
C O M P I L I N G W I T H D E P E N D E N T T Y P E S

william j. bowman

Doctor of Philosophy
College of Computer and Information Science

Northeastern University

2018

William J. Bowman: Compiling with Dependent Types, Doctor of Philosophy, © 2018

Dedicated to Daniel P. Friedman.

“No, I’m not going to grad school; I can’t even imagine writing a dissertation.”
— Me, responding to Dan

A B S T R A C T

Dependently typed languages have proven useful for developing large-scale fully verified
software, but we do not have any guarantees after compiling that verified software. A
verified program written in a dependently typed language, such as Coq, can be type
checked to ensure that the program meets its specification. Similarly, type checking
prevents us from importing a library and violating the specification declared by its types.
Unfortunately, we cannot perform either of these checks after compiling a dependently
typed program, since all current implementations erase types before compiling the
program. Instead, we must trust the compiler to not introduce errors into the verified
code, and, after compilation, trust the programmer to never introduce errors by linking
two incompatible program components. As a result, the compiled and linked program
is not verified—we have no guarantees about what it will do.

In this dissertation, I develop a theory for preserving dependent types through
compilation so that we can use type checking after compilation to check that no errors
are introduced by the compiler or by linking. Type-preserving compilation is a well-
known technique that has been used to design compilers for non-dependently typed
languages, such as ML, that statically enforce safety and security guarantees in compiled
code. But there are many open challenges in scaling type preservation to dependent
types. The key problems are adapting syntactic type systems to interpret low-level
representations of code, and breaking the complex mutually recursive structure of
dependent type systems to make proving type preservation and compiler correctness
feasible. In this dissertation, I explain the concepts required to scale type preservation
to dependent types, present a proof architecture and language design that support type
preservation, and prove type preservation and compiler correctness for four early-stage
compiler translations of a realistic dependently typed calculus. These translations
include an A-normal form (ANF), a continuation-passing style (CPS), an abstract
closure conversion, and a parametric closure conversion translation.

7

A C K N O W L E D G M E N T S

I never thought I would get a Ph.D. In fact, I thought I would never get a Ph.D. As I
completed my undergraduate degree, a Ph.D. seemed like an insurmountable challenge:
I would have to produce knowledge unknown to the world, write about, talk about it,
and teach it. I didn’t know how to do that. I didn’t want to do that. I just wanted to
write fun programs and learn interesting facts.

I was wrong. The following people helped me realize that.

• Dan Friedman

Dan is the reason I’m here today.

Dan introduced me to the beauty of programming languages, causing me to shift
gears from software engineering and security to spending my free time reading
about language design. When I was interested in research, Dan recommended I
talk to Amal. He explicitly recommended that I not work with him, claiming that
he doesn’t do important research. That might be, but he does do important work.

• Amr Sabry

Amr taught me how to write software, and gave me a few research problems to
play with as a Master’s student while I tried to figure out whether I wanted to do
a Ph.D.

• R. Kent Dybvig

Kent taught me that most programs aren’t written by humans, and how to think
like a machine.

• The Northeastern PRL, jointly and separately.

Vincent St-Amour, Asumu Takikawa, Phillip Mates, Jamie Perconti, Paul Stansifer,
Tony Garnock-Jones, Stephen Chang, Justin Slepak, Jonathan Schuster, Dionna
Amalie Glaze, Andrew Cobb, Sam Caldwell, Ben Greenman, Leif Andersen, Daniel
Patterson, Aaron Weiss, and Ben Lerner.

Thank you all for hanging out at happy hours, criticizing my practice talks, and
making my Ph.D. a great personal and professional experience.

• Max S. New

Max, the category practitioner. He understands abstraction in ways I doubt I
ever will. Many times, he has helped me understand my own work better. Max is
a brilliant friend and amazing colleague.

9

10

• Cătălin Hriţcu

Cătălin is a kind, generous, and skeptical person—a great scientist. He is one of
the first people I met at a programming languages conference. Cătălin hosted me
at Inria for a semester while I finished this work, giving me the chance to meet
people who know way more about dependent types than me. This dissertation is
much better because of that experience.

• Annabel Satin

Annabel is an awesome person, working tirelessly in the background for the good
of programming languages. Without her, our work might well grind to a halt.

• Youyou Cong

Youyou visited us for a semester, and was critical to part of this dissertation. She
has an encyclopedic knowledge of the literature surrounding CPS. I still sometimes
bother her with my ideas.

• Neel Krishnaswami

Every time I talk to Neel, I learn something awesome about semantics. Our chats
have shaped my work in subtle ways.

• Ron Garcia

Ron is the nicest person in the programming languages community. Talking with
Ron, I feel like he is genuinely interested in what I have to say, even when all I
have to say are half baked ideas. He can express his confusion, or clearly explain
why I’m wrong, without making me feel stupid.

• Éric Tanter

Éric has always made me feel like a colleague, and not just a graduate student.
He’s one of the reasons I’m sticking around in academia.

• Stephanie Weirich

Stephanie has a unique perspective on dependent types. She has challenged my
assumptions and design choices throughout my dissertation. One day, I’ll try to
put those thoughts in writing.

• Greg Morrisett

Greg has been a huge help during this work. Even after starting as dean, Greg
found time to chat about research. When I sent him a draft, he’d read it in mere
hours and come back with cogent feedback, questions, and criticisms.

• Mitch Wand

Mitch helped me learn more about writing and English during this dissertation
than I learned in 22 years of school before I started.

11

• Matthias Felleisen

Matthias has constantly pushed me to reach a higher standard for scientific rigor,
precision, and clarity—more so than anyone else. He has never hesitated to
(constructively) criticize my work. I’ve learned a ton from him, and if I’m lucky
I’ll learn some more.

• Amal Ahmed

Amal has been a great advisor. She has absolute and infectious enthusiasm
for what she does. She helped me learn about proofs and types, and about
communicating complex mathematical work. She chewed me out when I ignored
important things, and gave me latitude when I needed it.

But mostly, Amal taught me to not fear hard problems. In 2010, as an undergrad,
I asked Amal if she had any research problems. She gave me a book (Types and
Programming Languages), and a secure compilation problem, and said it would
take “6 months, max”. In 2015, we finished that paper. In 2016, I had a choice:
continue working on secure compilation, or switch to working on dependent types.
I was more interested in dependent types, but switching topics 4 years in to a
Ph.D. program seemed like a big risk, so I chose secure compilation. A few days
later, I walked into her office and said “I changed my mind. It’s going to be hard,
but it’ll be way more interesting.”. I don’t know if I could have done that without
Amal.

Thank you all. You have all shaped this work, either directly or indirectly through emo-
tional and psychological support, and are part of the reason I finished this dissertation.
And thank you to many more people who I’ve not put in this list; there are many of
you who have helped me in ways I haven’t been able to put into words.

— William J. Bowman

S U P P O R T

This work was funded by the National Science Foundation under grants NSF CCF-
1203008, NSF CCF-1422133, and NSF CCF-1453796, and by the European Research
Council under ERC Starting Grant SECOMP (715753) Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the funding agencies.

13

T Y P O G R A P H I C A L C O N V E N T I O N S

I use a combination of colors and fonts to make distinctions between terms in different
languages clear. Often, programs from more than one language will appear in the
same equation. While which language each program belongs to will be clear from the
structure of the equations, I use colors and fonts to make the distinction more apparent.
These colors and fonts are chosen to be distinguishable in color, in grayscale, and with
various forms of color blindness.

Each chapter will involve at least two languages: a source and a target language.
Source languages expressions and metavariables are typeset in a blue, non-bold, sans-serif
font. Target language expressions and metavariables are typeset in bold, red, serif
font. These different fonts do not indicate particular languages—they only indicate
source and target. I will remind the reader which language is which each time a new
language is introduced.

For languages other than source and target languages, such as examples of concepts
or from related work, I use a black, non-bold, serif font.

I use emphasis to introduce a word with a technical definition—i.e., a specific technical
use that may differ from the normal English definition.

Typographical Note. I will remind the reader of these typographical conventions in
the section I first use them, or when languages change, in a typographical note like this.

15

O N E R OA D S H O U L D N OT B E TA K E N

Two roads diverged in a blue and red wood,
A colorful forest of derivation trees.
I’m no traveler; I, therefore, could—
and, as a scientist, because I should—
followed each one into its leaves.

In one, I found the theory fair;
This I suggest; the other is worse.
In that, the types, one’s mind ensnare;
Though it can work, I hereby declare.
Really, I beg you, just use the first.

17

C O N T E N T S

1 Executing a Verified Program 23
1.1 Program Verification and Dependent Types 24

1.1.1 The Virtues of Dependent Types 26
1.2 Executing a Dependently Typed Program 29
1.3 Preserving the Verified-ness of a Program 33
1.4 Thesis . 37
1.5 Contributions of this Dissertation . 38

2 Essence of Dependent Types 41
2.1 Essential Features of Dependency . 41

2.1.1 Higher Universes . 42
2.1.2 Dependent Functions . 43
2.1.3 Dependent Pairs . 46
2.1.4 Dependent Conditional . 48
2.1.5 What about Inductive Types . 49

2.2 A Representative Source Calculus . 49
2.2.1 Type System . 50
2.2.2 Evaluation and Compilation . 55

3 Type-Preserving Compilation 57
3.1 A Brief History . 57
3.2 A Model Type-Preserving Compiler . 59
3.3 The Difficulty of Preserving Dependency 62
3.4 Proving Type Preservation for Dependent Types 63

3.4.1 The Key Lemmas for Type Preservation 64
3.4.2 The Problem with Typed Equivalence 67
3.4.3 Type Preservation and Compiler Correctness 69

3.5 Type Preservation as Syntactic Modeling 71
4 A-normal Form 73

4.1 Main Ideas . 73
4.2 ANF Intermediate Language . 77

4.2.1 The Essence of Dependent Continuation Typing 80
4.2.2 Meta-theory . 81

4.3 ANF Translation . 83
4.3.1 Type Preservation . 84
4.3.2 Compiler Correctness . 94

4.4 Related and Future Work . 95
4.4.1 Comparison to CPS . 95
4.4.2 Branching and Join Points . 96
4.4.3 Dependent Pattern Matching and Commutative Cuts 98

19

20 contents

4.4.4 Dependent Call-by-Push-Value and Monadic Form 99
5 Abstract Closure Conversion 101

5.1 Main Ideas . 101
5.1.1 Why the well-known solution doesn’t work 103
5.1.2 Abstract Closure Conversion . 105

5.2 Closure-Converted Intermediate Language 107
5.2.1 Meta-theory . 110

5.3 Closure Conversion . 117
5.3.1 Type Preservation . 118
5.3.2 Compiler Correctness . 125
5.3.3 ANF Preservation . 126

6 Continuation-Passing Style 129
6.1 On CPS . 129
6.2 Main Ideas . 131
6.3 The Calculus of Constructions with Definitions 135
6.4 CPS Intermediate Language . 138

6.4.1 Meta-theory . 140
6.5 Call-by-Name CPS Translation . 145

6.5.1 Type Preservation . 151
6.5.2 Compiler Correctness . 160

6.6 Call-by-Value CPS Translation . 161
6.6.1 Type Preservation . 165
6.6.2 Compiler Correctness . 173

6.7 Related and Future Work . 173
7 Parametric Closure Conversion 177

7.1 Main Ideas . 177
7.2 Parametric Closure Conversion IL . 180

7.2.1 Meta-theory . 183
7.3 Parametric Closure Conversion Translation 184

7.3.1 Type Preservation . 185
7.3.2 Compiler Correctness . 190

8 Conclusions 191
8.1 Viability of the Individual Translations 191
8.2 Lessons for Dependent-Type Preservation 192
8.3 Future Work . 196

8.3.1 To Dependently Typed Assembly 196
8.3.2 Practical Considerations . 199

8.4 Conclusion . 202
a Reference for ECCD 217
b Reference for ECCA 223
c Reference for ANF Translation 229
d Reference for ECCCC 231

contents 21

e Reference for Abstract Closure Conversion 241
f Reference for CoCD 245
g Reference for CoCk 251
h Reference for CPSn 259
i Reference for CPSv 265
j Reference for CoCCC 271
k Reference for Parametric Closure Conversion 279

1 E X E C U T I N G A V E R I F I E D P R O G R A M

I begin this dissertation
with a story; I will get
technically precise
starting in the next
section.

In the beginning, computer programs were created. This was fine and was useful for
doing math, and many programmers wrote many interesting programs. Sometime after,
computers were created and began to execute computer programs. This has made a lot
of people very angry and been widely regarded as a bad move.1

After computers were created, they became the primary readers and writers of
computer programs. Some programs are written and read by humans, but most are
written by compilers and read only by the computer. Hopefully, the compiler translates
an input source program that is simple for a human to read and write into an executable—
a, possibly optimized, program suitable for execution.

A computer will, faithfully and without question, execute the program it is given to
execute. This is unfortunate because the program that the computer reads is almost
never the one that the programmer intended to be executed. The resulting execution
will surprise the programmer and enrage the user.

If we are very lucky, a bad execution will happen despite the best efforts of the
programmer. Ideally, the programmer will have spent substantial effort trying to avoid
letting a computer execute the wrong program. The programmer will have designed
their program and reasoned about that design before ever writing a single line of code.
Then, each line of code will have been written carefully. Surprisingly, we do occasionally
get this lucky in practice.

Despite our luck, inevitably, the programmer will have been wrong. Probably, the
design will have been flawed. Likely, the code will have had errors. So the computer
will have faithfully executed an erroneous implementation of a flawed design.

Programming is fundamentally an act of communication and, as such, is susceptible to
miscommunication. The programmer communicates, via their program, some process, or
task, or other information. The program communicates this very precisely. So precisely,
in fact, that it can be understood not only by other programmers, but by a “rock we
tricked into thinking”.2 But, humans and rocks think very differently. The programmer
often fails to understand how literally rocks think, and the rock fails to understand that
the programmer doesn’t always say what they mean what to say.

To avoid miscommunication, we can teach computers to verify their understanding of
a program with the programmer through program verification—separately specifying Technically, verification

only checks that the
program does what we
said we meant for it to
do, so miscommunication
is still possible. For this
dissertation, I assume
this is good enough.

what the programmer meant for the program to do, and then, before executing the
program, making the computer verify that the program does what the programmer
meant for it do. A verified program is a program implementation with a specification

1 From Adams (1980).
2 @daisyowl. https://twitter.com/daisyowl/status/841802094361235456. March 14 2017.

23

https://twitter.com/daisyowl/status/841802094361235456

24 executing a verified program

and a proof that the implementation meets the specification. By verifying a program, we
reduce miscommunication and thus reduce program errors, by providing high assurance
that the programmer and the computer are “on the same page”—the programmer has
written what they expect to happen, then written the program, and the computer has
agreed that the program will indeed do what is expected.

Program verification is useful for reducing program errors but, thanks to compilers,
essentially no verified program has ever been executed. I make this statement more
precise later in Section 1.3, but for now, here is what I mean. Recall that compilers,
not programmers, write most programs, and this is particularly true of executables. To
produce a verified program, a compiler would have to transform the program implementa-
tion, its specification, and its proof, which is beyond the scope of current compiler design.
Even if the compiler were proven to satisfy some compiler correctness specification and
could compile a verified source program, the compiler would not produce a verified
target program. That is, we could not get an executable implementation complete with
an executable-level specification that corresponds to the original specification and an
independently checkable proof that the executable meets its specification. Contemporary
verified compilers only transform the implementation. We may think that composing
the proof of correctness for the compiler with the proof of correctness for the program
yields a proof that the generated executable is verified, but this (typically) only tells us
that the executable reduces to the same value as the original verified program, not that
the executable meets the original specification. Evaluation to the same value is a weak
specification: it requires the compiler only operates on whole programs and does not
capture (for example) security properties that guarantee secret values aren’t leaked to
attackers. Thus even when a programmer has gone through the trouble of verifying a
program, the program that actually executes is an unverified executable.Although, if it was

compiled with a verified
compiler, it is probably a

correct unverified
executable.

In this dissertation, I theorize a solution to the problem of compilers transforming
verified programs into unverified executables. Before I can precisely describe this
theory, I must precisely describe program verification and the problems that arise when
attempting to compile programs, verified or not.

1.1 Program Verification and Dependent Types

The key elements of program verification are:

1. a specification, which describes the intended behavior or properties of a program
and is independent of the program’s implementation,

2. an implementation, which describes in code how to accomplish the goal of the
program (this is what we typically think of as a program),

3. a proof, which witnesses the fact that the implementation meets its specification.

There are many ways to instantiate the above elements into a system for program
verification, and additional criteria we wish to consider for a given instantiation. For

1.1 program verification and dependent types 25

example, we want specifications to be simple to understand and write, and expressive
enough to capture full functional, safety, and security properties. We also want proofs
to be easy to check, and ideally for the proof system to be logically consistent—i.e.,
the existence of a proof should imply that the implementation does actually meet the
specification.

A particularly common and useful (as discussed shortly) way to implement program
verification is by using dependent types (in particular, full-spectrum dependent types)3.
In the terminology of typed programming, dependent types allow for types, the language
for statically describing program behaviors, to depend on (i.e., to include as part of
the language of types) some or all terms, the language for dynamically implementing
programs. This is in contrast to traditional typed programming language, such as Java
or ML, in which there is a phase distinction between types and terms, meaning types
exist at compile-time and cannot refer to terms, which exist later at run-time. This
restricts what specifications can be expressed in types. Full-spectrum dependent types Henceforth, I use the

unqualified dependent
types to mean
full-spectrum dependent
types.

refers to the ability of types to depend on arbitrary terms, instead of only part of the
language of terms. In that case, there is no syntactic distinction between types and
terms—together, they make up a single language of expressions.

As an example of program verification with dependent types, consider attempting to
verified the following operations on lists from a standard typed language such as ML.

length : List A -> Nat

length = ...

append : List A -> List A -> List A

append = ...

In this example, we declare that the term length has the type List A -> Nat, meaning
that it is a function that takes a List A as input and produces a Nat as output. In a
type system with phase distinction, List A, ->, and Nat are all drawn from the language
of types, while length and append are in the language of terms.

In a full-spectrum dependently typed language, we could write the above example
with the more precise type below thus using type checking to verified a correctness
property.

length : List A -> Nat

length = ...

append : (l1 : List A)

-> (l2 : List A)

-> {l : List A | length l == length l1 + length l2}

append = ...

3 These were once called fully dependent types (Xi, 1998), but contemporary work uses term full-
spectrum (Weirich et al., 2017).

26 executing a verified program

In this example, we name each argument to append when describing its type. The first
argument is named l1, and the second is l2. Then, we can refer to that argument,
the term, in the type. We can also write other arbitrary terms in the types. We use
this to declare that the output of append is a List A, named l, such that the length

of l is equal to the sum of the lengths of l1 and l2. This means that not only does
append return a List A, but a List A of a particular length, capturing a correctness
specification in the types.

Using dependent types, we can build a program verification system that satisfies
all desired criteria listed earlier. We write specifications using types (in particular,
dependent types), and write implementations in the terms of the dependently typed
language. The proofs are represented by the annotations and additional terms in the
implementation itself and are checked via type checking; for example, the implementation
of a function may include an additional argument whose type represents a precondition,
and the term passed in for that argument represents a proof that the precondition holds
if the term is well-typed.

1.1.1 The Virtues of Dependent Types

dependent types simplify specification by avoiding specification puns
Dependent types simplify reading and writing specifications and increase assurance that
the specification describes the actual implementation by avoiding specification puns.

In languages without full-spectrum dependent types, such as those with indexed
types or refinement types, types cannot directly refine all terms. Instead, types can
only depend on a subset of terms or a separate language of type-level computations.
This prevents types from directly refining the behavior of some terms and introduces a
gap between the specification and the implementation. Instead, either the rest of the
behavior is unspecified or a separate specification-level model of the implementation
must be constructed and the implementation proven to correspond to this model. This
gap can introduce specification puns, meaning a specification refers to something that is
like the implementation but is technically defined differently—i.e., a specification that
exploits two possible meanings of what looks like the same expression.

For example, in a language with refinement types and phase distinction in which
types may depend on (and only on) first-order data, we cannot directly prove the same
correctness property for append that we saw earlier. Instead, we write the example from
earlier as follows.

length : (l : List A) -> Nat

length = ...

length' := ...

append : (l1 : List A)

-> (l2 : List A)

1.1 program verification and dependent types 27

-> {l : List A | length' l == (length' l1) + (length' l2)}

append = ...

Unlike before, we cannot refer to length, a term, directly in the type of append. Instead,
we must write a separate, type-level, version of length—called length' in this example,
for clarity—and use a separate, type-level, version of +. This is a pun; really, length'
has a different definition than length, even though a sufficiently clever language might
let us name them both length by maintaining the names in two different namespaces.
Similarly, the + used in the type is not the run-time addition function, although anyone
who reads the specification might reasonably assume it is.

Pragmatically speaking, specification puns create two problems. First, a programmer
must write any definition that is used in a specification twice, and pass these two
representations around everywhere that specification is used. Instead of simply using
the term length to specify the behavior of append, we must duplicate length in the
types. Second, without doing additional work, we are less confident that the run-time
program is correct, since we can only prove correctness of type-level copies. For example,
we do not know that the run-time function length corresponds to the type-level version
length', and so it is unclear that append actually returns a list whose length is the
expected value, as opposed to one whose length' is the expected value. We would first
have to prove that length and length' coincide, which is difficult in the general case.

This problem of specification puns arises in program verification using program
logics and logical frameworks. In program verification based on these frameworks, the
specification and proof languages are separate from the implementation language. This is
an advantage in one sense—there is more freedom in how programs can be implemented
vs how they are specified and proven—but a disadvantage since it introduces puns.

For example, Proof-Carrying Code (PCC) (Necula, 1997) has been used to address
the problem of generating verified executables discussed earlier, but relies on a logical
framework and runs into the problems of puns. Necula (1997) uses the Edinburgh
Logical Framework (LF) to encode specifications and proofs about assembly code, and
develops a compiler that can produce verified programs for programs whose specifications
are expressed and provable in first-order logic. However, LF used this way requires a
phase distinction, so specifications and proofs cannot refer to assembly directly, and
there are puns. For example, addition either refers to assembly addition instruction
ADD or the LF constant +. To prove that the assembly code ADD r1,r2,r1—which
shuffles bits in registers—produces the value l in r1, the logic actually asks that we
prove r1 + r2 = l—which represents mathematical addition on integers. For this proof
about r1 + r2 = l to represent anything about the assembly instruction ADD, we must
ensure some correspondence between the LF constants and the assembly code, thus
creating additional work and making it less clear that specifications correspond to
implementations. In the case of our append example, to verify our implementation
of append from above, we first add the LF constant length', then demonstrate that
length' in the logic corresponds to length, then prove that append is correct.

28 executing a verified program

With full-spectrum dependent types, we avoid the problem of puns by directly using
any term in any type, decreasing programmer effort and increasing confidence. As
seen earlier, the type of append can be written using full-spectrum dependent types as
follows.

append : (l1 : List A)

-> (l2 : List A)

-> {l : List A | length l = (length l1) + (length l2)}

This requires no separate type-level definition length', and instead use the run-time
function length directly in the specification of append.

dependent types simplify proof through abstraction Dependent types
are extremely expressive as a specification and proof system. The earlier example wasThe expressivity of

dependent types depends
on which axioms are

admitted in the particular
language, which I discuss

further in the next
chapter.

a simple programming example, but dependent type systems are also able to express
sophisticated mathematical theorems and frameworks, such as category theory (Gross
et al., 2014; Timany and Jacobs, 2015). This means program verification using dependent
types can easily leverage abstract mathematical concepts and proofs. They have also
been used to encode program logics (Nanevski et al., 2008; Krebbers et al., 2017), thus
allowing the programmer to embed alternative program verification systems if they so
desire. In short, dependent types can express whatever specifications and proofs we
want, and by starting from dependent types we capture a range of program verification
systems instead of just one.

