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Profile-Guided Meta-Program 
An example

define-syntax if-r(test t-branch f-branch): 
  if profile(t-branch) < profile(f-branch): 
     generate(#'(if not(test) f-branch t-branch)) 
  else: 
     generate(#'(if test t-branch f-branch)) 
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Our Design…

• Saves PGO writers effort 

• Saves PGO users effort 

• Simple to implement 

• Expresses standard 

optimizations 

• Enables new optimizations
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Design highlights

• Profile Points 

• Profile Weights 

• API



Profile Points 
What the profiler Cares about

• Abstraction of source expressions for profiler 

• Profile Point <-> Source Expression 

• Create new profile points 

• Attach profile points to source expressions



Profile Points 
An Example

• Profile Points via source locations 

• Generate new points 

(deterministically)

Source
Loc.

Profile
Point

File a 

Line 2 Char 3
1

File A 

Line 4 

Char 3

2

<GEN3> 3



Profile Weight 
What the Meta-Program Cares about

• Abstraction of profile information for PGMPs 

• Profile Point <-> Profile Weight 

• Single value for relative importance 

• Easy to combine multiple data sets



if-r (subject-contains? "PLDI"): 
  flag(email spam) 
else: 
  flag(email important)

Profile Weights 
An Example

Source
Loc.

DS1 DS2 Merged

File a
Line 2 
Char 3

10/10 

= 1

10/100 

= .1

(1 + .1)/2 

 = 0.55

File A
Line 4
Char 3

5/10 

= .5

100/100 

= 1

(.5 + 1)/2 

 = 0.75



The API
A brief look at



Evaluation

• We implemented it. 

• Profiler: unchanged 

• Meta-programming: 

unchanged 

• Racket API: 134 lines
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Evaluation 

• Conditional Branch 

Optimization: 

81 lines 

• Receiver Class Prediction:  

44* lines 

• Data Structure Specialization:  

111 lines

Profile-Guided …



(define (parse stream) 
 (case (peek-char stream) 
  [(#\space #\tab) (white-space stream)] 
  [(0 1 2 3 4 5 6 7 8 9) (digit stream)] 
  [(#\() (start-paren stream)] 
  [(#\)) (end-paren stream)] 
  ....))

Conditional Branch Reordering 



Conditional Branch Reordering 

(define (parse stream) 
 (let ([t (peek-char stream)]) 
   (cond 
     [(key-in? t '(#\space #\tab)) 
      (white-space stream)] 
     [(key-in? t '(0 1 2 3 4 5 6 7 8 9)) 
      (digit stream)] 
     [(key-in? t '(#\()) (start-paren stream)] 
     [(key-in? t '(#\))) (end-paren stream)] 
     ....)))



(define (parse stream) 
 (let ([t (peek-char stream)]) 
   (exclusive-cond 
     [(key-in? t '(#\space #\tab)) 
      (white-space stream)] 
     [(key-in? t '(0 1 2 3 4 5 6 7 8 9)) 
      (digit stream)] 
     [(key-in? t '(#\()) (start-paren stream)] 
     [(key-in? t '(#\))) (end-paren stream)] 
     ....)))

Conditional Branch Reordering 



Exclusive-Cond
(define-syntax (exclusive-cond syn) 
  ; Internal definitions 
  (define (clause-weight clause) 
    (syntax-case clause () 
      [(test e1 e2 ...) (profile-query #'e1)])) 
  (define (sort-clauses clause*) 
    ; Sort clauses greatest-to-least by weight 
    (sort clause* > #:key clause-weight)) 
  ; Start of code transformation 
  (syntax-case x () 
    [(_ clause ...) 
     ; Splice sorted clauses into a cond expression 
     #`(cond #,@(sort-clause #'(clause ...)))])))))) 



Take a Step bAck 
Our Design…

• Saves PGO writers effort 

• Saves PGO users effort 

• Simple to implement 

• Expresses standard 

optimizations 

• Enables new optimizations
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Why No Benchmarks?

• I do not claim to make anything faster.  

As I do not make that claim, I do not support it. 

• I do claim a design that reduces programmer effort.  

As I make that claim, I support it.  

Effort was measured with lines of code.



Non-Scheme languages?

• Yes. See the paper.



optimizations with 

dependency

• If one PGO depends on another?  

Then the user doesn’t get composition for free.



C/C++?

• Maybe, with extensions to templates or macros.



Path Profiling?

• Our design may not work with path profiling. 

• It is unclear how to apply profile points to paths.



Staged Meta-

PRogramming?

• Should work with staged meta-programming.  

See the paper.




