
Note
These slides were mangled by a Keynote “upgrade” after the

talk was given.There may be display issues.

Profile-Guided

Meta-Programming
William J. Bowman, Swaha Miller,
Vincent St-Amour, R. Kent Dybvig

What is …

Meta-Programming

Extended syntax

Generate source
code

Embedded DSLs

What is …

Profile-Guided

(Optimization)

Collect profile at runtime

Use profile as oracle

Write optimizations

What is …

Profile-Guided Meta-Programming

Extended syntax

Generate source
code

Embedded DSLs

for

to

from

Collect profile at runtime

Use profile as oracle

Write optimizations

Profile-Guided Meta-Program
An example

define-syntax if-r(test t-branch f-branch):
 if profile(t-branch) < profile(f-branch):
 generate(#'(if not(test) f-branch t-branch))
 else:
 generate(#'(if test t-branch f-branch))

Problems
For Optimization Writers

Compiler

PGO1

P
a
rs

e
r

To
o
ls

P
ro

fi
le

r

To
o
ls

Compiler

P
a
rs

e
r

P
ro

fi
le

r

PGO2

PGO1

Problems
For Optimization Writers

Problems
For Optimization Users

Compiler

PGO1

P

PGO2

Q

!P PROFILE

Problems
For Optimization Users

CompilerPGO1

P

P Profile

PGO2Q

Q Profile

R

P

Q R A

Our Design…

• Saves PGO writers effort

• Saves PGO users effort

• Simple to implement

• Expresses standard

optimizations

• Enables new optimizations

Solutions
For everyone!

Compiler+

O
u
r

A
P

I
To

o
ls

Compiler

P
a
rs

e
r

P
ro

fi
le

r

P

Profiler

Tools

Parser

CompileR+

Tools

Parser

P

O
u
r

A
P

I

PGO

N PGO

2
PGO

1

Solutions
For everyone!

Profiler

CompileR+A

Parser

P

O
u
r

A
P

I

PGO

N PGO

2
PGO

1

Solutions
For everyone!

Tools

Profiler

Design highlights

• Profile Points

• Profile Weights

• API

Profile Points
What the profiler Cares about

• Abstraction of source expressions for profiler

• Profile Point <-> Source Expression

• Create new profile points

• Attach profile points to source expressions

Profile Points
An Example

• Profile Points via source locations

• Generate new points 

(deterministically)

Source
Loc.

Profile
Point

File a

Line 2 Char 3
1

File A

Line 4

Char 3

2

<GEN3> 3

Profile Weight
What the Meta-Program Cares about

• Abstraction of profile information for PGMPs

• Profile Point <-> Profile Weight

• Single value for relative importance

• Easy to combine multiple data sets

if-r (subject-contains? "PLDI"):
 flag(email spam)
else:
 flag(email important)

Profile Weights
An Example

Source
Loc.

DS1 DS2 Merged

File a
Line 2
Char 3

10/10

= 1

10/100

= .1

(1 + .1)/2

 = 0.55

File A
Line 4
Char 3

5/10

= .5

100/100

= 1

(.5 + 1)/2

 = 0.75

The API
A brief look at

Evaluation

• We implemented it.

• Profiler: unchanged

• Meta-programming:

unchanged

• Racket API: 134 lines

Evaluation

• We implemented it.

• Profiler: unchanged

• Meta-programming:

unchanged

• Racket API: 134 lines

Evaluation

• Conditional Branch

Optimization: 

81 lines

• Receiver Class Prediction:  

44* lines

• Data Structure Specialization:  

111 lines

Profile-Guided …

(define (parse stream)
 (case (peek-char stream)
 [(#\space #\tab) (white-space stream)]
 [(0 1 2 3 4 5 6 7 8 9) (digit stream)]
 [(#\() (start-paren stream)]
 [(#\)) (end-paren stream)]
 ))

Conditional Branch Reordering

Conditional Branch Reordering

(define (parse stream)
 (let ([t (peek-char stream)])
 (cond
 [(key-in? t '(#\space #\tab))
 (white-space stream)]
 [(key-in? t '(0 1 2 3 4 5 6 7 8 9))
 (digit stream)]
 [(key-in? t '(#\()) (start-paren stream)]
 [(key-in? t '(#\))) (end-paren stream)]
 )))

(define (parse stream)
 (let ([t (peek-char stream)])
 (exclusive-cond
 [(key-in? t '(#\space #\tab))
 (white-space stream)]
 [(key-in? t '(0 1 2 3 4 5 6 7 8 9))
 (digit stream)]
 [(key-in? t '(#\()) (start-paren stream)]
 [(key-in? t '(#\))) (end-paren stream)]
 )))

Conditional Branch Reordering

Exclusive-Cond
(define-syntax (exclusive-cond syn)
 ; Internal definitions
 (define (clause-weight clause)
 (syntax-case clause ()
 [(test e1 e2 ...) (profile-query #'e1)]))
 (define (sort-clauses clause*)
 ; Sort clauses greatest-to-least by weight
 (sort clause* > #:key clause-weight))
 ; Start of code transformation
 (syntax-case x ()
 [(_ clause ...)
 ; Splice sorted clauses into a cond expression
 #`(cond #,@(sort-clause #'(clause ...)))]))))))

Take a Step bAck
Our Design…

• Saves PGO writers effort

• Saves PGO users effort

• Simple to implement

• Expresses standard

optimizations

• Enables new optimizations

PGO

N
PGO

NPGO

N

PGO

N

PGO

N

Compiler+

P

PGO

2
PGO

1

Profile-Guided Meta-Programming

Extended syntax

Generate source code

Embedded DSLs

for

to

from

Tools

Parser

A
P

I

Profiler

williamjbowman.com/papers#pgmp

Collect profile at runtime

Use profile as oracle

Write optimizations

http://williamjbowman.com/papers#pgmp

Why No Benchmarks?

• I do not claim to make anything faster.  

As I do not make that claim, I do not support it.

• I do claim a design that reduces programmer effort.  

As I make that claim, I support it.  

Effort was measured with lines of code.

Non-Scheme languages?

• Yes. See the paper.

optimizations with

dependency

• If one PGO depends on another?  

Then the user doesn’t get composition for free.

C/C++?

• Maybe, with extensions to templates or macros.

Path Profiling?

• Our design may not work with path profiling.

• It is unclear how to apply profile points to paths.

Staged Meta-

PRogramming?

• Should work with staged meta-programming.  

See the paper.