Usually, this gain in expressivity of the logic comes at a cost of expressivity as a
programming language. For example, dependently typed languages such as Coq and
Agda disallow expressing arbitrary loops—every term must be provably terminating,
so they cannot express arbitrary general recursive functions. This is because non-
termination can easily introduce inconsistency, since the usual typing rules for recursive
functions will give an infinite loop any type and thus introduce a proof of any specification,
or break decidability of type checking, since checking a type that contains a term may
require partially evaluating that term causing the type checker itself to diverge on
infinite loops. However, it is possible to regain non-termination while maintaining
logical consistency or decidability by separating possibly diverging programs from proofs
via a modality (Jia et al., 2010; Casinghino et al., 2014; Nanevski et al., 2006; Nanevski
and Morrisett, 2005; Swamy et al., 2013).

The extra expressivity can also come at the cost of automation. For example, Necula
(1997) restricts specifications to those expressed in first-order logic. This is a loss for
expressivity, but a gain for automation and simplifies the design of the compiler: the
compiler can generate proofs automatically, rather than requiring the user to write them
and designing the compiler to transform and preserve them.

1.2 executing a dependently typed program 29

1.2 Executing a Dependently Typed Program

A dependently typed program has never been executed. Only machine code is ever
executed, and so far there is no dependently typed machine code.

Instead, dependently typed programs are first type checked, then compiled (sometimes
called extracted) to some executable. For example, Coq4 programs are typically compiled
to OCaml, or Haskell, or sometimes Scheme. During this process, all types are erased,
even when the target is OCaml or Haskell, which are typically considered typed languages.
This means that after compiling dependently typed programs, we no longer have the
specification or a machine-checkable proof of correctness for the executable.

In Coq, we could prove some data invariant, use that to safely write optimized
functions, then compile to OCaml. For example, we could write a Coq function that
returns the head of a list without checking whether the list is empty or not, as long as
the length is statically guaranteed to be non-zero.

Inductive List (A : Set) : Nat -> Set :=

| nil : List A 0

| cons : forall (h:A) (n:Nat), List A n -> List A (1 + n).

Definition head {A} {n : Nat} (v : List A (1 + n)) :=

match v with

| cons _ h _ t => h

end.

(* Example invalid := head nil. *)

Example valid : (Nat -> Nat) := head (cons _ (fun x => x) 0 (nil _)).

This declares List to be an inductively defined datatype, parameterized by some element
type A and indexed by a Nat, which statically represents the length of the List in the
type. There are two constructors for Lists: nil, which produces a List of As of length
0, and cons, which expects an element h and a list of length n and produces a List of
length 1 + n. We then define head to take a non-empty List, i.e., a term v of type
List A (1 + n), and simply return the h field of the cons. Note that we don’t need to
consider the case for when v is nil, since the type guarantees that can never happen.
We can create and type check a simple example by calling head on a List of length 1

containing the function fun x => x.
After compiling head to OCaml, we have the following function.

let head _ = function

| Nil -> Obj.magic __

| Cons (h, _, _) -> Obj.magic h

4 https://coq.inria.fr/

https://coq.inria.fr/

30 executing a verified program

Coq

OCaml Driver

x86 FFI

Compile

Compile
Link

Link

Coq

OCaml Driver

x86 FFI

Miscompilation Errors

Miscompilation Errors
Linking Errors

Linking Errors

Figure 1.1: Transforming a Verified Coq Program into an Unverified Executable

(** val valid : nat0 -> nat0 **)

let valid =

First, notice that the code is littered with Obj.magic, an unsafe cast operation, and
has none of the original types. Essentially all static checking from OCaml’s type system
is turned off. What was originally a well-typed verified program is now an unverified,
and in fact, unsafe program. Next, notice that this OCaml implementation behaves
differently than the implementation in Coq. In Coq, we could prove that head only
received non-empty lists, and could omit the null check. In OCaml, this is no longer
true and the compiler inserts a case for Nil whose behavior is mysterious.

In a typical Coq workflow, we would next link this OCaml program with other
unverified components, such as some program driver—a top-level function to initialize
the main loop or a user interface—then compile the program to assembly using OCaml’s
compiler, and possibly link with low-level code such as cryptography libraries or run-time
systems. The left side of Figure 1.1 shows a diagram of this workflow. Unfortunately,
as seen on the right side of Figure 1.1, this workflow leads to producing an unverified
executable from the verified Coq program by introducing miscompilation errors and
linking errors. In this diagram, the arrows represent compilation, while the harpoons
represent linking.

Miscompilation errors are errors introduced into a program as a result of a program
error in the compiler. For example, suppose a compiler is designed to perform the
following optimization, reordering conditional branches to maximize straight-line code.

if e then e1 else e2 → if (not e) then e2 else e1

However, if the compiler is implemented incorrectly, it may instead perform the following
incorrect transformation, introducing a miscompilation error.

if e then e1 else e2 → if (not e) then e1 else e2

The conditional is negated, but the branches are not switched. Now, when e1 should
have executed, e2 will, and vice versa, even if the original program was verified.

Real miscompilation errors are unlikely to be so simple to understand, and there are
lots of them (Yang et al., 2011). For example, at the time of writing, there is 1 open

1.2 executing a dependently typed program 31

compilation error in the Coq to OCaml compiler5, and at least 3 open miscompilation
errors in the OCaml compiler6.

Miscompilation errors can be greatly reduced by compiler verification—applying
program verification to the compiler itself by proving that the compiler always produces
programs that equate, in some way, to the input program. This is the approach taken by
projects like the CompCert C compilers (Leroy, 2009), the Cake ML compiler (Kumar
et al., 2014), and the CertiCoq compiler (Anand et al., 2017). Of course, the compiler
itself is written and verified in a high-level language and then compiled. At the very
least, this means we can never execute the verified compiler, and at worst, leaves us
vulnerable to “trusting trust” attacks (Thompson, 1984). But, this has been shown
effective at reducing miscompilation errors in practice; only two miscompilation errors
have been found in the verified CompCert C compiler, compared to the hundreds in
other compilers (Yang et al., 2011). And these two errors were caused by the unverified
driver linked into the verified code.

Standard compiler verification does not rule out a more insidious problem—linking
errors—as demonstrated by the two errors in the verified CompCert compiler. Linking
errors are errors introduced when linking two components of a program when one
component violates some specification of the other or of the over all program. This can
happen when linking two verified components if we never check that the specifications
are compatible, or when linking an unverified component with a verified one. Trying
to describe errors in CompCert as an example is too complex, so instead, consider the
function head, introduced earlier, which has a precondition expressed in its type that it
is only called with a non-empty List. If we ever link it with a component that calls
head with an empty list, this would be a linking error: the resulting execution would be
undefined.

In a strongly typed source language, linking errors should not be possible, but linking
typically happens after compiling and compiler target languages are not strongly typed.
As we saw in the above example, after compiling from Coq to OCaml, the compiled
version of the function head is essentially untyped. This is also true of the assembly
produced by the OCaml compiler.

As a result, it is easy to introduce linking errors in executables, even when produced
from verified programs. Recall from Figure 1.1 that it is standard practice to compile
Coq code to OCaml, then link with some program driver. We can introduce a linking
error by linking with one line of code in OCaml using the verified List functions from
Coq. First we add another verified Coq function, applyer, which applies the first
element of a List of functions to the first element of another List.

Definition applyer {n : Nat} (fs : List (Nat -> Nat) (1 + n))

(ns : List Nat (1 + n)) :=

(head fs) (head ns).

5 https://github.com/coq/coq/issues/7017. Accessed Aug 3 2018.
6 https://caml.inria.fr/mantis/view_all_bug_page.php. Accessed Dec 3 2018. Filtered for major,

crash, or blocking unresolved open issues, and manually inspected for miscompilation bugs.

https://github.com/coq/coq/issues/7017
https://caml.inria.fr/mantis/view_all_bug_page.php

32 executing a verified program

This is compiled to the following OCaml code. As in the Coq program, this simply
applies the first element of the list of functions to the first element of the list of natural
numbers. Notice that it uses Obj.magic to essentially disable type checking, since
extracted code may not be well-typed in general.

(** val applyer : nat0 -> (nat0 -> nat0) list -> nat0 list -> nat0 **)

let applyer n fs ns =

Obj.magic head n fs (head n ns)

Next, we link with the following line of code in OCaml. This line exists in a separate
module from applyer and simply tries to call applyer on two non-empty lists. The
programmer who wrote this module may be relying on the type checker to detect errors,
and may not know that the module they are using has used Obj.magic.

let _ = applyer 1 (Cons (0, O, Nil)) (Cons ((fun x -> S x), O, Nil))

If the reader cares for a
brief diversion, there are
three other type errors; I

give the answers at the
end of the next section.

This line could almost be mistaken for a well-typed use of applyer. It calls the function
with a list of numbers and a list of functions on numbers. Unfortunately, the
arguments are in the wrong order, so OCaml attempts to call the number 0 as a
function, and crashes.

This simple error does not even take advantage of OCaml’s inability to check dependent
types. We could, in principle, ascribe OCaml types to applyer, and rule this linking
error out. However, in general, it is easy to construct examples that rely on dependent
types, higher-order invariants, or freedom from state and non-termination (since Coq is
purely functional). Even a fully annotated OCaml program with no uses of Obj.magic
cannot check these, and it is easy to violate each when linking in OCaml. Furthermore,
eventually we compile the program to assembly, which has no type system, and it is
likely that when we link in assembly (with low-level libraries, run-time environments,
drivers, etc) we can easily cause linking errors there too.

The simple example we’ve just seen shows that, after all the trouble of verifying a
program, the state-of-the-art gives the programmer few guarantees. They have thrown
away the help of the type checker, must manually reason about all the invariants
when linking, and have no systematic way to check that the compiler has correctly
implemented the verified program. This example function is a relatively simple program;
C compilers, operating systems, cryptographic primitives and protocols, and other
high-assurance software developed in dependently typed languages are not simple, and
we cannot expect a programmer to manually check all the invariants after compiling
and linking these programs. This is a problem: the end result of program verification,
after the compilation and linking, is an unverified program. What good is the effort
spent on program verification under these conditions?!

1.3 preserving the verified-ness of a program 33

Coq

Clight Driver

x86 FFI

Compile w/ CertiCoq

Compile w/ CompCert

Linking Errors

Linking Errors

Figure 1.2: Verified Compilation of a Verified Coq Program into an Unverified Executable

Coq Coq

Clight Clight Driver

x86 x86 FFI

Compile w/ CertiCoq

Compile w/ SepCompCert

Safe Linking

Linking Errors

Safe Linking

Linking Errors

Figure 1.3: Verified Separate Compilation of Verified Coq Programs into an Unverified Exe-
cutable

1.3 Preserving the Verified-Ness of a Program

Admittedly, there is much work on developing verified compilers and this work is being
extended to dependently typed languages. A verified compiler is proven to be free of
miscompilation errors, typically stated as a refinement: if the source program evaluates
in the source semantics to a value, then the compiled program executes to a related value
in the target semantics. For example, the CompCert C compiler mentioned earlier is a
verified compiler for a subset of C called Clight (Leroy, 2009). The CakeML compiler is
a verified compiler for ML (Kumar et al., 2014). Work is ongoing to develop CertiCoq,
a verified compiler for Coq (Anand et al., 2017). By combining the compiler correctness
theorem with the correctness of the original Coq program, CertiCoq supports preserving
the verified-ness of the source program—as long as we never link with anything. We end
up with the guarantees described in Figure 1.2. We use verified compilers to assembly
to rule out miscompilation errors. However, this still leaves the possibility of linking
errors.

A compiler that guarantees correctness of separate compilation, what I’ll call a
separate compiler, is verified to be free of linking errors as long as all components
being linked are compiled with the same verified compiler. Separate compilers exist for
non-dependently typed languages, such as SepCompCert, an extension of the CompCert
to support separate compilation (Kang et al., 2016). CertiCoq has support for separate
compilation, so it can provide the guarantees in Figure 1.3. As long as all components
are compiled, separately, linking between those components is guaranteed to be safe, and

34 executing a verified program

Clight Clight Clight

x86 x86 Safe FFI FFI

Compile w/ CompCompCert

Safe Linking

Linking Semantics

Safe Linking

Interaction Semantics

Safe Linking

Linking Errors

Figure 1.4: Verified Compositional Compilation into an Unverified Executable

the resulting program is still verified in the following sense: by composing the original
proof of correctness and proof of correctness of separate compilation, we have a proof
that the executable will behave according to the original specification when linked with
other verified components that have been compiled with the verified separate compiler.
Unfortunately, there is no way to automatically check that linking will be safe, although
we will know it will be true. There may still be unverified drivers or low-level libraries
we need to link with, so linking errors are still possible, and we have no way for the
automatically check for them, i.e., for the machine to detect and report potential linking
errors prior to linking.

A compositional compiler excludes further linking errors by specifying what target
language components are safe to link with independently of the compiler used to produce
those components, if any. For example, CompCompCert allows linking between Clight
programs and x86 programs, as long as there is a safe interaction semantics specifying
their interoperability (Stewart et al., 2015). Pilsner allows safe interoperability between
an ML-like language component and an assembly component as long as there exists a
PILS relation between the assembly and some ML component, and the interoperability
between the two components at the ML-level is safe (Neis et al., 2015). The details of
these cross-language relations is not important; the point is the kinds of linking they
support. These both lead to the guarantees like those in Figure 1.4, in which it is
possibly to safely interact with components that were not verified and then compiled
with a verified compiler. In this diagram, the dotted arrows represent the relation
specifying interaction between assembly components and Clight components so that the
programmer can reason about linking with assembly in terms of some Clight behaviors.
However, because there is no general way to automatically check the safety of the
assembly components—i.e., to check for the existence of a PILS relation or interaction
semantics specification—these too still admit some linking errors. There is no existing
work on a compositional compiler for dependently typed languages.

They key problem with the above separate and compositional compilers is not in
their guarantees—it’s fine to restrict what we can safely link with—but in automatically
detecting possible linking errors. All information about what is it safe to link with is

1.3 preserving the verified-ness of a program 35

Coq

Annotated x86 Annotated x86 x86

x86

MythicalComp

Erase Annotations
Safe Linking

Disallowed: possible linking error

Figure 1.5: Verified Compilation into a Verified Executable

in the theorems about the compilers, and none of that information is in the program
or components generated by the compiler, i.e., in the executable. This requires the
programmers to strictly follow the workflow and check the provenance of all components
before linking in order to consider the resulting executable verified. That is, part of
the proof that the executable is verified cannot be checked by a machine—it must be
checked and enforce by the programmer. In my view, calling the resulting executable This is the technical sense

in which I meant
“essentially no verified
program has ever been
executed”

verified is only true with a trivial definition of the word—the program is verified if
the programmer can, after spending enough effort and without any quickly checkable
artifact, convince themselves that they have taken a verified program and not introduced
any miscompilation or linking errors.

To call an executable verified, we need a way to describe in the language of the
executable what linking is permitted, what is not, and give a procedure by which
a machine can automatically verify that no miscompilation or linking errors have
been introduced during compilation and linking. Only then have we preserved the
verified-ness in a meaningful way, and only then could we ever execute a verified
program. Diagrammatically, this mythical compiler would support the guarantees
seen in Figure 1.5. This would allow compiling and linking with arbitrary correctly
annotated assembly without giving a specification of that assembly in terms of some
other languages. The annotations would be used to prove the absence of linking errors.
We could compile into an annotated assembly, check that the assembly still meets its
specification, then use that specification to automatically detect safe linking and possible
linking errors. After linking, then, and only then, could we erase the annotations to
generate machine code, and use a standard verified compiler to prove that the machine
code is still verified. Since there is no more linking, there is no more risk of linking
errors at the machine-code-level.

We can preserve the verified-ness of a verified program developed in a dependently
typed language by designing a type-preserving compiler for dependently typed languages,
i.e., by preserving dependent types and well-typedness through compilation. I discuss
type preservation further in Chapter 3, but for now the idea is this: by preserving all
the dependent types through compilation into the target language of the compiler, all
specifications are preserved and can be used at link time to rule out linking with code
that violates the specification. Since well-typed programs also represent proofs, the

36 executing a verified program

compiler also preserves the proof through compilation. We can then check that the proof
is still valid according to the preserved specification, verifying that no miscompilation
errors were introduced that violate the specification. Since the specification is still
around at the low-level, we can use type checking to enforce that specification on
external components before linking. The end result of compiling a verified program in a
dependently typed language with a type-preserving compiler is still a verified program,
in a meaningful sense of the word verified—the machine can automatically check the
whole proof, and detect and rule out linking errors.

And all we have to do is develop a compiler that can automatically translate dependent
types into equivalent dependent types describing low-level code (eventually, assembly
code), transform programs in such a way that the program can be executed on a low-level
machine (eventually, on hardware), and transform proofs about high-level functional
code into proofs about low-level assembly code that can be automatically and decidably
checked.

To see how preserving types detects and prevents errors, consider the miscompilation
error from earlier. Suppose we start with the following conditional expression, but this
time, we give it a specification using dependent types.

e : if x then A else B

e = if x then e1 else e2

Now the expression e has a dependent type: when x is true, then the type is A, otherwise
the type is B. If a miscompilation error occurs as before, then we get the following
expression.

e+ = if (not x) then e1 else e2

But now, we can detect the miscompilation via type checking. We expect that
e+ : if x then A else B, but instead find that e+ : if (not x) then A else B.
As these types are not equal, type checking reveals something has gone wrong with
compilation.

Note that if the source specification is weak, then this does not necessarily guarantee
freedom from miscompilation errors, so we must still verify the compiler to rule out all
miscompilation errors. But it turns out that merely by preserving dependent types, we
are almost forced to build a proven correct compiler, i.e., a compiler that guarantees
that programs run to the equivalent values before and after compilation; I discuss this
in Chapter 3.

The big benefit of type preservation is that linking errors are easily ruled out via
type checking. In the earlier example, linking with the following line of code caused our
verified program to crash.

let _ = applyer 1 (Cons (0, O, Nil)) (Cons ((fun x -> S x), O, Nil))

By preserving types into the target language and, importantly, ensuring the target type
system expresses the same invariants as the source, we would be forced to show that
this is well-typed with respect to the original type:

1.4 thesis 37

applyer : forall n : Nat, List (Nat -> Nat) (1 + n) ->

List Nat (1 + N) -> Nat

Just as we would see in Coq, the type system would automatically report the various
type errors: that 1 and 0 are OCaml ints, not the compiled form of Coq Nats; the first
List contain functions not Nats; and vice versa for the second List.

With dependent types, type preservation offers us a final benefit: proof-carrying code
is possible for essentially arbitrarily expressive specifications. Types (i.e., specifications)
are preserved through the compiler into the executable. With dependent types, the types
can express essentially specifications—full-functional correctness, safety, and security
properties. Well-typedness (i.e., proofs that implementations satisfy specifications) is
also preserved. At the end of a type preserving compiler, we have the implementation
with its specification and can independently check the proof.

With a verified dependent-type-preserving compiler from Coq to dependently typed
assembly, we could live the dream—we could use type checking to rule out linking
errors, link the components into a whole program, type check the program to have
a machine-check proof that the specification still hold independent of any trust in
a compiler, linker, or implementation, and—as a final step—erase types and run the
program. The program that executes would be guaranteed to be the one the programmer Barring incorrect or

under specification,
hardware bugs, gamma
rays, errors in physics, or
a vindictive deity.

intended to execute!

1.4 Thesis

In this dissertation, I demonstrate that, in theory, we can design the mythical compiler
just described for a dependently typed language such as Coq, and I describe that theory.
My thesis is:

Type-preserving compilation of dependent types is a theoretically viable
technique for eliminating miscompilation errors and linking errors.

This thesis is only a first step toward the grand story described earlier in this chapter.
I demonstrate this thesis by studying four translations which model the front-end of a

type-preserving compiler for a realistic dependently typed calculus. These translations
are the A-normal form (ANF) translation, continuation-passing style (CPS) translation,
and two variants of closure conversion. The aim is to support all the core features
of dependency found in Coq and preserve them through these standard compiler
translations. I pick Coq as the “ideal” dependently typed language due to the significant
number of contemporary verified programs developed using Coq, the accessibility of
examples of linking errors, and the availability of a simple core calculus (the Calculus of
Inductive Constructions, CIC) corresponding to its core language. In the final chapter,
Chapter 8, I review these translations, summarize the lessons, and explain some of the
remaining open questions.

In this dissertation, I do not go beyond demonstrating that type preservation is
theoretically viable. I leave many practical questions unaddressed to focus on the theory

38 executing a verified program

ECCD CoCD

ECCA CoCk

ECCCC CoCCC

Chapter 4 (ANF) Chapter 6 (CPS)
Chapter 7 (Parametric CC)

Chapter 5 (Abstract CC)

Figure 1.6: Compilers in this Dissertation

of preserving dependent types. By the end of this dissertation, I will not be able to
compile all of Coq, but I will be able to support all the core dependent-type features
found in CIC. I will also not be able to target assembly, but I will show a design that
scales to realistic dependently typed functional languages, such as Coq, and show this
design works with common compiler transformations for functional languages.

1.5 Contributions of This Dissertation

The compiler translations I develop are described in Figure 1.6. On the left are
translations that scale to all the core features of dependency found in Coq. I present
these first as they should scale to Coq in their current form, and they are simpler to
understand, although I developed these last based on lessons learned and problems
exposed when developing the translations on the right. The core calculi used for these
translations are based of the Extended Calculus of Constructions (ECC) (Luo, 1990).
On the right are extensions of the translations that, historically, have been studied
and used for type preservation. The core calculi for these translation are based on
the Calculus of Constructions (Coquand and Huet, 1988). In their current form, these
translations do not scale to some features of dependency.

Below, I summarize the contributions in this dissertation and explain how this
dissertation is organized. I also include an appendix for each language and translation
with complete definitions.

essence of dependent types In Chapter 2, I introduce dependent types formally.
I start by discussing the key features of dependency, i.e., what makes dependent types
dependent. Then I present a calculus, ECCD, that is used as the source language for
the translations in Chapter 4 and Chapter 5. ECCD includes the core features of
dependency found in Coq, although it omits features inessential to dependency, such as
recursive functions.

type-preserving compilation In Chapter 3, I introduce type-preserving compila-
tion and compiler correctness formally. I start with a brief history of type-preserving

1.5 contributions of this dissertation 39

compilation. I then discuss the key difficulties in developing a type-preserving compiler
for a dependently typed language, and present the proof architecture used throughout
this paper. I also discuss type-preserving compilation as a technique for semantics
modeling, which I use to prove logical consistency of my dependently typed target
languages.

a-normal form In Chapter 4, I give a type-preserving A-normal form (ANF)
translation from ECCD to ECCA, an ANF-restricted variant of ECCD with a machine-
like evaluation semantics. The ANF translation is used to make control flow explicit
by naming intermediate computations. I show how ANF can fail to be type preserving
with dependent types, and how to recover type preservation. I discuss the relation to
the well-known failure of type preservation for CPS.

abstract closure conversion In Chapter 5, I give a type-preserving abstract
closure conversion from ECCD to ECCCC . Since ECCA is a restriction of ECCD, the
translation also applies to ECCA, and I show that the closure conversion preserves ANF.
Closure conversion (CC) is commonly used in functional languages to make first-class
functions simple to allocate in memory, but this variant of type-preserving closure
conversion is not commonly used. I show why the commonly used closure conversion
translations do not scale to some features of dependency, whereas abstract closure
conversion does.

