaml
	5.3 Scala

	6 Case Studies
	6.1 Profile-Guided Conditional Branch Optimization
	6.2 Profile-Guided Receiver Class Prediction
	6.3 Data Structure Specialization

	7 Related Work
	7.1 Profile-Guided Optimizations
	7.2 Meta-Program Optimizations

	8 Conclusion
	Acknowledgments
	References