This chapter was previously published as Bowman and Ahmed (2018). Compared
to the published version, this chapter is extended to include dependent conditionals
(discussed in Chapter 2), and a proof that ANF is preserved through the abstract closure
conversion. It also includes a correction to the structure of the proof of one lemma; the
theorems are unaffected.

continuation-passing style In Chapter 6, I give a type-preserving Continuation-
Passing Style (CPS) translation from CoCD to CoCk. I start by restricting ECCD

to CoCD, which excludes a key feature of contemporary dependently typed languages
(higher universes). I discuss historical problems preserving dependent types through
CPS translation, and how we can overcome these problems in some settings. I develop
a type-preserving CPS translation for CoCD and prove compiler correctness, but also
show that translation is not type preserving for ECCD. In Chapter 8, I conjecture how
this translation could be extended to translate all of ECCD.

This chapter was previously published as Bowman et al. (2018). The chapter is
essentially the same as the published version, but includes a correction to the structure
of the proof of one lemma; the theorems are unaffected.

parametric closure conversion In Chapter 7, I give a type-preserving para-
metric closure conversion translation from CoCD to CoCCC . I extend commonly used
closure conversion translations based on existential types to dependent types. I show
that this translation is type preserving and prove compiler correctness for CoCD, but

40 executing a verified program

demonstrate that this translation is not type preserving for ECCD. In Chapter 8, I
conjecture how this translation could be extended to translate all of ECCD.

conclusions In Chapter 8, I summarize the lessons of the four translations presented
in this dissertation. I conjecture how these lessons extend to the final two compiler
translations necessary for a prototype type-preserving compiler to assembly, and how the
CPS and parametric closure conversion target languages might be extended to support
the missing features of dependency. I end by speculating about future work—problems
that will need to be addressed to make that compiler not merely theoretically viable,
but practical.

2 E S S E N C E O F D E P E N D E N T T Y P E S

In this chapter, I formally introduce full-spectrum dependent types. I am not making
any advances in type theory; all the features I present are well-known and commonly
used in contemporary dependently typed languages. Therefore, I avoid any detailed
discussion of the meta-theory or mathematical semantics of dependent types and focus
on the interpretation and use of these features as a programming language and program
verification system.

I start by introducing the key features of dependency, that is, features whose expres-
sions e haves types that refer to a sub-expression of e. These are the features that
distinguish dependently typed languages from standard typed languages, and are all
found in contemporary dependently typed languages such as Coq, Agda, Idris, and F*.

I then build a dependently typed source calculus, ECCD, with each of these features.
ECCD is the basis for the source language used in the rest of this dissertation; I use
it as the source language for Chapter 4 and Chapter 5, although, I remove one key
feature from ECCD starting in Chapter 6. Recall that I use Coq as my “ideal” source
language as its core language is relatively close to a small core calculus and it is used
for many large-scale program verification projects. ECCD is close to Coq in terms of
the features of dependency, although it is missing two pragmatic features—recursive
functions and computational relevance—that are orthogonal to dependency, which I
discuss in Chapter 8. If we can develop a type-preserving compiler for ECCD, it ought
to be possible to scale type preservation to Coq.

2.1 Essential Features of Dependency

Typographical Note. In this section, I use a black, non-bold, serif font to typeset
examples of semantic rules and expressions for a dependently typed language that is
never completely defined.

The following features represent the core type theoretic structure found in contempo-
rary dependently typed languages. If we must restrict or omit any of these features to
build a type-preserving translation, then it cannot scale to Coq without further work.

Each feature below consists of some typing rules, some run-time reduction rules used
to run programs, and some equivalence principles used to decide equivalence between
types while type-checking. Equivalence should be sound with respect to reduction, i.e.,
if e reduces to e′, then e is also equivalent to e′. This is what allows reduction to take
place in the type system, and thus how types can compute and refine terms. I omit
explicit equivalence rules when I have given the reduction rules.

41

42 essence of dependent types

2.1.1 Higher Universes

Recall that in full-spectrum dependent types, there is no syntactic distinction between
terms and types—there are only expressions—so we need to describe the type of a
type. Universes are the types of types, and higher universes make it possible to write
specifications about types, or specifications about specifications about types, and so
on. This is useful for formal mathematics and generic programming, both of which are
commonly done in dependently typed languages.

The typing rules for universes are given below.

⊢ Γ

Γ ⊢ Prop : Type 0

⊢ Γ

Γ ⊢ Type i : Type i+1

This presentation uses the usual presentation of universes a-la Russell, where we have
no syntactic distinction between what can appear on the left- or right-hand side of the
colon (:). There is one base universe, Prop , the type of types or type of propositions.
Prop itself has a type, Type 0. I use the meta-variable U to refer to either Prop or
some higher universe Type i.

When source programmers can write down universes other than a single base universe,
i.e., when the programmer can write down Type 0 or Type i and not just Prop , the type
system has higher universes. By disallowing the programmer from writing any universe
other than the base universe, we can get away with exactly two universes: Prop , which
the programmer can use, and its type Type 0, which only the type system can use when
type checking Prop . In this case, Prop is often written as ⋆ and Type 0 is written □.
With higher universes, each universe Type i also needs a type, Type i+1.

Some languages, such as Coq and F*, use multiple base universes with different
interpretations. For example, Coq uses two base universes, Set and Prop , where
(loosely speaking) terms whose types have type Set are interpreted as computationally
relevant (i.e., as program implementations), while terms whose types have type Prop

are interpreted as computationally irrelevant (i.e., as proofs with no run-time behavior).
I ignore this kind of distinction for this dissertation.

Cumulativity is a pragmatic feature related to higher universes found in some depen-
dently typed languages. It allows a type in a lower universe to also implicitly inhabit a
higher universe; it is a form of subtyping for universes. Coq supports cumulativity, while
Agda does not. With cumulativity, the following typing rules are admissible, although
they are usually derived from a subtyping judgment.

⊢ Γ

Γ ⊢ Prop : Type i

⊢ Γ i < j

Γ ⊢ Type i : Type j

Universes support no reduction rules or equivalence principles.

Digression. Universes are used in the type system as a type-level witness to being a
type. Recall that we have no syntactic distinction between terms and types, but universes

2.1 essential features of dependency 43

can give us a way of classifying terms and types. An expression e of type U (either Prop

or Type i) is a type, whereas an expression e of type A such that A is not a universe is
a term.

Despite this, types may still be required at run-time, contrary to our intuition about
terms and types. Deciding whether an expression is computationally relevant is still
an active area of research (Tejiŝĉák and Brady, 2015). For example, Coq provides a
distinction between its two base universes, so deciding whether expressions in those
universes are relevant is simple. But for higher universes, a sound and approximate
static analysis is used. Work on explicit relevance annotations does not have a complete
story for arbitrary inductively defined data or recursive functions (Mishra-Linger, 2008).

2.1.2 Dependent Functions

Dependent functions give the programmer the ability to write functions whose result
type refers by name to the arguments of the function. This allows encoding pre and
postconditions on the function and representing theorems with universal quantification.

The typing rules for dependent functions are given below.

Γ ⊢ A : Type i Γ, x : A ⊢ B : Type i

Γ ⊢ Πx :A.B : Type i

Γ, x : A ⊢ e : B

Γ ⊢ λx :A. e : Πx :A.B

Γ ⊢ e : Πx :A′. B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]

As with all types in a dependent type system, types themselves have types. Therefore, we
have a typing rule for the type of dependent functions Πx :A.B, whose type is a universe
Type i. Dependent function types are introduced by the usual anonymous function
λx : A. e and eliminated through application e e′. In the typing rule for application,
we see dependency—the sub-expression e′ is copied into the type system to instantiate
x. This copying is the key problem in type preserving compilation, essentially because
we need to transform both e′’s interpretation as a program for compilation and e′’s
interpretation as a type-level expression for type-checking.

Dependent functions support the usual run-time operation, β-reduction, defined
below.

Γ ⊢ (λx :A. e1) e2 ▷β e1[e2/x]

It is undesirable to allow η-reduction in the presence of other common features in
dependently typed languages, as it breaks subject reduction (preservation of types under
reduction).

λx :A. f x ̸▷η f

44 essence of dependent types

For example1, if we combine the η-reduction with cumulativity, then subject reduction
does not hold in the system. Suppose λx : A. f x : Πx : Type 1.Type 1 but f : Πx :

Type 2.Type 1 due to cumulativity. After η-reduction, the type changes to a super-type of
the original term, hence subject reduction does not hold. As such, η-reduction is excluded
from Coq, which supports cumulativity. Agda, which does not have cumulativity,
supports η-reduction, but the feature is being reconsidered as it breaks subject reduction
when combined with dependent record types.2

While η-reduction is problematic, we can safely include η-equivalence for dependent
functions. Adding η-equivalence directly, instead of deriving it from η-reduction, avoids
the problems of combining η-principles with cumulativity. We can include η-equivalence
by adding the following (somewhat informal) equivalence rule.

when e is a function

Γ ⊢ e≡ λx : e x.

There are different ways to implement this equivalence, which primarily differ in how
to decide whether e is a function. The simplest technique is to make equivalence
type-directed and use the type of e to decide. Coq uses an untyped equivalence, which
I choose to adopt and present in the next section.
η-equivalence is included in some, but not all, dependently typed languages. Older

version of Coq omitted and current versions of F* exclude it, but recent versions of Coq,
Idris, and Agda include it.

Digression. Unfortunately, by adding η-equivalence instead of deriving it from η-
reduction, we (necessarily) complicate the judgmental structure of the dependent type
system. It means equivalence is not derived simply from the reduction, but is an auxiliary
judgment. Each new judgment complicates the type system and any reasoning about
the type system, and means the choice of how the equivalence is defined will affect type
preservation. However, disrupting subject reduction is at least as problematic, since a
compiler might want to reduce terms, e.g., to perform optimizations. I discuss how the
choice of equivalence judgment affects type preservation further in Chapter 3.

There is an additional concern for typing dependent function when we have higher
universes—predicativity, i.e., what universe the type of the function argument can
have. The earlier typing rule for dependent function types is predicative because it
requires that the argument type have the same universe as the result type, i.e., the
function is quantifying over expressions that “live” in a universe no higher (“larger”)
than the universe of expressions the function produces. Dependent functions can also
support impredicative quantification, in which the function quantifies over expressions

1 This example is reproduced from the Coq reference manual, https://coq.inria.fr/distrib/current/
refman/language/cic.html.

2 https://github.com/agda/agda/issues/2732

https://coq.inria.fr/distrib/current/refman/language/cic.html
https://coq.inria.fr/distrib/current/refman/language/cic.html
https://github.com/agda/agda/issues/2732

2.1 essential features of dependency 45

in a higher universe than the expressions the function produces. A common way to
support impredicativity is to add the typing rule below.

Γ ⊢ A : Type i Γ, x : A ⊢ B : Prop

Γ ⊢ Πx :A.B : Prop

Impredicative dependent functions strictly increases the expressivity of the type system.
For example, with impredicativity we can encode the polymorphic identity function as
f : Πα : Prop . α→ α and apply it to itself (f (Πα : Prop . α→ α) f) : Πα : Prop . α→ α.
Without impredicativity, we could not write this example.

However, impredicativity can easily lead to inconsistency. Martin-Löf’s original
presentation of type theory allowed arbitrary impredicative quantification (Martin-Löf,
1971) by declaring Prop : Prop , but is inconsistent (Girard, 1972) (which I understand
via Coquand (1986), as I’m not sufficiently fluent in French to read the original). We
can also get inconsistency by allowing impredicativity at more than one universe in the
hierarchy (Girard, 1972) (again, via Coquand (1986)); note that the above impredicative
rule allows impredicative quantification only when the dependent function is in the
universe Prop . Impredicativity is also inconsistent when combined with some axioms,
such as set-theoretic excluded middle and computational relevance.

The above tension between additional expressivity and inconsistency makes impred-
icativity a contentious feature. Some dependently typed language allow it, some reject
it entirely, and some meet somewhere in between. Current versions of Agda reject
impredicativity, making it impossible to build certain models such as an embedding of
impredicative System F in Agda’s base universe Set . By default, Coq allows impred-
icativity in Prop but not Set , to support set-theoretic reasoning about programs in
Set which must be computationally relevant. Dependent Haskell (Weirich et al., 2017),
a dependently typed variant of Haskell, allows arbitrary impredicativity and gives up
logical consistency in favor of a more expressive but still type safe language.3

Digression. Dependent function types are also called Π types, dependent products,
indexed Cartesian products, or Cartesian products of a family of types. The latter
names suggesting products seem to be commonly used in mathematical settings, and are
related to how dependent functions are given mathematical semantics. As product is
suggestive of pairs, I exclusively use dependent functions to suggest their interpretation
as functions.

To give an intuition about their nature as pairs, we can view dependent functions
Πx : A.B as an infinite lazy pair B[x0/x] ∧ B[x1/x] ∧ ...B[xi/x] ∧ . . . , for all xi : A.

3 While Dependent Haskell is a realistic contemporary example, the idea of admitting inconsistency in
favor of other pragmatic considerations was seriously considered much earlier by Cardelli (1986).

46 essence of dependent types

The finite representation is a function. To see this concretely, we can encode a finite
lazy pair using dependent functions as follows.

A×B = Πx : bool. if x thenA elseB

fst e = e true

snd e = e false

⟨e1, e2⟩ = λx : bool. if x then e1 else e2

This requires booleans and dependent elimination of booleans, discussed later in Sec-
tion 2.1.4. The type of pairs A×B is defined as a dependent function that, when given
a boolean, returns is something of type A or B depending on the value of the boolean
argument. We provide true to get a A and false to get B. This yields a 2-element
pair, since there are two booleans. We can imagine that if the dependent function was
quantifying over a larger type, with infinitely many elements, how this could represent
an infinite pair.

2.1.3 Dependent Pairs

Dependent pairs allows programmers to write a pair in which the type of the second
component refers to the first component by name. This allows encoding an expression e

paired with a proof e that satisfies some specification, and representing theorems with
existential quantification.

The typing rules for dependent pairs are given below.

Γ ⊢ A : Type i Γ, x : A ⊢ B : Type i

Γ ⊢ Σx :A.B : Type i

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩ as (Σx :A.B) : Σx :A.B

Γ ⊢ e : Σx :A.B

Γ ⊢ fst e : A

Γ ⊢ e : Σx :A.B

Γ ⊢ snd e : B[fst e/x]

Dependent pair types have the type Type i of each component. Unlike dependent
functions, it is always inconsistent to allow impredicativity for dependent pairs (Girard,
1972; Coquand, 1986). The introduction rule is a pair ⟨e1, e2⟩ asΣx :A.B of components
e1, of type A, and e2 of type B[e1/x]. Note that since we cannot, in general, decide
how to abstract the type of e2 from the particular e1, pairs must be annotated. For
brevity, we omit the type annotation on dependent pairs, as in ⟨e1, e2⟩. The elimination
form for dependent pairs are first fst e and second snd e projections of dependent pairs.
Like in the typing rule for application, in the typing rule for second projection snd e, we
see dependency—the first component of the pair e1 can be referred to by the name x in
the type B of the second component.

The reduction rules for dependent pairs are the usual projection rules for pairs,
presented below.

2.1 essential features of dependency 47

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

In this dissertation, I do not require additional equivalence rules, in particular, an
η-equivalence rule. η-equivalence is defined for dependent pairs in Agda (more generally,
for record types, which are iterated dependent pairs), but not in Coq. As I did not find
a need for η-equivalence of dependent pairs, I choose to follow Coq and omit it.

One may expect that we could encode dependent pairs using dependent functions,
similar to how we Church-encode pairs using functions, and thus expect dependent pairs
are not an essential feature. Such an encoding is not possible in general; for example, it
is not possible in the impredicative Calculus of Constructions (Streicher, 1989), and
thus not possible in Coq. Therefore, we need to consider dependent pairs as a separate
and distinct feature of dependency.

Digression. Dependent pairs are also called dependent sums, strong Σ types, indexed
disjoint union, disjoint unions of families of types, and (extremely confusingly, since it
is also used to refer to dependent functions) dependent products. As with dependent
functions, I choose to focus on their interpretation as pairs and use dependent pairs
exclusively.

We can view a dependent pair Σx : A.B as an infinite sum B[x0/x] ∨ B[x1/x] ∨
. . . B[xi/x] . . . for all xi : B. To get an intuition for this, we can recover finite sums
using dependent pairs and booleans in a dual construction to dependent functions. Encoding finite sums

using dependent pairs
also requires
η-equivalence for
booleans, but I ignore this
for simplicity.

A+B = Σx : bool. if x thenA elseB

inj1 e = ⟨true, e⟩
inj2 e = ⟨false, e⟩
case e of x1. e1;x2. e2 = if fst e then e1[snd e/x1] else e2[snd e/x2]

Strongly related to dependent pairs are existential types, a restriction of dependent
pairs that allows elimination only by pattern matching and where the first component
can never be depended upon in elimination. In fact, dependent pairs are sometimes
called strong dependent pairs while existential types are called weak dependent pairs; I
exclusively used existential type or existential package. The typing rules for existential
types are below.

Γ ⊢ A : Type i Γ, x : A ⊢ B : Type i

Γ ⊢ ∃x :A.B : Type i

Γ ⊢ A : Type i Γ, x : A ⊢ B : Prop

Γ ⊢ ∃x :A.B : Prop

Γ ⊢ e : A Γ ⊢ e′ : B[e/x]

Γ ⊢ pack ⟨e, e′⟩ as ∃x :A.B : ∃x :A.B

Γ ⊢ e : ∃x :A.B Γ, α : A, x : B ⊢ e′ : C Γ ⊢ C : Type i

Γ ⊢ unpack ⟨α, x⟩= e in e′ : C

48 essence of dependent types

The introduction form is still a pair, although it is distinguished from dependent pairs
by the pack keyword. However, the elimination for requires pattern matching the type C

produced by pattern matching does not contain any reference to x or α. This prevents
us from defining the second projection operation snd e when the type of the second
component of e depends on the first component. This restriction in the elimination rule
makes impredicative existential types consistent.

Existential types are not an essential feature for dependency since they can be
defined using dependent functions (Coquand, 1986). However, the ability to support
impredicativity makes them useful for some encodings and compiler transformations, as
I discuss further in Chapter 5 and Chapter 7.

2.1.4 Dependent Conditional

Dependent conditional refers to dependent elimination of a sum type, such as booleans
or (non-dependent) sums A+B. The key features are: (1) that the elimination form
is branching and (2) that the type of each branch can be different, depending on the
value e being branched on. This allows programming with branches that depend on the
value of the conditional and encoding theorems with (finite) disjunction.

I choose to use booleans with a dependent if. The key typing rules are below.

⊢ Γ

Γ ⊢ bool : Prop

⊢ Γ

Γ ⊢ true : bool

⊢ Γ

Γ ⊢ false : bool

Γ, y : bool ⊢ B : U Γ ⊢ e : bool Γ ⊢ e1 : B[true/y] Γ ⊢ e2 : B[false/y]

Γ ⊢ if e then e1 else e2 : B[e/y]

The introduction forms are the usual true and false, but notice that the elimination
form is dependent. When branching on an expression e, the type of each branch B can
be different depending on the value of e.

Digression. Some dependent conditional construct is necessary, although which partic-
ular construct doesn’t matter as each can be encoded with the other. We use the same
construction to encode finite sums using booleans and dependent pairs as presented in
the previous section, and encode booleans using finite sums as follows.

bool = 1 + 1

true = inj1 ⟨⟩
false = inj2 ⟨⟩
if e then e1 else e2 = case e of _. e1;_. e2

Digression. The dependent conditional is the only feature of dependency commonly
presented as positive type—essentially, a type whose constructors are considered primary
and whose elimination form is simply pattern matching on the constructors. This is

2.2 a representative source calculus 49

Universes U ::= Prop | Type i

Expressions e,A,B ::= x | U | Πx : A.B | λ x : A. e | e e | Σx : A.B
| ⟨e1, e2⟩ asΣ x : A.B | fst e | snd e | bool | true | false
| if e then e1 else e2 | let x= e in e

Environments Γ ::= · | Γ, x : A | Γ, x = e

Figure 2.1: ECCD Syntax

interesting, as it also introduces the most difficulty for type preservation, as I discuss in
Chapter 4 and Chapter 6.

It is unclear if this is because of the presentation as a positive type. The presentation
as a negative type requires a sequent calculus presentation where sequents support multiple
conclusions. This is not done in any dependently typed language, however, like type
preservation for dependent types, combining sequent calculus and dependent types has
been a long open problem and is still ongoing work (Miquey, 2018).

2.1.5 What About Inductive Types

Those familiar with dependent types may be surprised at the omission of a common
and seemingly critical feature from the feature set just presented: inductive types. Most
dependently typed languages—including Coq, Agda, Idris, and F*—feature primitive
inductively defined datatypes, which allow the programmer to add new datatypes over
which terminating functions can be defined. This both allows the programmer to
add new datatypes and simplifies logical consistency by providing a schematic way of
generating well-founded inductive structures. However, we can instead encode inductive
datatypes using the following features of dependency and recursive types. For example,
Altenkirch et al. (2010) give a dependently typed calculus in which inductive datatypes
are encoded using dependent functions, dependent pairs, dependent conditionals (all
introduced below), and recursive types. (This idea should be familiar from the simply
typed and even untyped settings.) Since recursive types introduce no new expressiveness
in terms of dependency, I consider them inessential.

2.2 A Representative Source Calculus

In this section I present ECCD, a source calculus with all the core features of dependency
described in the previous section. I include a complete reference in Appendix A, with
any elided portions of figures. I start by presenting the judgments related to type
checking, then move on to judgments related to evaluation and compilation.

50 essence of dependent types

Typographical Note. In this section, I typeset ECCD as a source language, that is,
in a blue, non-bold, sans-serif font, because it will serve as a source calculus in later
chapters.

ECCD is meant to capture the features of dependency found in contemporary depen-
dently typed languages, such as Coq, without any features orthogonal to dependency and
type preserving compilation. This allows us to study type preservation and dependency
without worrying about extraneous details.

ECCD is also designed to simplify type preservation as much as possible while still
being a convincing representation of a realistic dependently typed language. I add
one feature that is not essential to dependency but simplifies some proofs—definitions,
which I introduce shortly. I also carefully design the judgmental structure of ECCD.
In particular, I choose to implement non-type-directed equivalence through (non-type-
directed) reduction. This complicates η-equivalence slightly, but greatly simplifies type
preservation as I discuss in Chapter 3. The choice is also justified—the Calculus of
Inductive Constructions, on which Coq is based, uses the exact same design.

2.2.1 Type System

The language ECCD is Luo’s Extended Calculus of Constructions (ECC) (Luo, 1990)
extended with definitions (Severi and Poll, 1994) and dependent conditionals (booleans
and dependent if). ECC itself extends the Calculus of Constructions (CoC) (Coquand
and Huet, 1988) with dependent pairs and higher universes.

I present the syntax of ECCD in Figure 2.1. As described in Chapter 1, there is no
explicit phase distinction, i.e., there is no syntactic distinction between terms and types;
there are only expressions. For clarity, I will usually use the meta-variable e to evoke
a term, and the meta-variables A and B to evoke a type. For variables, I usually use
Latin letters such as x and y to evoke a term variables, and Greek letters such as α and
β to evoke a type variables. Of course, since there is no formal distinction, the above
conventions will break down. The expressions include all the features presented in the
previous section, plus let expressions let x=e in e′, which are used to introduce definitions.
Note that let-bound definitions in ECCD do not include type annotations; this is not
standard, but type checking is still decidable, and it simplifies compilation (Severi and
Poll, 1994). I discuss how this affects the translation in Chapter 4.

All expressions are typed and reduced with respect to a local environment Γ. Envi-
ronments contain assumptions or axioms x : A, which declares that the name x has type
A or, equivalently, that x is a proof of A, and definitions x = e, which declares that the
name x is defined to be the expression e. For simplicity, I typically ignore the details
of capture-avoiding substitution. This is standard practice, but is worth pointing out
explicitly anyway.

In Figure 2.2, I define the reduction relation Γ ⊢ e▷ e′, i.e., a single step of evaluation.
This reduction relation is used both for running programs and deciding equivalence
between types during type checking, therefore reduction is defined over open terms.

2.2 a representative source calculus 51

Γ ⊢ e▷ e′

Γ ⊢ (λ x : A. e1) e2 ▷β e1[e2/x]

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ if true then e1 else e2 ▷ι1 e1

Γ ⊢ if false then e1 else e2 ▷ι1 e2

Γ ⊢ x ▷δ e where x = e ∈ Γ

Γ ⊢ let x= e in e′ ▷ζ e[e′/x]

Figure 2.2: ECCD Reduction

Γ ⊢ e▷∗ e′

Γ ⊢ e▷∗ e
Red-Refl

Γ ⊢ e▷ e1 Γ ⊢ e1 ▷
∗ e′

Γ ⊢ e▷∗ e′
Red-Trans

Γ ⊢ e1 ▷
∗ e′1 Γ, x = e′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 in e2 ▷
∗ let x= e′1 in e

′
2

Red-Cong-Let
· · ·

Figure 2.3: ECCD Conversion (excerpts)

While the reduction relation is untyped, i.e., not type directed, it is only guaranteed to
be terminating on well-typed terms. The reduction relation include all the reduction
rules presented previously in Section 2.1, plus the two reduction rules for definitions:
(1) δ-reduction of a variable to its definition from the current local environment and (2)
ζ-reduction of a let-expression by substitution. As we will see in the typing rules for let,
definitions are introduced during type checking, not reduction, thus δ-reduction and
ζ-reduction are not redundant.

In Figure 2.3, I give the main rules for the conversion relation Γ ⊢ e▷∗e′. The remaining
congruence rules are entirely uninteresting; nevertheless, I define them in Figure A.3.
Conversion is the reflexive, transitive, congruence closure of the reduction relation—
it applies any reduction rule, any number of times, under any context. Intuitively,
conversion is used to normalize terms in types and to normalize type-level computation,
and thus decide type equivalence. It tells us when one type converts to another. It also
serves to define the for ECCD.

52 essence of dependent types

The only surprising conversion rule is Rule Red-Cong-Let, which allows a definition
to be introduced when applying conversion to a let expression. This means there are
two, confluent, ways to evaluate a let expression: Γ ⊢ let x= e in e′ ▷ζ e

′[e/x], or

Γ, x = e ⊢ x▷δ e

...

. . .

...

Γ, x = e ⊢ x▷δ e

...

Γ, x = e ⊢ e′ ▷∗ e′[e/x]

Γ ⊢ let x= e in e′ ▷∗ let x= e in e′[e/x] Γ ⊢ let x= e in e′ ▷ζ e
′[e/x]

Γ ⊢ let x= e in e′ ▷∗ e′[e/x]

The advantage is that definitions, essentially a delayed substitution that is introduced
during type checking, allow δ-reduction during type-checking. In a non-dependent
setting, we could just write an application anywhere we might write let, since the two
programs reduce to exactly the same thing. However, with definitions, δ-reduction
essentially allows what would be a β-reduction at run-time to happen during type-
checking, providing an additional type equivalence. For example, the β-reduction
(λ x : A. e′) e ▷β e′[e/x] provide (syntactically, through substitution) the knowledge that
x ≡ e, but only after the function is type checked and allowed to evaluate. Instead in
the let expression above, definitions record that x = e while type checking the body e′,
and provide the equivalence x ≡ e via δ-reduction. This is useful for type preservation,
as I show in Chapter 4 and Chapter 5.

Digression. Definitions aren’t necessary to get this additional equivalence. The same
effect can be achieved by simulating definitions using the identity type to provide an
explicit proof of equality x = e via an additional argument to a function. Then, by
eliminating this in the body of the function, the body is type-checked under the additional
equivalence. That is, we can define let x= e in e′ using the identity type as follows.

let x= e in e′
def
= (λ (x, p : x = e). subst p e

′) e (refl e)

Here, x = e is the identity type, a type representing the fact that two expressions are
equivalent. The elimination form subst p e

′ essentially substitutes x by e in the type of e′

when p : x = e. The introduction form refl e can only introduce a proof that e = e, i.e.,
refl e : e = e

However, defining let this way introduces significant indirection in what we’re trying to
express, and creates unnecessary function applications which could complicate compilation,
so I just add definitions to ECCD.

In Figure 2.4, I define definitional equivalence (also known as judgmental equivalence)
Γ ⊢ e≡ e′, which defines when two expressions are equivalent. Equivalence is defined as
conversion up to η-equivalence on functions, which is standard (Luo, 1990).

Note that η-equivalence rules do not look like the standard η-equivalence for functions
presented in Section 2.1, and do not actually check both sides are functions. For
example, in Rule ≡-η1, the right side e2 is just converted to an arbitrary e′1 and then

2.2 a representative source calculus 53

Γ ⊢ e≡ e′

Γ ⊢ e1 ▷
∗ e Γ ⊢ e2 ▷

∗ e

Γ ⊢ e1 ≡ e2
≡

Γ ⊢ e1 ▷
∗ λ x : A. e Γ ⊢ e2 ▷

∗ e′2 Γ, x : A ⊢ e≡ e′2 x

Γ ⊢ e1 ≡ e2
≡-η1

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ λ x : A. e Γ, x : A ⊢ e′1 x≡ e

Γ ⊢ e1 ≡ e2
≡-η2

Figure 2.4: ECCD Equivalence

Γ ⊢ A⪯ B

Γ ⊢ A≡ B

Γ ⊢ A⪯ B
⪯-≡

Γ ⊢ A⪯ A′ Γ ⊢ A′ ⪯ B

Γ ⊢ A⪯ B
⪯-Trans

Γ ⊢ Prop ⪯ Type 0
⪯-Prop

Γ ⊢ Type i ⪯ Type i+1
⪯-Cum

Γ ⊢ A1 ≡ A2 Γ, x1 : A2 ⊢ B1 ⪯ B2[x1/x2]

Γ ⊢ Πx1 : A1.B1 ⪯ Πx2 : A2.B2
⪯-Pi

Γ ⊢ A1 ⪯ A2 Γ, x1 : A2 ⊢ B1 ⪯ B2[x1/x2]

Γ ⊢ Σx1 : A1.B1 ⪯ Σx2 : A2.B2
⪯-Sig

Figure 2.5: ECCD Subtyping

applies e′1 as a function. This trick allows us to define η-equivalence without making
reduction, conversion, or equivalence type directed, but still ensure that two expressions
are η-equivalent only when both behave as equivalent functions. Note, however, that it
ignores domain annotations, so the following apparently strange equivalence holds for
arbitrary A and B.

λ x : A. e ≡ λ x : B. e

This is not a problem, since the type system will only use the equivalence relation after
checking that the terms are well-typed. In fact, this design choice is an advantage, as
discussed in Chapter 3. Because there is no explicit symmetry rule, we require two
symmetric η-equivalence rules.

54 essence of dependent types

Γ ⊢ e : A

· · ·
x : A ∈ Γ

Γ ⊢ x : A
Var

⊢ Γ

Γ ⊢ Prop : Type 0
Prop

⊢ Γ

Γ ⊢ Type i : Type i+1
Type

⊢ Γ

Γ ⊢ bool : Prop
Bool

⊢ Γ

Γ ⊢ true : bool
True

⊢ Γ

Γ ⊢ false : bool
False

Γ, y : bool ⊢ B : U Γ ⊢ e : bool Γ ⊢ e1 : B[true/y] Γ ⊢ e2 : B[false/y]

Γ ⊢ if e then e1 else e2 : B[e/y]
If

Γ ⊢ e : A Γ, x : A, x = e ⊢ e′ : B

Γ ⊢ let x= e in e′ : B[e/x]
Let

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A⪯ B

Γ ⊢ e : B
Conv

⊢ Γ

⊢ ·
W-Empty

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
W-Assum

⊢ Γ Γ ⊢ e : A

⊢ Γ, x = e
W-Def

Figure 2.6: ECCD Typing (excerpts)

I include cumulativity through subtyping Γ ⊢ A⪯ B, Figure 2.5. Subtyping extends
equivalence with the cumulativity rules, allowing types in lower universes to inhabit
higher universes, and the standard congruence rules. Note that functions are not contra-
variant in their argument, but equi-variant. This is surprising and not strictly necessary;
it is used to support a simpler set-theoretic semantics.4 However, it is standard (Luo,
1990), so I stick with it.

An excerpt of type system for ECCD in is given in Figure 2.6, and is mutually
defined with the well-formedness relation on typing environments. The typing rules
are essentially the same as presented earlier in Section 2.1, with the addition of the
typing rule for let, and the rule for subtyping, Rule Conv. The complete figure is given
in Figure A.6 in Appendix A. Rule Let gives a dependent type for let expressions;
note that in let x = e in e′, the type B[e/x] contains the sub-expression e. But it also
binds x = e as a definition while type checking the body e′. This essentially allows the
dependency B[e/x] to be resolved “early”, as discussed earlier. Rule Conv allows any
expression e whose type is A to also be valid at the super type B, or, since subtyping
extends equivalence, when A ≡ B. Because equivalence and subtyping are defined on

4 https://web.archive.org/web/20180913043136/https://pigworker.wordpress.com/2015/01/09/
universe-hierarchies/

https://web.archive.org/web/20180913043136/https://pigworker.wordpress.com/2015/01/09/universe-hierarchies/
https://web.archive.org/web/20180913043136/https://pigworker.wordpress.com/2015/01/09/universe-hierarchies/

2.2 a representative source calculus 55

Source Observations v ::= true | false

Target Observations v ::= true | false

v ≈ v

true ≈ true false ≈ false

Figure 2.7: Source and Target Observations

untyped syntax, we must also ensure that B is a valid type. The well-formedness rules
for environments are entirely standard.

2.2.2 Evaluation and Compilation

Typographical Note. In this section, I use a bold, red, serif font for target language
observations. For now, the target language is undefined, but the observations will be the
same in every target language.

An expression being type checked is different from program, i.e., an expression that
can be evaluated at run time. Expressions have arbitrary free variables and arbitrary
types. Programs are closed expressions that evaluate and produce easily distinguished
outputs. Programs must be closed or evaluation cannot proceed past some variables,
and must have outputs that a programmer can distinguish. For example, a programmer
does not want to try to distinguish between two functions, but can easily distinguish
between two booleans or two printed strings.

To formalize programs we first need to fix a notion of observation, the distinguishable
results of evaluating a program. Since ECCD is effect-free and strongly normalizing,
I define observations as boolean values in Figure 2.7. Observations should be simple
for the programmer to distinguish even across languages. I formalize this by defining
a cross-language observation relation ≈. This relates source and target observations
in standard way—booleans are related across languages when they are the same. The
languages will change for each translation, but all language observations will also be
boolean values and use the same observation relation.

Γ ⊢ e

Γ ⊢ e : bool

Γ ⊢ e

⊢ e

· ⊢ e

⊢ e

Figure 2.8: ECCD Components and Programs

I formalize programs and program components via the judgments ⊢ e and Γ ⊢ e

in Figure 2.8. A well-formed program component (or just component) is a well-typed
expression e that produces an observation when linked with a closing substitution (i.e.,
has type bool). A well-formed program is simply a closed component.

56 essence of dependent types

eval(e) = v

eval(e) = v if ⊢ e and · ⊢ e▷∗ v

Figure 2.9: ECCD Evaluation

In Figure 2.9, I define the evaluation (meta-)function eval(e), which runs programs to
produce observations. This defines the run-time semantics of ECCD programs. It is this
semantics that the compiler will preserve to prove compiler correctness, as discussed in
Chapter 3.

Closing Substitutions γ
def
= · | γ[x 7→ e]

Γ ⊢ γ

· ⊢ ·
Γ ⊢ γ · ⊢ e : A

Γ, x : A ⊢ γ[x 7→ e]

Γ ⊢ γ Γ ⊢ e : A

Γ, x = e ⊢ γ[x 7→ γ(e)]

γ(e) = e

·(e) = e γ[x 7→ e′](e) = γ(e[x/e′])

Figure 2.10: ECCD Closing Substitutions and Linking

For reasoning about separate compilation, I formalize linking for ECCD in Figure 2.10.
Free variables Γ represent the imports to a component e, and their types represent the
interface for those imports. A closing substitution γ represents the components that e

is linked with via γ(e). This is a meta-application of the closing substitution to e and
replaces each x ∈ Γ by an expression γx in the closing substitution. For linking to be
well-defined—i.e., for there to be no linking errors—the closing γ substitution must be
well-typed, Γ ⊢ γ, with respect to the same environment as e, Γ ⊢ e : A. Typing for
a substitution γ simply checks that each component [x 7→ e′] ∈ γ in the substitution
has the corresponding type in Γ, i.e., e′ : A when x : A ∈ Γ. For definitions in Γ, the
substitution must map to a closed version of the same definition.

3 T Y P E - P R E S E R V I N G C O M P I L AT I O N

In this chapter, I introduce type-preserving compilation at a high level, the particular
problems that arise in proving type preservation for dependent types, and the standard
proof architecture I will use in the rest of this dissertation.

Typographical Note. In this chapter I typeset a source language in a blue, non-bold,
sans-serif font, and a target language in a bold, red, serif font. Unless otherwise
specified, these languages are arbitrary except for the requirements presented in Chapter 2,
since the proof architecture and lessons apply generally to dependently typed source and
target languages.

3.1 A Brief History

I begin with a brief history of type preservation leading up to this dissertation. For a
more in-depth survey of the use this early history of types in compilation, see Leroy
(1998, Section 2 and 3).

Early compilers preserved types into intermediate languages (ILs) for optimization,
not for ruling out errors. Aho et al. (1986, Chapter 10) describe simple optimizations that
use types to specialize arithmetic operations, such as generating different instructions
for integer or floating-point numbers based on types. Leroy (1992) uses types in an
intermediate language to remove memory indirection introduced to support polymorphic
functions. Tarditi et al. (1996) develop TIL, a compiler for ML with type-directed
optimizations as a central feature. The TIL compiler preserved types down to a typed
intermediate language (hence the name TIL), in which types are used to optimize
polymorphic functions, loops, and garbage collection. The Glasgow Haskell Compiler
(GHC) employs a typed intermediate language, Core, and performs some type-based
optimizations in Core (Peyton Jones, 1996). The SML/NJ compiler was extended with
a typed intermediate language, FLINT, to support type-based optimization and study
how to reduce compilation overhead caused by preserving types (Shao et al., 1998). The
System F to Typed Assembly Languages (F-to-TAL) compiler was preserved all typing
structure down to a typed assembly language (TAL), and leverages types in the assembly
language for low-level optimizations such as array bounds check elimination (Morrisett
et al., 1999).

While initially used for optimization, early work on type-preserving compilation of
functional languages recognized the use of types for ruling out some miscompilation
errors. For example, the TIL compiler, while focusing on the use of types for optimization,
points out that the ability to type check the output of the compiler helps to find and

57

58 type-preserving compilation

fix miscompilation errors (Tarditi et al., 1996). The GHC team also recognized the
potential for ruling out miscompilation errors and developed a tool, Core Lint, for type
checking the output of each compiler pass. This use seemed to surpass other uses;
as the author, Simon Peyton-Jones, says “One of the dumbest things we did was to
delay writing Core Lint.” (Peyton Jones, 1996, section 8). The F-to-TAL compiler
uses types in the target assembly language and proves type safety, ruling out a class of
miscompilation errors from the entire compiler in the process: type and memory safety
errors are statically ruled out (Morrisett et al., 1999).

This work spawned an approach related to type preservation for ruling out both
linking errors and miscompilation errors, in particular, proof-carrying code. The work
on TIL is credited (Tarditi et al., 2004) with spawning the idea of proof-carrying code
(PCC) (Necula, 1997) and certifying compilation (Necula and Lee, 1998). The two ideas
are essentially similar. In PCC, the idea is to pair implementation code (executable) with
a correctness specification and a proof that the implementation satisfies its specification.
This allows ruling out linking errors by enforcing the specification when linking, and
removes the implementation from the trusted code base. Certifying compilation extends
this idea to compilers to remove the compiler from the trusted code base and eliminate
miscompilation errors. In a certifying compiler, rather than prove the compiler correct,
we design the compiler to produce both proof-carrying code, i.e., to produce or preserve
certificates (proofs) that the compiled code meets its correctness specifications.

PCC and certifying compilation can be viewed as instances of type preservation in
which we interpret type broadly as either intrinsic or extrinsic, i.e., as either Church
style or Curry style. Work on PCC and certifying compilation proceeded two veins: (1)
using intrinsically typed languages and (2) using extrinsically typed languages.

In intrinsically typed systems, such as in TIL and TAL, where types represent specifi-
cations, well-typed implementations represent proofs and type checking is proof checking.
The work on TIL describes an untrusted compiler that could produce fully optimized TIL
code and a client could automatically verify simple safety properties, such as memory
safety, by type checking (Tarditi et al., 1996). This guarantees absence of memory safety
errors introduced when linking two compiled components, i.e., it rules out linking errors
that violate memory safety. In TAL, the idea is carried out to the assembly level. Any
two TAL programs are guaranteed to be free of memory safety errors when linked, if
their types are compatible. Later work introduced DTAL (Xi and Harper, 2001), a
variant of TAL with indexed types, which could statically rule out memory indexing
errors. Chen et al. (2010) develop a certifying compiler from Fine, an ML-like language
with refinement types, to DCIL, a variant of the .NET Common Intermediate Language
with refinement types, capable of certifying functional correctness properties, such as
access control and information-flow policies.

In extrinsic type systems, such as the work of Necula (1997) and Necula and Lee (1998),
specifications and proofs are written in separate languages from the implementation.
Necula (1997) uses LF to represent specifications and proofs, and axiomatizes the
behavior of implementation primitives in LF specifications. Shao et al. (2005) take a

3.2 a model type-preserving compiler 59

similar approach, but use CIC as an extrinsic type system over a high-level functional
language.

Compared to extrinsic systems, intrinsic systems have smaller certificates by reusing
the implementation to represent the proof (Xi and Harper, 2001), and can avoid the
problem of specification puns. However, it is simpler to build certificates in extrinsic
systems, since the specification and proof can be designed and manipulated separately
from the implementation.

So far, work on certifying compilation and PCC has been limited to either extrinsic
systems or to restricted (i.e., non-full-spectrum) dependent types. This is apparently
due to the difficulty of automatically transforming proofs during compilation. For
example, Shao et al. (2005) point to using an extrinsic system explicitly because of a
known impossibility result regarding preserving dependent types through the standard
CPS translation (Barthe and Uustalu, 2002).

3.2 A Model Type-Preserving Compiler

F-to-TAL developed the standard model of a type-preserving compiler from a high-level
functional to a low-level assembly language. This work uses System F as a stand-in for
a functional source programming language. The target language, TAL, is a low-level
assembly-like language. F-to-TAL is structured as five passes, depicted in Figure 3.1. The
first two are so-called “front-end” translations, which make high-level functional control-
flow and data-flow explicit in order to facilitate low-level transformations. These are
the continuation-passing style (CPS) translation, and the closure conversion translation.
I’ll explain these two in detail shortly. The next three so-called “back-end” translations
make machine-level details explicit. These are: hoisting, a simple administrative pass
that lifts function definitions to the top-level; explicit allocation, which makes the heap
and memory operations explicit; and code generation, which makes machine details like
word size and registers explicit, and which implements high-level operations in terms of
sets of machine instructions.

In this dissertation, I focus on the two front-end translations as they introduce a
particular challenge for type-preserving compilation. They are standard translations
for studying type preservation (Minamide et al., 1996; Barthe et al., 1999; Shao et al.,
2005; Ahmed and Blume, 2008; Chen et al., 2010; Ahmed and Blume, 2011; New et al.,
2016). As I describe in the rest of this section, the translations fundamentally change
the meaning of types, particularly for higher-order expressions, by introducing explicit
distinctions into the terms described by types. By creating new distinctions during
compilation, a type-preserving compiler needs to automatically adapt specifications and
proofs to describe and proof the correctness of code with explicit distinctions.

Often we explain CPS in terms of making control flow and evaluation order explicit,
but I think of it as changing each type by imposing an explicit distinction between
computations, which evaluate at run time and may have effects, and values, which simply
exist and do not evaluate at run-time until they are composed with a computation. In

60 type-preserving compilation

Source

CPS IL Front end

Closure Conversion IL

Hoisted IL

Back end Allocation IL

Assembly

−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.1: Model Type-Preserving Compiler

most functional languages, prior to CPS translation, all terms are implicitly cast to
values through evaluation; this is helpful for equational reasoning. CPS translation
transforms every term into a computation that expects a continuation to which it
passes the underlying value when the computation is complete. This facilitates low-level
machine implementation since machines typically have such distinction, for example,
with values that exist in the heap and in registers and instructions (computations) that
manipulate those values.

To understand this, consider the following example. We might write the expression
e1 = (λ x. x) true in ECCD which we think of as being equivalent to the value e2 = true.
This is equivalent to true, but e1 computes while e2 does not, so we need to make that
distinction explicit. Eventually, we need to implement e1 as something like the following
pseudo-assembly, whereas we implement e2 as true.

// expects value in x and continuation in k

f:

ret = x;

goto k;

halt:

print(ret);

main:

k = halt;

x = true;

goto f;

When the program begins, it will initialize the continuation to halt, which will end the
program with the final observation. Then it will set a register or stack frame, x, to the
value true, and jump to the function f. Notice that λ x. x makes no explicit distinctions

3.2 a model type-preserving compiler 61

between value and computation, but to generate the pseudo-assembly we need to know
that the body of the function x is not merely a value but a computation that will return
somewhere, unlike true which is merely a value to be passed around.

There are alternatives to CPS translation that make the same value vs computation
distinction, and each offer advantages and disadvantages for type preservation and
compilation. For example, the A-normal form (ANF) and the monadic-normal form
translations also impose this distinction. Unlike CPS, ANF and monadic form do not
make explicit changes to types but primarily modify syntactic structure. I discuss this
further in Chapter 4, but in short: by avoiding changing types significantly we can
simplify type preservation.

The closure-conversion translation is typically explained as about making first-class
functions easy to heap allocate, but, as in CPS, I prefer to view it as introducing
an explicit distinction—this time, a distinction between a use of computation and
a definition of a computation. This is usually seen in functions because functions
are the only source-level abstraction for defining computations in many languages.
Prior to closure conversion, every first-class function can simultaneously define a new
computation and can be used immediately.

For example, in e1 = (λ x. x) true from before, the function λ x. x is simultaneously
defined (i.e., it comes into existence), and used (i.e., it is immediately applied). After
closure conversion, all computation is represented by closed code, which defines the
computation generally and separately from its use. In the pseudocode example above,
we need to somehow separate the definition of (λ x. x) as a labeled block of code f:, and
its use, i.e., the goto f;.

The primary difficultly in closure conversion is that defining a computation (e.g., a
function) implicitly captures the local environment, and using the computation implicitly
gives access to that local environment, regardless of where the computation is used. To
make the definition and use explicitly distinct, we must make this implicit environment
explicit. We do this by introducing an explicit closure object, i.e., closed code paired
with the local environment the computation expects. The code part can be lifted to the
top-level while each use explicitly passes in the environment.

The main alternative to closure conversion is defunctionalization. While closure
conversion represents the implicit environment as an explicit object that is passed to
closed code, defunctionalization transforms every application into a case-split, and every
closure into a constructor for a sum. The constructor holds the local environment and
the case-split is responsible for setting up the local environment in the scope of the
code. This ensures that the local environment cannot be passed to untrusted code,
which would leak hidden local variables. Unfortunately, it requires a whole-program
transformation, so it cannot be used with separate compilation.

The goal of this dissertation is to build a model of the front-end translations of a
compiler. This solves the main challenges of transforming higher-order dependently
typed expressions, and informs the design of dependent-type-preserving translations
in general. After these two translations, we end up in a language analogous to a pure
subset of C with all higher-order expressions essentially encoded in first-order data.

62 type-preserving compilation

Then the challenges become about representing dependently typed machine concepts,
such as the heap and word sized registers.

3.3 The Difficulty of Preserving Dependency

Generally speaking, type preservation is difficult because when introducing new distinc-
tions we must automatically adapt specifications and proofs. After closure conversion,
specifications and proofs about a function with certain lexical variables must be adapted
to be valid in the global scope. After CPS, a value of type A has a fundamentally differ-
ent interface from computations of type A. Any specification that relied on expressions
being implicitly cast to values will need some explicit way to transform a computation
into a value.

The problem is worse for intrinsic dependent types because the compiler transforma-
tions disrupt the syntactic reasoning used by the type system to decide type checking.
To allow arbitrary low-level run-time terms to still appear in types, the type system
must be able to check proofs encoded in low-level abstractions. For example, in ECCD,
the type system decides equivalence by evaluating run-time terms during type checking.
This works well in high-level, functional languages such as the core language of Coq, but
evaluating low-level machine languages requires threading all the machine-state (e.g., the
heap or register file) through evaluation, so we must design a type system that captures
all of that necessary state. We would need to adapt all the typing judgments—reduction,
conversion, equivalence, subtyping, typing, and well-formedness—to track this state and
capture new invariants that are expressed explicitly at the low-level.

Each of the features of dependency introduced in Chapter 2 rely on this kind of
syntactic reasoning, which is disrupted by translation. For example, Barthe and Uustalu
(2002) show that the standard call-by-name (CBN) double-negation CPS translation
is not type preserving in the presence of dependent pairs. The problem is that the
typing rule Rule Snd for second projection of a dependent pair, snd e : B[fst e/x],
copies the syntax fst e into the type B. This represents evaluating e to a value and
taking the first projection. After CPS translation, such a term is invalid as there is a
computation vs value distinction, so target language version of the typing rule Rule
Snd can no longer express dependency on a computation syntactically, the way it was
expressed in the source language. We end up needing some syntactic way to express
snd e : B[as-a-value(fst e)/x], that is, to cast an arbitrary computation to a value but in
a way that is compatible with the low-level machine semantics we want the output to
use. (I discuss this example in greater detail in Chapter 6.)

There is an additional difficulty in proving type preservation in the presence of
dependent types—the proof architecture. I discuss this difficulty in detail next.

3.4 proving type preservation for dependent types 63

3.4 Proving Type Preservation for Dependent Types

In this section, I introduce the proof architecture I use in the rest of this paper, discuss
some difficulties that arise when attempting to prove type preservation for dependent
types, and how this particular architecture and the design of ECCD avoids them.

Typographical Note. Recall that the source language in a blue, non-bold, sans-serif
font, and target language in a bold, red, serif font, represent arbitrary source and
target languages.

Ultimately, our goal is to prove type preservation of some translation JeK. Semi-
formally (since so far this translation is undefined), this is stated in Theorem 3.4.1.

Theorem 3.4.1 (Type Preservation). If Γ ⊢ e : A then JΓK ⊢ JeK : JAK.

Type preservation states that if, in the source type system, the source term e is well-
typed with type A under the local environment Γ, then, in the target type system, the
translation JeK of e is well-typed at the translated type JAK under the translated local
environment JΓK.

The proof of type preservation is typically by induction on the same structure over
which the compiler is defined. What this structure is depends on what information the
compiler requires to perform a transformation.

In an untyped setting, that structure is the structure (or size) of syntax. For example,
the untyped call-by-value CPS translation of Plotkin (1975) on the untyped λ-calculus
is given below.

JxK def
= λ k. k x

Jλx. eK def
= λ k. k (λx. JeK)

Je1 e2K
def
= λ k. Je1K (λx1. Je2K (λx2. x1 x2 k))

Note that the translation is easily defined by induction on the syntactic structure of
terms.

In a typed setting or in a type-preserving setting, the compiler must often be defined
over the typing derivation or the height of typing derivations. This is because, in
general, the compiler may need to make decisions based on types, or produce type
annotation in the target language. For example, if we try to adapt the above call-
by-value CPS translation to simply-typed λ-calculus functions, we wind up with the
following incomplete translation.

Jλx :A. eK not-really-def
= λ k :B′. k (λx : JAK. JeK)

64 type-preserving compilation

The target language, being typed, requires a type annotation B′ for the continuation
k. To produce this annotation, the compiler requires the type A→B of the function
λx :A. e. Instead, the translation should be defined over typing derivations, as follows.

Γ, x : A ⊢ e : B ⇝ e+

Γ ⊢ λx :A. e : A→B ⇝ λ k : (JA→BK →⊥). k (λx : JAK. e+)

This way, the translation has access to all typing information in order to produce type
annotations or use type information to inform the translation.

In a simply-typed setting, defining compilation over typing derivations poses no
problems. We can define the translation JeK of terms as short-hand, defined as follows.

JeK def
= e where Γ ⊢ e : A⇝ e

The translation over syntax JeK is simply notation for the translation over typing
derivations, and we make the typing derivation Γ ⊢ e : A an implicit parameter. Then
we prove Theorem 3.4.1 by induction over the typing derivation.

With dependent types, this simple recipe does not work because we must show many
mutually defined judgments are preserved, not just one typing judgment. The problem is
due to “the infernal way that everything depends on everything else”1. The judgmental
structure of the type system is much more complex—recall that we defined six judgments
just to define the ECCD type system—and the judgments can be mutually defined.
To prove type preservation, we must prove that each additional judgment is preserved.
Because those judgments are mutually defined, we cannot, in general, cleanly break
up the judgmental structure into separate lemmas—we may have to show that all
judgments are preserved in one large simultaneous induction. I’ll introduce each of the
lemmas required by the judgmental structure of ECCD, before going into detail about
the problems of proving each judgment is preserved.

3.4.1 The Key Lemmas for Type Preservation

As the judgmental structure of typing gets more complex, we need additional lemmas
before we can prove Theorem 3.4.1.

For example if the type system allows substitution into types, we need a composition-
ality lemma, which states that translating first and then substituting is equivalent to
substituting first and then translating.

Lemma 3.4.2 (Compositionality). JA[A′/x]K ≡ JAK[JA′K/x]

This requires some definition of type equivalence, ≡, which could be as simple as
syntactic identity. For dependent types, it must usually be definitional equivalence.
Intuitively, this is because a dependent-type-preserving translation must introduce new

1 From McBride (2010).

3.4 proving type preservation for dependent types 65

equivalence rules for whatever feature is made explicit by the translation. (I discuss
this further in Chapter 8.)

In ECCD, we require compositionality, due to Rule App, Rule Snd, and Rule Let.
For example, consider Rule App.

Γ ⊢ e : Πx : A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
App

We know that Γ ⊢ e1 e2 : B[e2/x], and must show that JΓK ⊢ Je1 e2K : JB[e2/x]K. Even
in the case that the translation is simply homomorphic on application, thus leaves
application alone, the target variant of Rule App will only tell us JΓK ⊢ Je1K Je2K :

JBK[Je2K/x]. Thus, we either need to know JB[e2/x]K and JBK[Je2K/x] are syntactically
identical or, by Rule Conv, equivalent. In general, they will not be syntactically
identical. For example, consider closure conversion, which is sensitive to the free
variables. If translating the function e = λ y. x, we end up with the following two
translations depending on whether we translate before or after substitution.

JeK[Je1K/x] = (⟨λ y, n. fst n, ⟨x⟩⟩)[Je1K/x] = (⟨λ y, n. fst n, ⟨Je1K⟩⟩)

Je[e1/x]K = ⟨λ y, n. Je1K , ⟨⟩⟩

Translating before substitution will yield a closure environment in which the expression
Je1K is substituted in for x, while translating after substitution will yield an environment
with all free variables. (I discuss this example further in Chapter 5.)

If the type system has a type equivalence judgment then we must first prove that
equivalence preservation, i.e., that type equivalence is preserved, and then prove type
preservation,

Lemma 3.4.3 (Preservation of Equivalence). If Γ ⊢ A≡ B then Γ ⊢ JAK ≡ JBK

This states that if A and B are equivalent in the source, then JAK and JBK are equivalent
in the target.

In the Calculus of Constructions (CoC), similar to ECCD but without subtyping, we
require equivalence preservation due to Rule Conv.

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A≡ B

Γ ⊢ e : B
Conv

When proving type preservation by induction on the typing derivation, we must consider
the case of Rule Conv: intuitively, for some translation, we will know by the induction
hypothesis that JeK has type JAK, and must show that JeK has type JBK. This follows
easily by Rule Conv in the target language if JBK ≡ JAK, which we know if we have
equivalence preservation.

Depending on how equivalence is defined, we may need further supporting lemmas.
For example, in ECCD, we implement equivalence as conversion up to η-equivalence.

66 type-preserving compilation

Therefore, to show equivalence is preserved, we need to show reduction and conversion
are preserved (up to equivalence, since in general we don’t care that expressions reduce or
convert to syntactically the same, only that they reduce to some equivalent expression).

Lemma 3.4.4 (Preservation of Reduction). If Γ ⊢ e ▷ e′ then JΓK ⊢ JeK ▷∗ e′ and
JΓK ⊢ e′ ≡ Je′K

This lemma is similar to compiler correctness theorems in that we don’t want to require
the translated term JeK to simulate the reductions of e in lock-step. Instead, we specify
this as a weak-simulation: it is sufficient for JeK to be convertible to some e′ that is
equivalent to Je′K.

Lemma 3.4.5 (Preservation of Conversion). If Γ ⊢ e ▷∗ e′ then JΓK ⊢ JeK ▷∗ e′ and
JΓK ⊢ e′ ≡ Je′K

In a simply typed language, we could prove this lemma by induction on the length of
reduction sequences. However, the judgmental structure of conversion is not always so
simple. Recall that in ECCD, the congruence rule for let expressions, Rule Red-Cong-
Let, introduces a definition during conversion, i.e., we have the following rule.

Γ ⊢ e1 ▷
∗ e′1 Γ, x = e′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 in e2 ▷
∗ let x= e′1 in e

′
2

Red-Cong-Let

This means that proving conversion is preserved must be by induction on the conversion
derivation, so we correctly capture the definition.

By specifying equivalence via reduction, we get an extra benefit: the three previous
lemmas, required for type preservation, also easily imply compiler correctness, as I
discuss shortly in Section 3.4.3.

If the type system has a subtyping judgment, then we must also prove that subtyping
is preserved.

Lemma 3.4.6 (Preservation of Subtyping). If Γ ⊢ A⪯ B then Γ ⊢ JAK ⪯ JBK

This states that if A is a subtype of B in the source, then JAK is still a subtype of JBK in
the target.

In ECCD, we extend conversion to subtyping to support cumulativity. We have the
following Rule Conv.

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A⪯ B

Γ ⊢ e : B
Conv

Similar to the discussion for Lemma 3.4.3, the proof of type preservation will require
showing that JeK has type JBK, given that JeK has type JAK and A ⪯ B. By the target
language Rule Conv and preservation of subtyping, the proof is simple. However,
for certain translations, proving that subtyping is preserved can be challenging. For
example, the standard locally polymorphic answer type CPS translation relies on

3.4 proving type preservation for dependent types 67

impredicativity, so it translates any computationally relevant type A : Type i into the
type Πα :Prop . (A+→α)→α : Prop . I discuss this translation further in Chapter 6,
but the important thing to observe now is that A exists in a higher universe, while JAK
must exist in the base universe Prop . This does not preserve subtyping.

With all of these lemmas, we will finally be able to prove that the typing and well-
formedness relations are preserved. The theorem we ultimately want is Theorem 3.4.1,
we must prove it via something like the following lemma.

Lemma 3.4.7 (Type and Well-formedness Preservation).

1. If ⊢ Γ then ⊢ JΓK

2. If Γ ⊢ e : A then JΓK ⊢ JeK : JAK

Since well-formedness of environments and typing are mutually defined, we have to
prove these two by simultaneous induction on the mutually defined judgments.

3.4.2 The Problem with Typed Equivalence

The proof architecture presented in the previous section does not work if equivalence is
mutually defined with typing. This can happen with some formulations of dependent
types with strong η-principles. For example, we might want the following η-equivalence
for the unit type.

Γ ⊢ e ≡ ⟨⟩ : 1

That is, every expression e should be equivalent to the unit value ⟨⟩ at the unit type 1.
This requires that equivalence be defined over well-typed expressions.

Unfortunately, defining equivalence over well-typed expressions introduces a circularity
into the proof architecture for type preservation. If equivalence is typed, then we
must show type preservation before we can establish any equivalence about translated
expressions. But establishing type preservation requires showing equivalence is preserved.

For example, as discussed earlier, we require Lemma 3.4.2 (Compositionality) to prove
Theorem 3.4.1 (Type Preservation). But, compositionality must, in general, be proven
in terms of equivalence. If equivalence is typed, then we must show type preservation
before compositionality. But, since some type rules are defined by substitution, we must
show compositionality before type preservation. That is, we must:

• prove type preservation before compositionality, and

• prove compositionality before type preservation.

Similarly, as discussed before, we require Lemma 3.4.3 (Preservation of Equivalence) in
order to show type preservation. But if equivalence is typed, we cannot show preservation
of equivalence until we show type preservation. So we must:

68 type-preserving compilation

• prove type preservation before equivalence preservation, and

• prove equivalence preservation before type preservation.

And if equivalence is defined using substitution, we cannot show preservation of equiv-
alence until we show compositionality. But compositionality requires establishing
equivalence, which requires type preservation. We must:

• prove compositionality before equivalence preservation, and

• prove equivalence preservation before type preservation, and

• prove type preservation before compositionality.

To see the problem concretely, consider the CPS translation by double negation in the
presence of type equivalence rule Rule Conv, but with a typed definition of equivalence.
Because CPS translation adds type annotations for continuations, we can end up with
the following translation.

Γ ⊢ B : U⇝ B Γ ⊢ e : B⇝ eB Γ ⊢ A : U⇝ A

Γ ⊢ e : A⇝ λk : (A→⊥). eB (λx :B.k x)

That is, when translating Rule Conv, we produce a computation which takes a contin-
uation k that expects some value of type A, but then we call k with a value of type
B. Unless A and B are equivalent, the domain annotations on this term make little
sense—why can we apply k, which expects a A, to x of type B? So we must first show
equivalence is preserved. To prove equivalence is preserved, we would need to show eB
is equivalent to e+λk : (A→⊥). eB (λx : B.)k x. If equivalence is typed, then we
need to show that e+ and eB are well-typed first.

Barthe et al. (1999) observe this problem in an early attempt at type-preserving CPS
translation of dependent types. Their solution is to give up domain annotations, thus
yielding undecidable type checking. This is unsatisfying if we want to rely on type
checking for ruling out miscompilation and linking errors.

Instead, in this work, I require an untyped equivalence for the source and target
languages. This is a strong requirement on the type theory, but not unrealistic; Coq
relies on an untyped equivalence, for example. By using an untyped equivalence, we can
prove equivalence between terms without regard to their domain annotations, and the
above translation of Rule Conv can be easily shown equivalent to eB (by η-equivalence).
This breaks the circularity, and allows us to stage all the lemmas from the previous
section.

1. Lemma 3.4.2 (Compositionality)

2. Lemma 3.4.4 (Preservation of Reduction)

3. Lemma 3.4.5 (Preservation of Conversion)

3.4 proving type preservation for dependent types 69

4. Lemma 3.4.3 (Preservation of Equivalence)

5. Lemma 3.4.6 (Preservation of Subtyping)

6. Lemma 3.4.7 (Type and Well-formedness Preservation)

7. Theorem 3.4.1 (Type Preservation)

A possible alternative is to prove all the lemmas simultaneously by one large mutual
induction, as stated below. I have not investigated this approach, as the sheer number
of cases and induction hypotheses to keep straight in one theorem seems daunting. 2

Conjecture 3.4.8 (Type Preservation (with Typed Equivalence)).

1. JΓK ⊢ Je[e′/x]K ≡ JeK[Je′K/x]

2. If Γ ⊢ e≡ e′ then JΓK ⊢ JeK ≡ Je′K

3. If ⊢ Γ then ⊢ JΓK

4. If Γ ⊢ e : A then JΓK ⊢ JeK : JAK

3.4.3 Type Preservation and Compiler Correctness

On its own, type preservation is a weak theorem, but the proof architecture just
presented and the structure of the dependent types essentially force us to prove a
standard compiler correctness theorem: correctness of separate compilation. The
statement of Theorem 3.4.1 (Type Preservation) only tells us that if the source term was
well-typed, then so is the target term. A compiler could trivially satisfy this property
by compiling every term to the unit value and every type to the unit type. It is unlikely
to satisfy all the lemmas in Section 3.4, but it would still satisfy Theorem 3.4.1 (Type
Preservation). To trust Theorem 3.4.1, we must at least add the translation of types to
the trusted code base, i.e., we must at least understand how types are translated. By
reading the translation of types, we can have confidence that the translation is non-trivial.
Even then, type preservation does not give many guarantees about how programs execute
unless the types are complete, full-functional specifications. Thankfully, the judgmental
structure of dependent types, and by defining equivalence in terms of conversion of open
terms, type preservation forces us to prove a stronger compiler correctness theorem:
that linking and then evaluating in the source is equivalent to translating and linking
and then evaluating in the target.

To specify compiler correctness, we need an independent specification that tells us
how observations are related to target observations, hence the definition of observations
in ECCD. For instance, when compiling to C we might specify that the number 5 is
related to the bits 0x101. Without a specification, independent of the compiler, there is

2 To investigate this approach, I suggest attempting this proof technique, with the help of a proof
assistant, for the abstract closure conversion in Chapter 5.

70 type-preserving compilation

no definition that the compiler can be correct with respect to. The best we could prove
is that the translation of the value v produced in the source is definitionally equivalent
to the value we get by running the translated term, i.e., we would get JvK ≡ eval(JeK).
This fails to tell us how JvK is related to v, unless we inspect the compiler. Thankfully,
it is simple to define related observations for dependently typed languages, since these
languages are usually error-, divergence-, and effect-free.

We must also formalize linking for each language, as we did in Chapter 2 for ECCD.
We define well-typed closing substitution γ as in ECCD, and extend the translation to
closing substitutions point-wise.

Correctness of separate compilation, formally stated below, tells us that if e is a
well-typed source component, and γ is a well-typed closing substitution, and linking γ

with e (written γ(e)) then evaluating in the source produces an observation v that is
related to the observation produced by separately compiling γ and e, linking, and then
evaluating in the target.

Theorem 3.4.9 (Separate Compilation Correctness). If Γ ⊢ e, Γ ⊢ γ, then eval(γ(e)) ≈
eval(JγK (JeK)).

The proof of this theorem will always follow essentially the same structure, and is
expressed as the following commuting diagram.

eval(γ(e)) Jγ(e)K

eval(Jγ(JeK)K) Jγ(JeK)K

≡

≡ ≡

≡

This diagram in terms of equivalence suffices since ≡ corresponds to ≈ on observa-
tions, e.g., true ≡ true iff true ≈ JtrueK iff true ≈ true. The diagram commutes since
eval(γ(e)) ≡ γ(e), since evaluation and equivalence are both defined in terms of conver-
sion, γ(e) ≡ Jγ(e)K by Lemma 3.4.3 (Preservation of Equivalence), JγK (JeK) ≡ Jγ(e)K,
by Lemma 3.4.2 (Compositionality), and eval(JγK (JeK)) ≡ JγK (JeK), again because
evaluation and equivalence are defined in terms of conversion.

This recipe will not be exactly the same in all languages. For example, in Chapter 4 I
define a machine evaluation semantics separate from conversion in the target language.
To derive compiler correctness from preservation conversion we must show the machine
semantics coincide to or refine conversion.

This separate-compilation correctness theorem is similar to the guarantees provided
by SepCompCert (Kang et al., 2016) in that it supports linking with only the output of
the same compiler. We could support more flexible notions of linking—such as linking
with code produced by different compilers, from different source languages, or code
written directly in the target language—by defining an independent specification for
when closing substitutions are related across languages (e.g., (Neis et al., 2015; Ahmed
and Blume, 2011; New et al., 2016; Perconti and Ahmed, 2014)). This is orthogonal to
my thesis and I do not consider it further.

Of course, this correctness of separate compilation implies the usual “whole-program
correctness” theorem, typically called just compiler correctness, stated below.

3.5 type preservation as syntactic modeling 71

Corollary 3.4.10 (Whole-Program Correctness). If ⊢ e, then eval(e) ≈ Jeval(e)K.

This simply states that any program evaluates to related observations before and after
compilation.

3.5 Type Preservation as Syntactic Modeling

When designing new dependently typed (target) languages, we also need to prove type
safety and consistency of the type system to have confidence that the proofs we have
preserved are meaningful. There are many ways to do this: we can give a denotational
or a categorical semantics, or prove progress, preservation and normalization of the
operational semantics.

My preferred method is to reduce type safety and consistency to that of an existing
type theory via a type-preserving translation, i.e., by providing a syntactic model of the
target theory in another theory. This use of type preservation is common in the literature.
Bernardy et al. (2012) give a syntactic model of parametric Pure Type Systems (PTS)
by translation into an existing PTS, and show how to develop a parametric model of
CoC and use it to prove free theorems. Pédrot and Tabareau (2017) give a syntactic
model of CIC with effects by translation into a CIC. Boulier et al. (2017) discuss this
technique in detail and give several example syntactic models.

The ultimate theorems we wish to prove, type safety3 and consistency, are stated
below. Typically, we think of type safety when interpreting expressions as programs,
and consistency when interpreting expressions as proofs.

Theorem 3.5.1 (Type Safety). If ⊢ e then eval(e) is well-defined.

Type safety states that any well-typed program “evaluates correctly”. Recall from
Chapter 2 that in this context, this means that evaluation produces a value.

Theorem 3.5.2 (Logical Consistency). There does not exist a e such that · ⊢ e : ⊥.

Logical consistency tells us that there is no closed well-typed proof of ⊥, the false
theorem or uninhabited type.

To prove these two theorems, it suffices to give a type-preserving translation JeK◦

from target terms to the model language, and prove that falseness is preserved. To
prove type preservation, we follow the same type-preservation recipe described earlier
in Section 3.4. The statement of preservation of falseness is given below.

Lemma 3.5.3 (Preservation of Falseness). J⊥K◦ ≡ ⊥

This states that the definition of the false in the target is modeled as false in the model
language.

3 I use type safety as opposed to type soundness. Soundness has too many meaning in this context—e.g.,
logical soundness—and safety helps us focus on the interpretation of this theorem as ensuring safe
execution of programs.

72 type-preserving compilation

The proof of each of the above theorems follows by a simple proof by contradiction.
For example, consistency follows because, if the target were not consistent then we have
a proof of ⊥, and by type preservation and preservation of falseness, we could translate
that proof into a proof of ⊥ in the model, violating the consistency of the model. Since
the model is consistent, the target language must be as well.

4 A - N O R M A L F O R M

In this chapter, I develop the first of the two front-end translations for a type-preserving
compiler for ECCD: ANF translation. The target language for this translation is ECCA,
a variant of ECCD syntactically restricted to ANF. Recall from Chapter 3 that the
first translation in the model compiler imposes a distinction between computation and
values. A-normal form (ANF) translation accomplishes this goal and can take the place
of CPS translation in the model compiler. (In fact, ANF was introduced as the essence
of CPS (Flanagan et al., 1993).)

Digression. The A in A-normal form has no further meaning. The A comes from the
set of axioms and reductions introduced by Sabry and Felleisen (1992) to reason about
CPS. Flanagan et al. (1993) use the A as a label in a commutative diagram, observing
that there should exist a direct translation that produces a normal form equivalent to the
CPS/optimization/un-CPS process found in practice. The programs produced by this
translation are in normal form with respect to the A-reductions of Sabry and Felleisen,
i.e., in A-normal form.

I start by explaining the key problems that arise when preserving dependent types
through ANF translation and the main idea to my solution. I then move on to the formal
development of the target language, the translation, and proofs of type preservation
and compiler correctness. I conclude with a discussion of related problems, and a brief
comparison of CPS and ANF in the context of dependent-type preservation, but leave a
full discussion of CPS until Chapter 6.

Typographical Note. In this chapter, I define fixed source and target languages. I
typeset the source language, ECCD, in a blue, non-bold, sans-serif font, and the target
language, ECCA, in a bold, red, serif font.

4.1 Main Ideas

The idea behind ANF is to make control flow explicit in the syntax of a program
so transfer of control can be expressed as a jump. ANF encodes computation (e.g.,
reducing an expression to a value) as sequencing simple intermediate computations with
let expressions. To reduce e to a value in a high-level language, we need to describe
the evaluation order and control flow of each language primitive. For example, if e
is an application e1 e2 and we want a call-by-value semantics, we say the language
first evaluates e1 to a value, then evaluates e2 to a value, then performs the function
application. ANF makes this explicit in the syntax by decomposing e into a series of

73

74 a-normal form

primitive computations sequenced by let, as in let x0 = N0, ...,xn = Nn inN, where
each Ni is either a value or a primitive computation applied to a value. The ANF
translation of e1 e2 is the following.

let x10 = N10 , ...,x1n = N1n ,x1 = N1

x20 = N20 , ...,x2n = N2n ,x2 = N2

in (x1 x2)

where Je1K = (let x10 = N10 , ...,x1n = N1n inN1)

Je2K = (let x20 = N20 , ...,x2n = N2n inN2)

Roughly, we can think of this translation as let x1 = Je1K ,x2 = Je2K in x1 x2. This
rough translation is only ANF if e1 and e2 are values or primitive computations. In
general, the ANF translation reassociates all the intermediate computations from
Je1K and Je2K so there are no nested let expressions. Once in ANF, it is simple to
formalize a machine semantics to implement evaluation by always reducing the left-most
computation, which will be a primitive operation.

The problem in developing a type-preserving translation for a dependently typed
language is that changing the structure of a program disrupts the dependencies described
in Chapter 2, i.e., an expression e′ whose type and evaluation depends on a sub-expression
e. Recall that I call to a sub-expression such as e depended upon. This pattern happens
in dependent elimination forms, such as application and projection. For example, for
a dependent function e1 : Πx : A.B, the application is typed as e1 e2 : B[e2/x]. Notice
that the depended upon sub-expression e2 is copied into the type. If we transform the
expression e1 e2, we can easily change the type. For example, recall the ANF translation
for this expression given earlier.

let x10 = N10 , ...,x1n = N1n ,x1 = N1

x20 = N20 , ...,x2n = N2n ,x2 = N2

in (x1 x2)

Using the standard typing rule for dependent let (without definitions), the type of
the ANF translation above is JBK[x2/x] (the type of the body), with all let-bindings
substituted into this type, i.e., roughly JBK[x2/x][N20/x20][...][N2n/x2n][N2/x2]. To
show type preservation, we must show that the target type system can prove that this
type is equivalent to the translation of the original type, i.e., JB[e2/x]K. Intuitively, it
ought to be true that the intermediate computations (N20 , ...,N2n ,N2) are equivalent
to Je2K, since those are the computations that must happen to compute the value of e2.
Therefore, the two types ought to be equivalent.

But the intuitive argument that ANF ought to be type preserving is wrong. Instead
of the (x1 x2) appearing in the body directly as above, consider the expression below in
which (x1 x2) is bound and then used.

let ... in let y = (x1 x2) in f y where f : (JBK[Je2K/x]) → C

4.1 main ideas 75

To show type preservation, we now need to reestablish a dependent type that is let-bound,
instead of in the body of a let. The type derivation fails, as follows.

... ⊢ (x1 x2) : JBK[x2/x]

fails

...,y : JBK[x2/x] ⊢ f y : C

... ⊢ let y = (x1 x2) in f y : C[(x1 x2)/y]

This fails since f expects y : (JBK[Je2K/x]), but is applied to y : JBK[x2/x]. We cannot
show the two types are equal without substituting all the (elided) bindings as described
earlier, but that substitution happens after it is needed. The problem is that the
dependent typing rule for let only binds a depended-upon expression in the type of the
body of the let, not in the types of bound expressions.

The typing rule for let only allows dependency in the type of the overall expression—
that is, in the “output” of the typing judgment—but we need some way to thread
dependencies into the sub-derivations while checking bound expressions. For example,
if we could express dependencies in the input, something like ...x2 = Je2K ⊢ (x1 x2) :

JBK[Je2K/x], then we could complete the derivation and prove type-preservation. And
this is exactly the intuition we formalize.

We formalize this intuition using definitions (Severi and Poll, 1994) introduced in
Chapter 2. Recall that the typing rule for let with definitions is the following.

Γ ⊢ e : A Γ,x = e ⊢ e′ : A′

Γ ⊢ let x= e in e′ : A′[e/x]

The definition x = e is introduced when type checking the body of the let, and can
be used to solve type equivalence in sub-derivations, instead of only in the substitution
A′[e/x] in the "output" of the typing rule. While this is an extension to the type
theory (so one may worry that the ANF translation applies to fewer dependently typed
languages), it is a standard extension that is admissible in any Pure Type System
(PTS) (Severi and Poll, 1994), and is a feature already found in dependently typed
languages such as Coq.

Using definitions, we can prove that, under the definitions x20 = N20 , ...,x2n =

N2n ,x2 = N2 produced from the ANF translation Je2K (written defs(Je2K)), the
desired equivalence x2 ≡ Je2K holds. We use hole(Je2K) to refer to the innermost
computation produced by the ANF translation, in this case hole(Je2K) = N2. Then we
can prove defs(Je2K) ⊢ hole(Je2K) ≡ Je2K (formally captured by Lemma 4.2.5). Since
we also have the definition, x2 = N2, we conclude that defs(Je2K) ⊢ x2 ≡ Je2K.

To formalize this type preservation argument, we need to step back and define the
ANF translation precisely. In the source, looking at an expression such as e1 e2, we
do not know whether the expression is embedded in a larger context. This matters
in ANF, since we can no longer compose expressions by nesting, but instead must
compose expressions with let. This is why the above example translation disassembled
the translation of e1 and e2 into a new, larger, let expression. To formalize the ANF

76 a-normal form

translation, it helps to have a more compositional syntax for translating an expression
and composing it with an unknown context.

I develop a compositional translation by indexing the ANF translation by a target
language (non-first-class) continuation K representing the rest of the computation in
which a translated expression will be used. A continuation K is a program with a hole
(single linear variable) [·], and can be composed with a computation K[N] to form a
program M. In ANF, there are only two continuations: either [·] or let x = [·] inM.
Using continuations, we define ANF translation for functions and application as follows.

Jλ x : A. eKK = K[λx : (JAK [·]). (JeK [·])]
Je1 e2KK = Je1K let x1 = [·] in Je2K let x2 = [·] inK[x1 x2]

This allows us to focus on composing the primitive operations instead of reassociating
let bindings.

The key typing rule for continuations is the following.

Γ ⊢ N : A Γ,y = N ⊢ M : B

Γ ⊢ let y = [·] inM : (N : A) ⇒ B
K-Bind

The type (N : A) ⇒ B of continuations describes that the continuation must be
composed with the term N of type A, and the result will be of type B. This expresses
syntactically the intuition that continuations must be used linearly to avoid control
effects, which are known to cause inconsistency with dependent types (Barthe and
Uustalu, 2002; Herbelin, 2005). Note that this type allows us to introduce the definition
y = N via the type, before we know how the continuation is used.1 I discuss this rule
further in Section 4.2. The Lemma 4.2.4 (Cut) expresses that continuation typing is
not an extension to the target type theory, which is important to ensure ANF can be
applied in practice.

The key lemma to prove type preservation is the following.

Lemma 4.1.1. If Γ ⊢ e : A and Γ, defs(JeK) ⊢ K : (hole(JeK) : JAK) ⇒ B, then
Γ ⊢ JeKK : B.

This lemma captures the fact that each time we build a new K in the ANF translation,
we must show it is well-typed, and that is where we apply the reasoning about definitions.
Proving that K has the above type requires proving Γ, defs(JeK) ⊢ hole(JeK) : JAK.
For our running example, this means proving Γ, defs(Je1 e2K) ⊢ x1 x2 : JB[e2/x]K.
Recall that x1 x2 : JBK[x2/x]. As we saw earlier, definitions allow us to prove that
Γ, defs(Je1 e2K) ⊢ x2 ≡ Je2K; therefore, combined with compositionality (JB[e2/x]K ≡
JBK[Je2K/x], Lemma 4.3.3), the proof is complete! The earlier failing derivation now
succeeds:

1 This is essentially a singleton type, but as mentioned in Chapter 2, I avoid explicit encoding with
singleton types to focus on the intuition: tracking dependencies.

4.2 anf intermediate language 77

Universes U ::= Prop | Type i

Values V ::= x | U | Πx :M.M | λx :M.M | Σx :M.M
| ⟨V,V⟩asM

Computations N ::= V | V V | fstV | sndV

Configurations M,A,B ::= N | let x=NinM

Continuations K ::= [·] | let x= [·] inM

Figure 4.1: ECCA Syntax

Lemma 4.3.3 Lemma 4.2.5

defs(Je1 e2K) ⊢ (x1 x2) : JBK[Je2K/x]

succeeds!

y : JBK[Je2K/x] ⊢ f y : C

defs(Je1 e2K) ⊢ let y = (x1 x2) in f y : C[(x1 x2)/y]

4.2 ANF Intermediate Language

The target language, ECCA, is an ANF-restricted subset of ECCD. For now, I exclude
dependent conditionals from ECCD and from ECCA; I return to them in Section 4.4. I
continue to use the same typing and conversion rules as ECCD, which are permitted to
break ANF when computing term equivalence during type checking. However, I define
an ANF-preserving machine-like semantics for evaluation of program configurations.
Note that this means the definitional equivalence is not suitable for equational reasoning
about run-time terms (e.g., reasoning about optimizations), without ANF translation
afterwards.2

Typographical Note. Although ECCA is a restriction of ECCD, I typeset it as separate
language for clarity, and use the shift in fonts to indicate an explicit shift in how I am
treating terms, i.e., as either ANF-restricted terms still suitable for evaluation, or as
unrestricted terms that we can type check but cannot run in the ANF semantics any
longer.

I give the syntax for ECCA in Figure 4.1. As discussed in Chapter 3, the goal is to
make an explicit distinction between values and computations. In ECCA, I do this by
imposing a syntactic distinction between values V which do not reduce, computations N

2 This ability to break ANF locally to support reasoning is similar to the language FJ of Maurer et al.
(2017), which does not enforce ANF syntactically, but is meant to support ANF transformation and
optimization with join points.

78 a-normal form

K⟨⟨M⟩⟩ = M

K⟨⟨N⟩⟩ def
= K[N]

K⟨⟨let x=N′ inM⟩⟩ def
= let x=N′ inK⟨⟨M⟩⟩

K⟨⟨K⟩⟩ = K

K⟨⟨[·]⟩⟩ def
= K

K⟨⟨let x= [·] inM⟩⟩ def
= let x= [·] inK⟨⟨M⟩⟩

M[M′//x] = M

M[M′//x]
def
= (let x= [·] inM)⟨⟨M′⟩⟩

Figure 4.2: ECCA Composition of Configurations

which eliminate values and can be composed using continuations K, and configurations
M which intuitively represent whole programs ready to be executed. A continuation
K is a program with a hole, and is composed K[N] with a computation N to form a
configuration M. For example, (let x = [·] in sndx)[N] = let x = Nin sndx. Since
continuations are not first-class objects in the language, we cannot express control
effects—continuations are syntactically guaranteed to be used linearly. 3 Note that
despite the syntactic distinction, I still do not enforce a phase distinction—configurations
(programs) can appear in types.

In ANF, all continuations are left associated, so substitution can break ANF. Note that
β-reduction takes an ANF configuration K[(λx :A.M) V] but would naïvely produce
K[M[V/x]]. While the substitution M[V/x] is well-defined, substituting the resulting
term, itself a configuration, into the continuation K could result in the non-ANF term
let x=MinM′. In ANF, configurations cannot be nested.

To ensure reduction preserves ANF, I define composition of a continuation K and a
configuration M, Figure 4.2, typically called renormalization in the literature (Sabry and
Wadler, 1997; Kennedy, 2007). When composing a continuation with a configuration,
K⟨⟨M⟩⟩, we essentially unnest all continuations so they remain left-associated.4 Note
that these definitions are simplified because I am ignoring capture-avoiding substitution.

digression on composition in anf In the literature, the composition operation
K⟨⟨M⟩⟩ is usually introduced as renormalization, as if the only intuition for why it

3 The reader familiar with proof theory may wish to consider configurations and continuations as the same
term under a stoup (Girard, 1991), an environment expressing either zero or one linear computation
variables [·]; when the stoup is empty, we have a configuration and otherwise we have a continuation.

4 Some work uses an append notation, e.g., M :: K (Sabry and Wadler, 1997), suggesting we are
appending K onto the continuation for M; I prefer notation that evokes composition.

4.2 anf intermediate language 79

M 7→ M′

K[(λx :A.M) V] 7→β K⟨⟨M[V/x]⟩⟩
K[fst ⟨V1,V2⟩] 7→π1 K[V1]

K[snd ⟨V1,V2⟩] 7→π2 K[V2]

let x=V inM 7→ζ M[V/x]

M 7→∗ M′

M 7→∗ M
RedA-Refl

M 7→ M1 M1 7→∗ M′

M 7→∗ M′ RedA-Trans

eval(M) = V

eval(M) = V if ⊢ M and M 7→∗ V and V ̸7→ V′

Figure 4.3: ECCA Evaluation

exists is “well, it happens that ANF is not preserved under β-reduction”. It is not mere
coincidence; the intuition for this operation is composition, and having a syntax for
composing terms is not only useful for stating β-reduction, but useful for all reasoning
about ANF! This should not come as a surprise—compositional reasoning is useful.
The only surprise is that the composition operation is not the usual one used in
programming language semantics, i.e., substitution. In ANF, as in monadic normal
form, substitution can be used to compose any expression with a value, since names
are values and values can always be replaced by values. But substitution cannot just
replace a name, which is a value, with a computation or configuration. That wouldn’t
be well-typed. So how do we compose computations with configurations? We can
use let, as in let y = NinM, which we can imagine as an explicit substitution. In
monadic form, there is no distinction between computations and configurations, so
the same term works to compose configurations. But in ANF, we have no object-level
term to compose configurations or continuations. We cannot substitute a configuration
M into a continuation let y = [·] inM′, since this would result in the non-ANF (but
valid monadic) expression let y =MinM′. Instead, ANF requires a new operation to
compose configurations: K⟨⟨M⟩⟩. This operation is more generally known as hereditary
substitution (Watkins et al., 2003), a form of substitution that maintains canonical
forms. So we can think of it as a form of substitution, or, simply, as composition.

I present the call-by-value (CBV) evaluation semantics for ECCA in Figure 4.3. It
is essentially standard, but recall that β-reduction produces a configuration M which
must be composed with the current continuation K. This semantics is only for the
evaluation of configurations; during type checking, we continue to use the type system
and conversion relation defined in Chapter 2.

80 a-normal form

Γ ⊢ K : (N : A) ⇒ B

Γ ⊢ [·] : (N : A) ⇒ A
K-Empty

Γ ⊢ N : A Γ,y = N ⊢ M : B

Γ ⊢ let y = [·] inM : (N : A) ⇒ B
K-Bind

Figure 4.4: ECCA Continuation Typing

4.2.1 The Essence of Dependent Continuation Typing

I define continuation typing in Figure 4.4. The type (N : A) ⇒ B of a continuation
expresses that this continuation expects to be composed with a term equal (syntactically)
to the computation N of type A and returns a result of type B when completed. This
is the formal statement that N is depended upon (in the sense introduced in Chapter 2)
in the rest of the computation, and is key to recovering the dependency disrupted
during ANF translation. For the empty continuation [·], N is arbitrary since an empty
continuation has no “rest of the program” that could depend on anything.

Intuitively, what we want from continuation typing is a compositionality property—
that we can reason about the types of configurations K[N] by composing the typing
derivations for K and N. To get this property, a continuation type must express
not merely the type of its hole A, but exactly which term N will be bound in the
hole. We see this formally from the typing rule Rule Let (the same for ECCA as for
ECCD in Chapter 2), since showing that let y =NinM is well-typed requires showing
that y = N ⊢ M, that is, requires knowing the definition y = N. If we omit the
expression N from the type of continuations, we know there are some configurations
K[N] that we cannot type check compositionally. Intuitively, if all we knew about y

was its type, we would be in exactly the situation of trying to type check a continuation
that has abstracted some dependent type that depends on the specific N into one that
depends on an arbitrary y. I prove that continuation typing is compositional in this
way, Lemma 4.2.4 (Cut).

Note that the type of the result in a continuation type cannot depend on the term
that will be plugged in for the hole, i.e., for a continuation K : (N : A) ⇒ B, B does
not depend on N. This is not important for ANF translation, but is interesting as it
provides insight into related work as I discuss in Section 4.4. The restriction is not
necessary, and is not true in all systems, but turns out to be true in ANF. To see this,
first note that the initial continuation must be empty and thus cannot have a result type
that depends on its hole. The ANF translation will take this initial empty continuation
and compose it with intermediate continuations K′. Since composing any continuation
K : (N : A) ⇒ B with any continuation K′ results in a new continuation with the final
result type B, then the composition of any two continuations cannot depend on the
type of the hole. This is similar to how, in CPS, the answer type doesn’t matter and
might as well be ⊥.

4.2 anf intermediate language 81

4.2.2 Meta-Theory

Since ECCA is a syntactic discipline in ECCD, we inherit most of the meta-theory from
ECCD, notably: logical consistency, type safety, and decidability (Luo, 1990; Severi and
Poll, 1994). There are some new meta-theoretic questions to answer, though, such as:
Is ANF evaluation sound? Does continuation typing make sense?

First, I prove that ANF evaluation semantics is sound with respect to definitional
equivalence. That is, running in the ANF evaluation semantics produces an equivalent
value to normalization in the equivalence relation. The heart of this proof is actually
naturality, a property found in the literature on continuations that essentially expressed
freedom from control effects (Thielecke, 2003).

When computing definitional equivalence, we end up with terms that are not in ANF,
and can no longer be used in the ANF evaluation semantics. This is not a problem; we
could always ANF translate the resulting term if needed. To make it clear which terms
are in ANF, and which are not, I leave terms and subterms that are in ANF in the
target language font, and write terms or subterms that are not in ANF in the source
language font. Meta-operations like substitution may be applied to ANF (red) terms,
but result in non-ANF (blue) terms. Since substitution leaves no visual trace of its
blueness, I wrap such terms in a distinctive language boundary such as ST (M[M′/x])

and ST (K[M]). The boundary indicates the term is a target (T) term on the inside
but a source (S) term on the outside. The boundary is only meant to communicate
with the reader that a term is no longer in ANF; it has no meaning operationally.

First, I prove that composing continuation in ANF is sound with respect to substitution.
This is an expression of naturality in ANF: composing a term M with its continuation
K in ANF is equivalent to running M to a value and substituting the result into the
continuation K.

Lemma 4.2.1 (Naturality). K⟨⟨M⟩⟩ ≡ ST (K[M])

Proof. By induction on the structure of M

Case: M = N trivial

Case: M = let x=N′ inM′.

Must show that let x=N′ inK⟨⟨M′⟩⟩ ≡ ST (K[let x=N′ inM]). Note that this
requires breaking ANF while computing equivalence.

let x=N′ inK⟨⟨M′⟩⟩
▷ζ ST (K⟨⟨M′⟩⟩[N′/x]) (1)

note that this substitution is undefined in ANF

= K⟨⟨ST (M′[N′/x])⟩⟩ (2)

by ignoring capture-avoiding substitution

◁∗ ST (K[let x=N′ inM]) (3)

by ζ-reduction and congruence

82 a-normal form

Next I show that the ANF evaluation semantics is sound with respect to definitional
equivalence. This is also central to my later proof of compiler correctness. To do that,
I first show that the small-step semantics is sound. Then I show soundness of the
evaluation function.

Lemma 4.2.2 (Small-step soundness). If M 7→ M′ then ⊢ M≡M′

Proof. By cases on M 7→ M′. Most cases follow easily from the ECCD reduction
relation and congruence. I give representative cases.

Case: K[(λx :A.M1) V] 7→β K⟨⟨M1[V/x]⟩⟩

Must show that K[(λx :A.M1) V] ≡ K⟨⟨M1[V/x]⟩⟩

K[(λx :A.M1) V]

▷∗ ST (K[M1[V/x]]) by β and congruence (4)

≡ K⟨⟨M1[V/x]⟩⟩ by Lemma 4.2.1 (5)

Case: K[fst ⟨V1,V2⟩] 7→π1 K[V1]

Must show that K[fst ⟨V1,V2⟩] ≡ K[V1], which follows by ▷π1 and congruence.

Theorem 4.2.3 (Evaluation soundness). ⊢ eval(M)≡M

Proof. By induction on the length n of the reduction sequence given by eval(M). Note
that, unlike conversion, the ANF evaluation semantics have no congruence rules, so this
can be proved on the length of reduction sequences.

Case: n = 0 By Rule Red-Refl and Rule ≡.

Case: n = i+ 1 Follows by Lemma 4.2.2 and the induction hypothesis.

I prove that plugging a well-typed term into a well-typed continuation results in a
well-typed term of the expected type. This theorem corresponds to the Rule Cut rule
from sequent calculus, and tells us that continuation typing allows for compositional
reasoning about configurations K[N] whose result types do not depend on N.

Lemma 4.2.4 (Cut). If Γ ⊢ K : (N : A) ⇒ B and Γ ⊢ N : A then Γ ⊢ K[N] : B.

Proof. By cases on Γ ⊢ K : (N : A) ⇒ B

Case: Γ ⊢ [·] : (N : A) ⇒ A, trivial

Case: Γ ⊢ let y = [·] inM : (N : A) ⇒ B

We must show that Γ ⊢ let y=NinM : B, which follows directly from Rule Let
since, by the continuation typing derivation, we have that Γ,y = N ⊢ M : B and
y ̸∈ fv(B).

4.3 anf translation 83

defs(M) = Γ

defs(M) = x1 = N1, . . . ,xn = Nn whereM = let x1=N1 in . . . let xn=Nn inNn+1

hole(M) = N

hole(M) = Nn+1 whereM = let x1 =N1 in . . . let xn =Nn inNn+1

Figure 4.5: ECCA Continuation Exports

To reason inductively about ANF terms, we need to separate a configuration M

into its exported definitions defs(JMK) and its underlying computation hole(JMK). In
Figure 4.5, I define defs(JMK) to be the definitions exported by the ANF term M.
These are the definitions that will be in scope for a continuation K when composed
with M, i.e., in scope for K in K⟨⟨M⟩⟩. I define this as hole(JMK), also in Figure 4.5.
Note that hole(JMK) will only be well typed in the environment for M extended with
the definitions defs(JMK).

I show that a configuration is nothing more than its exported definitions and underlying
computation, i.e., that in a context with the exports of defs(JMK), hole(JMK) ≡ M.
In essence, this lemma shows how ANF converts a dependency on a configuration M

into a series of dependencies on values, i.e., the names x0, . . . ,xn+1 in defs(JMK). Note
that the ANF guarantees that all dependent typing rules, like V V′ : B[V′/x], only
depend on values. This lemma allows us to recover the dependency on a configuration.

Lemma 4.2.5. defs(M) ⊢ hole(M)≡M

Proof. Note that the exports defs(M) are exactly the definitions from the syntax of M.
Inlining those definitions via δ-reduction is the same as reducing M via ζ-reduction.

M = (let x1 =N1 in . . . let xn =Nn inNn+1) (6)

▷n
ζ Nn+1[N1 . . .Nn/x1 . . .xn] (7)

And hole(M) = Nn+1 ▷n
δ Nn+1[N1 . . .Nn/x1 . . .xn]

4.3 ANF Translation

The ANF translation is presented in Figure 4.6. The translation is defined inductively on
the syntax of the source term, and is indexed by a current continuation. The translation
is essentially standard. When translating a value such as x, λ x : A. e, and Type i, we
essentially plug the value into the current continuation, recursively translating the
sub-expressions of the value if applicable. For non-values such as application, we make
sequencing explicit by recursively translating each sub-expression with a continuation
that binds the result of the sub-expression and will perform the rest of the computation.

84 a-normal form

JeKK = M

JeK def
= JeK [·]

JxKK def
= K[x]

JProp KK def
= K[Prop]

JType iKK
def
= K[Type i]

JΠx : A.BKK def
= K[Πx : JAK. JBK]

Jλ x : A. eKK def
= K[λx : JAK. JeK]

Je1 e2KK
def
= Je1K let x1 = [·] in (Je2K let x2 = [·] inK[x1 x2])

JΣx : A.BKK def
= K[Σx : JAK. JBK]

J⟨e1, e2⟩ as AKK def
= Je1K let x1 = [·] in Je2K (let x2 = [·] inK[(⟨x1,x2⟩as JAK)])

Jfst eKK def
= JeK let x= [·] inK[fst x]

Jsnd eKK def
= JeK let x= [·] inK[sndx]

Jlet x= e in e′KK def
= JeK let x= [·] in Je′KK

Figure 4.6: ANF Translation from ECCD to ECCA

Note that if the translation must produce type annotations for input to a continua-
tion, then defining the translation and typing preservation proof are somewhat more
complicated. For instance, if we required the let-bindings in the target language to have
type annotations for bound expressions, then we would need to modify the translation to
produce those annotations. This requires defining the translation over typing derivations,
so the compiler has access to the type of the expression and not only its syntax. I
discuss the implications of this in Section 4.4.

Next, I show type preservation following essentially the standard architecture presented
Chapter 3. A few additional lemmas are required, and some lemma statements are
non-standard, as I discuss next.

After proving type preservation, I prove correctness of separate compilation for the
ANF machine semantics. I use the same notion of linking and observations as defined
in Chapter 2. This proof is straightforward from the meta-theory about the machine
semantics proved in Section 4.2, and from equivalence preservation.

4.3.1 Type Preservation

To prove type preservation, I follow the same recipe as presented in Chapter 3. First, I
show compositionality, which states that the translation commutes with substitution,
i.e., that substituting first and then translating is equivalent to translating first and
then substituting. This proof is somewhat non-standard for ANF since the notion of
composition in ANF is not the usual substitution. Next, I show that reduction and
conversion are preserved up to equivalence, as is standard. Note that for this theorem,

4.3 anf translation 85

we are interested in the conversion semantics used for definitional equivalence, not in the
machine semantics. Then, I show equivalence preservation: if two terms are definitionally
equivalent in the source, then their translations are definitionally equivalent. Finally,
I can show type preservation of the ANF translation, using continuation typing to
express the inductive invariant required for ANF. The lemma for type preservation is
non-standard compared to the generic statement given in Chapter 3. The continuation
typing allows us to formally state type preservation in terms of the intuitive reason it
should be true: because the definitions expressed by the continuation typing suffice
to prove equivalence between a computation variable and the original depended-upon
expression.

Typographical Note. Recall from Section 4.2, I shift from the target language
font to the source language font whenever the term is no longer in ANF, such as when
performing standard substitution or conversion.

Before I proceed, I state a property about the syntax produced by the ANF translation,
in particular, that the ANF translation does produce syntax in ANF. The proof is
straightforward so I elide it.

Theorem 4.3.1 (Normal Form). JeKK′ = let x1 =N1 in . . . let xn =Nn inK′[Nn+1]

As discussed in Section 4.2, composition in ANF is somewhat non-standard. Normally,
we compose via substitution and compositionality is Je[e′/x]K ≡ JeK[Je′K/x], which says we
can either compose then translate or translate then compose. However most composition
in ANF goes through continuations, not through substitution, since only values can be
substituted in ANF. The primary compositionality lemma (Lemma 4.3.2) tells us that
we can either first translate a program e under continuation K and then compose it
with a continuation K′, or we can first compose the continuations K and K′ and then
translate e under the composed continuation. Note that this proof is entirely within
ECCA; there are no language boundaries.

Lemma 4.3.2 (Compositionality). K′⟨⟨ JeKK⟩⟩ = JeKK′⟨⟨K⟩⟩

Proof. By induction on the structure of e. All value cases are trivial. The cases for
non-values are all essentially similar, by definition of composition for continuations or
configurations. I give some representative cases.

Case: e = x

Must show K′⟨⟨K[x]⟩⟩ = K′⟨⟨K[x]⟩⟩, which is trivial.

Case: e = Πx : A.B

Must show that K′⟨⟨K[Πx : JAK. JBK]⟩⟩ = K′⟨⟨K[Πx : JAK. JBK]⟩⟩, which is trivial.
Note that we need not appeal to induction, since the recursive translation does
not use the current continuation for values.

86 a-normal form

Case: e = e1 e2 Must show that

K′⟨⟨(Je1K (let x1 = [·] in (Je2K let x2 = [·] inK[x1 x2])))⟩⟩
= (Je1K (let x1 = [·] in (Je2K let x2 = [·] inK′⟨⟨K⟩⟩[x1 x2])))

The proof follows essentially from the definition of continuation composition.

K′⟨⟨(Je1K (let x1 = [·] in (Je2K let x2 = [·] inK[x1 x2])))⟩⟩
= (Je1KK′⟨⟨(let x1 = [·] in (Je2K let x2 = [·] inK[x1 x2]))⟩⟩) (8)

by the induction hypothesis applied to e1

= (Je1K (let x1 = [·] inK′⟨⟨(Je2K let x2 = [·] inK[x1 x2])⟩⟩)) (9)

by definition of continuation composition

= (Je1K (let x1 = [·] in (Je2KK′⟨⟨let x2 = [·] inK[x1 x2]⟩⟩))) (10)

by the induction hypothesis applied to e2

= (Je1K (let x1 = [·] in (Je2K let x2 = [·] inK′⟨⟨K⟩⟩[x1 x2]))) (11)

by definition of continuation composition

Next I show compositionality of the translation with respect to substitution. While
the proof relies on the previous lemma, this lemma is different in that substitution is the
primary means of composition within the type system. We must essentially show that
substitution is equivalent to composing via continuations. Since standard substitution
does not preserve ANF, this lemma does not equate ECCA terms, but ECCD terms that
have been transformed via ANF translation. We will again use language boundaries to
indicate a shift from ANF to non-ANF terms. Note that this lemma relies on uniqueness
of names.

Lemma 4.3.3 (Substitution). Je[e′/x]KK ≡ ST ((JeKK)[Je′K/x])

Proof. By induction on the structure of e I give the key cases.

Case: e = x

Must show that Je′KK ≡ ST ((JxKK)[Je′K/x])

ST (JxKK[
q
e′

y
/x])

= ST (K[x][
q
e′

y
/x]) (12)

= ST (K[
q
e′

y
]) (13)

≡ K⟨⟨
q
e′

y
⟩⟩ by Lemma 4.2.1 (14)

≡
q
e′

y
K by Lemma 4.3.2 (15)

Case: e = Prop Trivial.

Case: e = Πx′ : A.B

4.3 anf translation 87

Must show that JΠx′ : A.B[e′/x]KK ≡ ST ((JΠx′ : A.BKK)[Je′K/x])
q
Πx′ : A.B[e′/x]

y
K

=
q
Πx′ : A[e′/x].B[e′/x]

y
K (16)

= K[Πx′ :
q
A[e′/x]

y
.
q
B[e′/x]

y
] (17)

≡ K[Πx′ : ST (JAK[
q
e′

y
/x]).ST (JBK[

q
e′

y
/x])] (18)

by the induction hypothesis

= ST (K[Πx′ : JAK. JBK][
q
e′

y
/x]) (19)

by definition of substitution

= ST ((
q
Πx′ : A.B

y
K)[

q
e′

y
/x]) (20)

by definition

Case: e = e1 e2

Must show that J(e1 e2)[e
′/x]KK ≡ ST ((Je1 e2KK)[Je′K/x])

q
(e1 e2)[e

′/x]
y
K

=
q
e1[e

′/x] e2[e
′/x]

y
K (21)

by substitution

=
q
e1[e

′/x]
y
let x1 = [·] in

q
e2[e

′/x]
y
let x2 = [·] inK[x1 x2] (22)

by translation

≡
q
e1[e

′/x]
y
let x1 = [·] inST ((Je2K let x2 = [·] inK[x1 x2])[

q
e′

y
/x]) (23)

by IH applied to e1

≡ Je1K let x1 = [·] in Je2K let x2 = [·] inK[x1 x2][
q
e′

y
/x][

q
e′

y
/x] (24)

by IH applied to e2

= ST ((Je1K let x1 = [·] in Je2K let x2 = [·] inK[x1 x2])[
q
e′

y
/x]) (25)

by substitution

= ST ((Je1 e2KK)[
q
e′

y
/x]) (26)

by substitution

Since equivalence is part of the type system, to show type preservation, we must
show that equivalence is preserved. I first show that reduction is preserved up to
equivalence, then conversion, and finally that equivalence is preserved. The proofs are
straightforward; intuitively, ANF is just adding a bunch of ζ-reductions.

Lemma 4.3.4 (Preservation of Reduction). If Γ ⊢ e▷ e′ then JΓK ⊢ JeK ≡ Je′K.

Proof. By cases on Γ ⊢ e▷ e′. I give the key cases.

88 a-normal form

Case: Γ ⊢ x▷δ e
′

We must show that JΓK ⊢ JxK ≡ Je′K

We know that x = e′ ∈ Γ, and by definition x = Je′K ∈ JΓK, so the goal follows by
definition.

Case: Γ ⊢ λ x : A. e1 e2 ▷β e1[e2/x]

We must show JΓK ⊢ Jλ x : A. e1 e2K ≡ Je1[e2/x]K

Jλ x : A. e1 e2K

= Jλ x : A. e1K let x1 = [·] in Je2K let x2 = [·] in x1 x2 (27)

= let x1 = (λx : JAK. Je1K) in Je2K let x2 = [·] in x1 x2 (28)

▷∗ Je2K let x2 = [·] inλx : JAK. Je1K x2 (29)

= let x2 = [·] in (λx : JAK. Je1K) x2⟨⟨ Je2K ⟩⟩ (Lemma 4.3.2) (30)

≡ let x2 = Je2K in (λx : JAK. Je1K) x2 (Lemma 4.2.1) (31)

▷ζ (λx : JAK. Je1K) Je2K (32)

▷β ST (Je1K[Je2K/x]) (33)

≡ Je1[e2/x]K (Lemma 4.3.3) (34)

Next I show that conversion is preserved up to equivalence.

Lemma 4.3.5 (Preservation of Conversion). If Γ ⊢ e▷∗ e′ then JΓK ⊢ JeK ≡ Je′K

Proof. By induction on the structure of Γ ⊢ e▷∗ e′.

Case: Rule Red-Refl, trivial.

Case: Rule Red-Trans, by Lemma 4.3.4 and the induction hypothesis.

Case: Rule Red-Cong-Let

We have that Γ ⊢ let x= e1 in e▷∗ let x= e1 in e
′ and Γ ⊢ e▷∗ e′.

We must show that JΓK ⊢ Jlet x= e1 in eK ≡ Jlet x= e1 in e
′K

Jlet x= e1 in eK

= Jlet x= e1 in y[e/y]K (35)

≡ ST (Jlet x= e1 in yK[JeK/y])

by Lemma 4.3.3 (Substitution) (36)

≡ ST (Jlet x= e1 in yK[
q
e′

y
/y])

by the induction hypothesis applied to e ▷∗ e′ (37)

≡
q
let x= e1 in y[e

′/y]
y

4.3 anf translation 89

by Lemma 4.3.3 (38)

=
q
let x= e1 in e

′y (39)

The previous two lemmas imply equivalence preservation. Including η-equivalence
makes this non-trivial, but not hard.

Lemma 4.3.6 (Preservation of Equivalence). If Γ ⊢ e≡ e′ then JΓK ⊢ JeK ≡ Je′K

Proof. By induction on the derivation of Γ ⊢ e≡ e′.

Case: Rule ≡ Follows by Lemma 4.3.5.

Case: Rule ≡-η1

By Lemma 4.3.5, we know JeK ≡ Jλ x : A. e1K. By transitivity, it suffices to show
Jλ x : A. e1K ≡ Je′K.

By Rule ≡-η1, since Jλ x : A. e1K = λx : JAK. Je1K, it suffices to show that Je1K ≡
Je′K x2

Je1K

≡
q
e′ x2

y
by the induction hypothesis (40)

=
q
e′

y
let x1 = [·] in x1 x2 (41)

= (let x1 = [·] in x1 x2)⟨⟨
q
e′

y
⟩⟩ by Lemma 4.3.2 (42)

≡ let x1 =
q
e′

y
in x1 x2 by Lemma 4.2.1 (43)

▷ζ

q
e′

y
x2 (44)

Case: Rule ≡-η2 Essentially similar to the previous case.

Since I implement cumulative universes through subtyping, we must also show
subtyping is preserved. The proof is completely uninteresting, except insofar as it is
simple, while it seems to be impossible for CPS translation (Bowman et al., 2018). I
discuss this further in Section 4.4.

Lemma 4.3.7 (Preservation of Subtyping). If Γ ⊢ e⪯ e′ then JΓK ⊢ JeK ⪯ Je′K

Proof. By induction on the structure of Γ ⊢ e⪯ e′.

Case: Rule ⪯-≡. Follows by Lemma 4.3.6.

Case: Rule ⪯-Trans. Follows the induction hypothesis.

Case: Rule ⪯-Prop. Trivial, since JProp K = Prop and JType 0K = Type 0.

Case: Rule ⪯-Cum. Trivial, since JType iK = Type i and JType i+1K = Type i+1.

90 a-normal form

Case: Rule ⪯-Pi.

We must show that JΓK ⊢ JΠx1 : A1.B1K ⪯ JΠx2 : A2.B2K

By definition of the translation, we must show JΓK ⊢ Πx1 : JA1K. JB1K ⪯ Πx2 :

JA2K. JB2K.

Note that if we lifted the continuations in type annotations A1 and A2 outside the
Π, as CBPV suggests we should, we would need a new subtyping rule that allows
subtyping let expressions. As it is, we proceed by Rule ⪯-Pi.

It suffices to show that

a) JΓK ⊢ JA1K ≡ JA2K, which follows by the induction hypothesis.

b) JΓK ,x1 : JA2K ⊢ JB1K⪯JB2K[x1/x2], which follows by the induction hypothesis.

Case: Rule ⪯-Sig. Similar to previous case.

I now prove type preservation, with a suitably strengthened induction hypothesis.
I prove that, given a well-typed source term e of type A, and a continuation K that
expects the definitions defs(JeK), expects the term hole(JeK), and has result type B,
the translation JeKK is well typed.

The structure of the lemma and its proof are a little surprising. Intuitively, we would
expect to show something like “if e : A then JeK : JAK”. I will ultimately prove this,
Theorem 4.3.10 (Type Preservation), but we need a stronger lemma first. Since the
translation is pushing computation inside-out (since continuations compose inside-out),
the type-preservation lemma and proof are essentially inside-out. Instead of the expected
statement, we must show that if we have a continuation K that expects JeK : JAK, then
we get a term JeKK of some arbitrary type B. Of course, in order to show that, we
will have to show that JeK : JAK and then appeal to Lemma 4.2.4 (Cut). Furthermore,
each appeal to the inductive hypothesis will have to establish that we can in fact create
well-typed continuations from the assumption that JeK : JAK.

Wielding our propositions-as-types hat, we can view this theorem as in accumulator-
passing style, where the well-typed continuation is an accumulator expressing the
inductive invariant for type preservation.

I begin with a minor technical lemma that will come in useful in the proof of type
preservation. This lemma allows us to establish that a continuation is well typed when
it expects an inductively smaller translated term in its hole. It also tells us, formally,
that the inductive hypothesis implies the type preservation theorem we expect.

Lemma 4.3.8. If for all Γ ⊢ e : A and JΓK , defs(JeK) ⊢ K : (hole(JeK) : JAK) ⇒ B

we know that JΓK ⊢ JeKK : B, then JΓK , defs(JeK) ⊢ hole(JeK) : JAK (and, incidentally,
JΓK ⊢ JeK : JAK)

Proof. Note that by Theorem 4.3.1 (Normal Form) and the definitions of defs(JeK) and
hole(JeK), JΓK , defs(JeK) ⊢ hole(JeK) : JAK is a sub-derivation of JΓK ⊢ JeK : JAK, so it

4.3 anf translation 91

suffices to show that JΓK ⊢ JeK : JAK. By the premise JΓK ⊢ JeKK : B, it suffices to show
that [·] : (_ : JAK) ⇒ JAK, which is true by Rule K-Empty.

Lemma 4.3.9 (Type and Well-formedness Preservation).

1. If ⊢ Γ then ⊢ JΓK

2. If Γ ⊢ e : A, and JΓK , defs(JeK) ⊢ K : (hole(JeK) : JAK) ⇒ B then JΓK ⊢ JeKK : B

Proof. The proof is by induction on the mutually defined judgments ⊢ Γ and Γ ⊢ e : A.
The key cases are the typing rules that use dependency, that is, Rule Snd, Rule App,
and Rule Let. I give these cases, although they are essentially similar, and a couple
of other representative cases, which are uninteresting. I strongly recommend that the
reader read the proof case for Rule Snd, in which I take care to spell out the interesting
aspects of the proof.

Case: Rule Prop

We must show that JΓK ⊢ JProp KK : B.

By definition of the translation, it suffices to show that JΓK ⊢ K[Prop] : B.

Note that defs(JProp K) = ·; this property holds for all values.

By Lemma 4.2.4 (Cut), it suffices to show that

a) hole(JProp K) = Prop , which is true by definition of the translation, and

b) Prop : JType 1K, which is true by Rule Prop, since JType 1K = Type 1.

Case: Rule Lam

We must show that JΓK ⊢ Jλ x : A′. e′KK : B.

That is, by definition of the translation, JΓK ⊢ K[λx : JA′K. Je′K] : B.

Recall that defs(Jλ x : A′. e′K) = ·, since values export no definitions.

By Lemma 4.2.4, it suffices to show that JΓK ⊢ λx : JA′K. Je′K : JΠx : A′.B′K.

By definition, JΠx : A′.B′K = Πx : JA′K. JB′K, we must show JΓK ⊢ λx : JA′K. Je′K :
Πx : JA′K. JB′K.

By Rule Lam, it suffices to show

JΓK ,x : JA′K ⊢ Je′K : JB′K.

Note that JΓK ⊢ [·] : (_ : JB′K) ⇒ JB′K.

So, the goal follows by the induction hypothesis applied to Γ, x : A′ ⊢ e′ : B′ with
K = [·]

Case: Rule Snd

We must show JΓK ⊢ Jsnd eKK : B, where JΓK , defs(Jsnd eK) ⊢ K : (hole(Jsnd eK) :
JB′[fst e/x]K) ⇒ B and Γ ⊢ e : Σx : A′.B′.

92 a-normal form

That is, by definition of the translation, we must show,

JΓK ⊢ JeK let x′ = [·] inK[sndx′] : B.

Let K′ = let x′ = [·] inK[sndx′].

Note that we know nothing further about the structure of the term we’re trying
to type check, JeKK′. Therefore, we cannot appeal to any typing rules directly.
This happens because e is a computation, and the translation of computations
composes continuations, which occurs “inside-out”. Instead, my proof proceeds
“inside out”: we build up typing invariants in a well-typed continuation K′ (that
is, I build up definitions in an accumulator) and then appeal to the induction
hypothesis for e with K′. Intuitively, some later case of the proof that knows
more about the structure of e will be able to use this well-typed continuation to
proceed.

So, by the induction hypothesis, applied to Γ ⊢ e : Σx :A′.B′ with K′, to complete
this proof case, it suffices to show that: JΓK , defs(JeK) ⊢ let x′ = [·] inK[sndx′] :

(hole(JeK) : JΣx : A′.B′K) ⇒ B

By Rule K-Bind, it suffices to show that

a) JΓK , defs(JeK) ⊢ hole(JeK) : JΣx : A′.B′K, which follows by Lemma 4.3.8
applied to the induction hypothesis for Γ ⊢ e : Σx : A′.B′

b) JΓK , defs(JeK),x′ = hole(JeK) ⊢ K[sndx′] : B.

To complete this case of the proof, it suffices to show Item (b).

Note defs(Jsnd eK) = (defs(JeK),x′ = hole(JeK)) and hole(Jsnd eK) = sndx′.

So, by Lemma 4.2.4 (Cut), given the type of K, it suffices to show that

JΓK , defs(JeK),x′ = hole(JeK) ⊢ sndx′ : JB′[fst e/x]K.

By Lemma 4.3.3, JB′[fst e/x]K ≡ JB′K[Jfst eK/x].

By Rule Conv, it suffices to show that JΓK , defs(JeK),x′ = hole(JeK) ⊢ sndx′ :

JB′K[Jfst eK/x].

Note that we cannot show this by the typing rule Rule Snd, since the substitution
JB′K[Jfst eK/x] copies an apparently arbitrary expression Jfst eK into the type,
instead of the expected sub-expression fst x′. That is, by the typing rules, all we
can show is that sndx′ : JB′K[fst x′/x], but we must show sndx′ : JB′K[Jfst eK/x].
The translation has disrupted the dependency on e, changing the type that
depended on the specific value e into a type that depends on an apparently
arbitrary value x′. This is the problem discussed in Section 4.1. It is also where
the definitions we have accumulated in our continuation typing save us. We
can show that Jfst eK ≡ fst x′, under the definitions we have accumulated from
continuation typing. This follows by Lemma 4.2.5.

Therefore, by Rule Conv, it suffices to show that JΓK , defs(JeK),x′ = hole(JeK) ⊢
sndx′ : JB′K[fst x′/x].

4.3 anf translation 93

By Rule Snd, it suffices to show JΓK , defs(JeK),x′ = hole(JeK) ⊢ x′ : Σx :

JA′K. JB′K, which follows since, as we showed in Item (a), JeK : Σx : JA′K. JB′K.

Case: Rule App

We must show that JΓK ⊢ Je1 e2KK : B.

That is, by definition, JΓK ⊢ Je1K let x1 = [·] in Je2K let x2 = [·] inK[x1 x2] : B.

Again, we know nothing about the structure of Je1KK′, so we must proceed
inside-out.

By the inductive hypothesis applied to Γ ⊢ e1 : B
′[e1/x], it suffices to show that

JΓK , defs(Je1K) ⊢ let x1 = [·] in
Je2K let x2 = [·] inK[x1 x2] : (hole(Je1K) : JΠx : A′.B′K) ⇒ B

To show this, by Rule K-Bind, it suffices to show

a) JΓK , defs(Je1K) ⊢ hole(Je1K) : JΠx : A′.B′K, which follows by Lemma 4.3.8
applied to the induction hypothesis for Γ ⊢ e1 : Πx : A′.B′

b) JΓK , defs(Je1K),x1 = hole(Je1K) ⊢ Je2K let x2 = [·] inK[x1 x2] : B

By the inductive hypothesis applied to Γ ⊢ e2 : A
′, it suffices to show that

JΓK , defs(Je1K),x1 = hole(Je1K), defs(Je2K) ⊢ let x2 = [·] inK[x1 x2] : B.

By Rule K-Bind, it suffices to show

JΓK , defs(Je1K),x1 = hole(Je1K), defs(Je2K),x2 = hole(Je2K) ⊢ K[x1 x2] : B.

Let Γ′ = JΓK , defs(Je1K),x1 = hole(Je1K), defs(Je2K),x2 = hole(Je2K), for brevity.

By Lemma 4.2.4 (Cut), we must show Γ′ ⊢ x1 x2 : JB′[e2/x]K.

By Lemma 4.3.3 and Rule Conv, it suffices to show Γ′ ⊢ x1 x2 : JB′K[Je2K/x].

As in the proof case for Rule Snd, we cannot proceed directly by Rule App, since
we see a disrupted dependency. This dependent application whose type depends
on the argument being the specific value Je2K now finds the argument x2. (This
issue comes up in type-preservation for call-by-value CPS (Chapter 6).) But,
again, we know by Lemma 4.2.5 that under these exported definitions, Je2K ≡ x2.
So by Rule Conv, it suffices to show Γ′ ⊢ x1 x2 : JB′K[x2/x]. By Rule App it
suffices to show

a) Γ′ ⊢ x1 : Πx:JA′K. JB′K, which follows by Lemma 4.3.8 applied to the induction
hypothesis for Γ ⊢ e1 : Πx : A′.B′

b) Γ′ ⊢ x2 : JA′K, which follows by Lemma 4.3.8 applied to the induction
hypothesis for Γ ⊢ e2 : A

′.

Case: Rule Let

We must show that JΓK ⊢ Jlet x= e1 in e2KK : B.

That is, by definition, JΓK ⊢ Je1K let x1 = [·] in Je2KK : B.

94 a-normal form

By the induction hypothesis applied to Γ ⊢ e1 : A, it suffices to show that

JΓK , defs(Je1K) ⊢ let x1 = [·] in Je2KK : (hole(Je1K) : JAK) ⇒ B.

By Rule K-Bind, it suffices to show

a) JΓK , defs(Je1K) ⊢ hole(Je1K) : JJAKK, which follows by Lemma 4.3.8 applied
to the induction hypothesis for Γ ⊢ e1 : A,

b) JΓK , defs(Je1K),x1 = hole(Je1K) ⊢ Je2KK : B.

Item (b) follows from the induction hypothesis applied to Γ, x = e1 ⊢ e2 : B
′ with

K (the same well-typed K that we have from our current premise), if we can show
that K is well typed as follows:

JΓK , defs(Je1K),x1 = hole(Je1K), defs(Je2K) ⊢ K : (hole(Je2K) : JB′[e1/x1]K) ⇒ B

Currently, we know by our premises that

JΓK , defs(Jlet x1 = e1 in e2K) ⊢ K : (hole(Jlet x1 = e1 in e2K) : JB′[e1/x1]K) ⇒ B

So it suffices to show that

a) defs(Jlet x1 = e1 in e2K) = (defs(Je1K),x1 = hole(Je1K), defs(Je2K))

b) hole(Jlet x1 = e1 in e2K) = hole(Je2K)

both of which are straightforward by definition.

Theorem 4.3.10 (Type Preservation). If Γ ⊢ e : A then JΓK ⊢ JeK : JAK

Proof. By Lemma 4.3.9, it suffices to show that JΓK ⊢ [·] : (_ : JAK) ⇒ JAK, which is
trivial.

4.3.2 Compiler Correctness

I prove correctness of separate compilation with respect to the ANF machine semantics.
I use the same definitions of linking and observations as in Chapter 2 for ECCD. It is
simple to lift the ANF translation to closing substitutions.

Correctness of separate compilation is non-standard compared to Chapter 3, in that I
define ANF semantics separate from conversion. This theorem states that we can either
link then run a program in the source language semantics, i.e., using the conversion
relation, or separately compile the term and its closing substitution then run in the
ANF machine semantics. Either way, we get related observations.

Theorem 4.3.11 (Separate Compilation Correctness). If Γ ⊢ e and Γ ⊢ γ, then
eval(γ(e)) ≈ eval(JγK (JeK)).

Proof. Because ≡ corresponds to ≈ on observations, it suffices to show that the following
diagram commutes, which it does because eval(γ(e)) ≡ γ(e) (by definiton), γ(e) ≡ Jγ(e)K

4.4 related and future work 95

(by Lemma 4.3.6), JγK (JeK) ≡ Jγ(e)K (by Lemma 4.3.3), and eval(JγK (JeK)) ≡ JγK (JeK)
(by Theorem 4.2.3 (Evaluation soundness)).

eval(γ(e)) Jγ(e)K

eval(Jγ(JeK)K) Jγ(JeK)K

≡

≡ ≡

≡

Corollary 4.3.12 (Whole-Program Correctness). If · ⊢ e then eval(e) ≈ Jeval(e)K.

4.4 Related and Future Work

4.4.1 Comparison to CPS

ANF is usually seen in opposition to CPS, so I briefly discuss similarities and differences
between our type-preserving ANF and prior work on-type preserving CPS. ANF is
favored as a compiler intermediate representation, although not universally. Maurer
et al. (2017) argue for ANF, over alternatives such as CPS, because ANF makes control
flow explicit but keeps evaluation order implicit, automatically avoids administrative
redexes, simplifies many optimizations, and keeps code in direct style. Kennedy (2007)
argues the opposite—that CPS is preferred to ANF—and summarizes the arguments
for and against.

Most recent work on CPS translation of dependently typed language has focused
on expressing control effects. Pédrot (2017) uses a non-standard CPS translation
to internalize classical reasoning in the Calculus of Inductive Constructions (CIC).
Cong and Asai (2018a,b) develop CPS translations to express delimited control effects,
via shift and reset, in a dependently typed language. Miquey (2017) uses a CPS
translation to model a dependent sequent calculus. When expressing control effects
in dependently typed languages, it is necessary to prevent certain dependencies from
being expressed to maintain consistency (Barthe and Uustalu, 2002; Herbelin, 2005),
therefore these translations do not try to recover dependencies in the way we discuss in
Section 4.1.

My own CPS translation, Chapter 6 (published before writing this chapter as Bowman
et al. (2018)) does avoid control effects and seeks to develop a type preserving translation.
The new typing rule I add is similar to my Rule K-Bind in ECCA, and is used for
the same purpose: to recover disrupted dependencies. Unfortunately, that encoding
does not scale to higher universes, and relies on interpreting all functions as parametric
(discussed further in Chapter 8). By contrast, this ANF translation works with higher
universes and, since ECCA is a subset of ECCD, the ANF translation is orthogonal to
parametricity.

96 a-normal form

4.4.2 Branching and Join Points

The ANF translation presented so far does not support all of ECCD; in particular,
it omits the dependent conditional. This is primarily for simplicity, as many of the
problems with ANF are orthogonal to dependent conditional. However, dependent
conditionals do introduce non-trivial challenges for ANF translation. In this section, I
give the translation and argue that it is type preserving.

It is well-known that ANF in the presence of branching constructs, such as if, can
cause considerable code duplication for branches. For instance, supposing we have an
(for the moment, non-dependent) if, the naïve ANF translation is the following.

Jif e then e1 else e2KK = JeK let x= [·] in if x then (Je1KK) else (Je2KK)

Notice that the current continuation K is duplicated in the branches.
The well-known solution is to add a join point—essentially, a continuation that is

used only for avoiding code duplication in branch constructs. Using join points, we
would translate if as follows.

Jif e then e1 else e2KK = JeK let x= [·] in let j= λx′ :A.K[x′] in

if x then Je1K let x1 = [·] in j x1

else Je2K let x2 = [·] in j x2

Instead of duplicating K, we create a join point j which is called in the branches.
Extending the translation to support join points requires (for decidable type checking)

that the translation generate a type annotation A for the join point, where A is the
translation of the type of the if statement. It is easy to extend the translation to
be defined on typing derivations; in fact, the rest of the translation defined in this
dissertation are defined on typing derivations, and the proof architecture described
in Chapter 3 is designed to support this. The only disadvantage is that structuring
the translation this way disallows typed equivalence, unless the problem discussed in
Chapter 3 can be solved.

The real problem arises when we have dependent conditionals, in which the result
type of the branches can depend on the scrutinee of the conditional. Recall that typing
rule for dependent if, reproduced below.

Γ, y : bool ⊢ B : U Γ ⊢ e : bool Γ ⊢ e1 : B[true/y] Γ ⊢ e2 : B[false/y]

Γ ⊢ if e then e1 else e2 : B[e/y]

We can describe the problem clearly using continuation typing. The ANF translation of
this term is with respect to continuation K : (hole(Jif e then e1 else e2K) : JB[e/y]K) ⇒ B′.
However, the ANF translation will use K in an ill-typed way, producing in one branch
Je1KK, and in the other branch Je2KK. For the first branch, for instance, we must show
that now K : (hole(Je1K) : JB[true/y]K) ⇒ B′. The definitions, defs(JeK), introduced
by the translation of if are not sufficient to show that this type is equivalent to the

4.4 related and future work 97

type of K expected for the translation of if. I discuss an essentially similar problem
for CPS with dependent conditionals in Chapter 6.

We could resolve this, it seems, if we could assume that while type checking the first
branch that e = true, and similarly for the second branch that e = false. But one of
these is not true; we cannot have that both e = true and e = false. Since in ECCA

we require reduction under both branches during type checking, reduction under this
inconsistent assumption could cause divergence.

To enable us to make inconsistent assumptions like the above but ensure strong
normalization, my idea is to use explicit equality proofs and explicit coercions. The
coercions would block reduction until they have a proof of equality, and since we will
never end up with a proof that true = false, the inconsistent assumption can never be
used in reduction. But the coercion would allow the ANF translation to type check.

With this idea, the type rule for if would be the following.

Γ, y : bool ⊢ B : U

Γ ⊢ e : bool Γ, p : e = true ⊢ e1 : B[true/y] Γ, p : e = false ⊢ e2 : B[false/y]

Γ ⊢ if e then e1 else e2 : B[e/y]

Then, the ANF naïve translation for dependent conditionals would be the following; I
give the join-point translation shortly.

Jif e then e1 else e2KK = JeK let x= [·] in
if x then Je1K let x1 = [·] inK[subst p x1]

else Je2K let x2 = [·] inK[subst p x2]

The term subst p e is an elimination for the identity type (derivable from only axiom
J , a standard axiom admitted in many dependent type theories), with the following
standard semantics. Recall that the result type of K cannot depend on the term in its
hole, so we do not need a similar conversion for the result of K.

Γ,x : A ⊢ B : U Γ ⊢ p : e1 = e2 Γ ⊢ e : B[e1/x]

Γ ⊢ subst p e : B[e2/x]

Γ ⊢ e : A

Γ ⊢ refl e : e = e

subst refl e e ▷ e

The translation with join points is below, and requires no further additions.

Jif e then e1 else e2KK = JeK let x= [·] in let j= λx′ :A.K[x′] in

if x then Je1K let x1 = [·] in j subst p x1

else Je2K let x2 = [·] in j subst p x2

The type annotation A would be the translation of the type source if expression. This is
why, formally, the translation must be defined over typing derivations instead of syntax.

98 a-normal form

I conjecture that this translation would be type preserving, but a full investigation is
left as future work.

Cong and Asai (2018a) use a similar approach to extend the CPS translation presented
in Chapter 6 to inductive types with dependent case analysis.

4.4.3 Dependent Pattern Matching and Commutative Cuts

The above problem with dependent conditionals is exactly the problem of commutative
cuts for case analysis (Boutillier, 2012; Herbelin, 2009). Formally, the problem of
commutative cuts can be phrased: Is the following transformation type preserving?

K[if e then e1 else e2]⇝ if e thenK[e1] else K[e2]

ANF necessarily performs this transformation, as shown in the previous section.
Ignoring ANF for a moment, in general this is not type preserving, and stack typing

shows why. Suppose that we have a non-ANF stack K with the following typing
derivation.

Γ, y′ : bool ⊢ B′ : U′ Γ, y : B′[e/y′] ⊢ B : U Γ ⊢ if e then e1 else e2 : B
′[e/y′]

Γ ⊢ K : (if e then e1 else e2 : B
′[e/y′]) ⇒ B[(if e then e1 else e2)/y]

Note that the result type of this stack, B′, may depend on the term in the hole, since
this is not in ANF. The problem is that after the commutative cut, we must show that
K[e1] and K[e2] are well-typed in the branches, which is not true in general since K

expects if e then e1 else e2.
If we add the equalities e = true and e = false while type checking the branches, as

proposed in the previous section, then it appears that we can make the terms K[e1] and
K[e2] well-typed, although it requires a generalization of Lemma 4.2.4. However, we
still cannot show the commutative cut is type preserving, since the result type B also
depends on the term in the hole. And now, the two branches of the if have different
types: K[e1] : B[e1/y], while K[e2] : B[e2/y]. Since the branches of an if must have the
same type (up to equivalence), it appears that we must show e1 ≡ e2.

In fact, what we need to show is essentially another, smaller, commutative cut. Viewing
B as a type-level stack, we must show B[if e then e1 else e2] ≡ if e thenB[e1] else B[e2]. This
is smaller in the sense that the type of this type cannot contain a commutative cut. For
booleans, we could pursue this by adding yet another appeal to J , but this approach
does not scale to indexed inductive types.

But, there is a solution: we can make the commutative cut type preserving, even
for general inductive types. Boutillier (2012) give an extension to CIC that allows for
typing commutative cuts, in particular, by relaxing the termination checker. Explaining
the solution is out of scope for this work. I only want to point out two things. First, the
solution adds an environment of equalities to the termination checker, just as I propose
for stack typing and for typing if above. Second, the solution requires axiom K, a very

4.4 related and future work 99

strong requirement which is inconsistent with certain extensions to type theory, such as
univalence. This raises the question: does ANF in general require axiom K ?

I conjecture the answer is no, and the reason is the interesting property we observed
in Section 4.2: in ANF, the result type cannot depend on the term in the hole. This
additional structure seems to avoid some problems of commutative cuts, and I hope
that it will be enough to scale ANF to indexed inductive types without additional
requirements on the type theory. I have one additional reason to be hopeful: even if
we need a stronger axiom than J , work on dependent pattern matching suggests that
univalence may replace axiom K for our purposes.

Recent work on dependent pattern matching creates typing rules similar to what
we suggest above to yield additional equalities during a pattern match (Barras et al.,
2008; Cockx et al., 2016). There is another unfortunate similarity: some work on
dependent pattern matching requires axiom K. In particular, Barras et al. (2008) give a
new eliminator for CIC which adds additional equalities while checking branches of an
elimination, and show that this new typing rule is equivalent to axiom K. Cockx et al.
(2016) discuss a proof-relevant view of unification, in the context of Agda’s dependent
pattern matching. They note that the heterogeneous equalities usually required by
dependent pattern matching require axiom K to be useful. They also take a different
approach, and build on an idea from homotopy type theory that one equality can “layer
over” another, to get a proof relevant unification algorithm that does not rely on K, and
yet yields the additional equalities for dependent pattern matching.

4.4.4 Dependent Call-By-Push-Value and Monadic Form

Call-by-push-value (CBPV) is similar to the ANF target language, and to CPS target
languages. In essence, CBPV is a λ calculus in monadic normal form suitable for
reasoning about CBV or CBN, due to explicit sequencing of computations. It has values,
computations, and stacks, similar to ANF, and has compositional typing rules (which
inspired much of my own presentation). The particular structure of CBPV is beneficial
when modeling effects; all computations should be considered to carry an arbitrary
effect, while values do not.

Work on designing a dependent call-by-push-value (dCBPV) runs into some of the
same design issues that we see in ANF (Ahman, 2017; Vákár, 2017), but critically,
avoids the central difficulties introduced in Section 4.1. The reason is essentially that
monadic normal form is more compositional than CPS or ANF, so dependency is not
disrupted in the same way.

Recall from Section 4.2 that our definition of composition was entirely motivated
by the need to compose configurations and stacks. In CBPV, and monadic form
generally, there is no distinction between computation and configurations, and let is
free to compose configurations. This means that configurations can return intermediate
computations, instead of composing the entire rest of the stack inside the body of a

100 a-normal form

let. The monadic translation of snd e from Section 4.1, which is problematic in CPS
and ANF, is given below and is easily type preserving.

Jsnd e : B[e/y]K = let x= JeK in sndx : JBK[JeK/y]

Note that since let can bind the “configuration” JeK, the typing rule Let and the
compositionality lemma suffice to show type preservation, without any reasoning about
definitions. In fact, we don’t even need definitions for monadic form; we only need a
dependent result type for let. The dependent typing rule for let without definition
is essentially the rule given by Vákár (2017), called the dependent Kleisli extension,
to support the CBV monadic translation of type theory into dCBPV, and the CBN
translation with strong dependent pairs. Vákár (2017) observes that without the
dependent Kleisli extension, CBV translation is ill-defined (not type preserving), and
CBN only works for dependent elimination of positive types. A similar observation
was made independently in my own work with Nick Rioux, Youyou Cong, and Amal
Ahmed (2018, presented in Chapter 6): type-preserving CBV CPS fails for Π types, in
addition to the well-known result that the CBN translation failed for Σ types (Barthe
and Uustalu, 2002).

If we restrict the language so that types can only depend on values, then the extension
with dependent let is not necessary. This restriction seems sensible in the context of
modeling effects. Ahman (2017) in eMLTT, a co-discovered variant of dependent CBPV,
avoids dependent let altogether, but comes up with many useful models of dependent
types with effects. Ahman (2017), however, does not give a translation from type theory
into eMLTT, and it seems likely that an extension with dependent let would be required
to do so. (This would be necessary to build on eMLTT as a compiler IL.) However,
as Vákár (2017) points out, it is not clear what it means to have a type depend on
an effectful computation, and trying to do so makes it impossible to model effects in
dCBPV the way one would hope.

In eMLTT, stacks cannot have a result type that depends on the value it is composed
with, just as in our K-Bind rule. However, the dCBPV of Vákár (2017) does allow
the result type of stacks to depend on values, but only on values. It is unclear what
trade-offs each approach presents.

5 A B S T R A C T C LO S U R E C O N V E R S I O N

In this chapter, I develop the second of the two front-end type-preserving translations, a
so-called abstract closure conversion translation. Abstract closure conversion produces
closure converted code in which closures are primitives, rather than encoded using a
well-known datatype (Minamide et al., 1996). The goal of closure conversion is to
close all computation abstractions with respect to free variables so the definition of a
computation can be separate from its use. In ECCD, the only computation abstraction
is λ, so we will be translating all λ expressions into an explicit closure object. Intuitively,
the abstract closure object essentially represents closed code partially applied to the local
environment in which the code was defined. This is abstract compared to representations
of closures as a pair of the code and environment, since a pair supports more operations
(projection) than a closure. The abstract closure conversion ensures the only operation
defined on closures is application.

I begin by describing the key problems with type preserving closure conversion—
particularly why the standard parametric closure conversion fails—and the solutions,
then develop the closure conversion IL, and finally prove type preservation and compiler
correctness. As this pass is meant to follow ANF, I also prove that ANF is preserved.

Typographical Note. In this chapter, I typeset the source language, ECCD, in a blue,
non-bold, sans-serif font, and the target language, ECCCC , in a bold, red, serif font.

Digression. A variant of the translation presented in this chapter was independently
discovered by Kovács (2018). That translation differs primarily in its use of universes
ala Tarski. The author also spends some time discussing type-passing polymorphism,
which I do not discuss.

5.1 Main Ideas

Closure conversion makes the implicit closures from a functional language explicit to
facilitate statically allocating code in memory. The idea is to translate each first-class
function into an explicit closure, i.e., a pair of closed code and an environment data
structure containing the values of the free variables. Code refers to functions with no free
variables, as in a closure-converted language. The environment is created dynamically,

101

102 abstract closure conversion

but the closed code can be lifted to the top-level and statically allocated. Consider the
following example translation.

J(λx.y)K = ⟨(λnx. let y = (π1 n) in y), ⟨y⟩⟩
J((λx.y) true)K = let ⟨f, n⟩ = ⟨(λnx. let y = (π1 n) in y), ⟨y⟩⟩ in

f n true

I write JeK to indicate the translation of an expression e. We translate each function into
a pair of code and its environment. The code accepts its free variables in an environment
argument, n (since n sounds similar to env). In the body of the code, we bind the
names of all free variables by projecting from this environment n. To call a closure, we
apply the code to its environment and its argument.

This translation is not type preserving since the structure of the environment shows
up in the type. For example, the following two functions have the same type in the
source language. They are both functions on booleans, and y is a free variable of type
bool.

λx.y : (bool → bool)

λx.x : (bool → bool)

But after closure conversion when we encode closures as pairs, the two functions have
different types in the target language.

J(λx.y)K : ((bool× 1) → bool → bool)× (bool× 1)

J(λx.x)K : (1 → bool → bool)× 1

This is a well-known problem with typed closure conversion, so we could try the well-
known solution, called parametric closure conversion [Minamide et al., 1996, Morrisett
and Harper, 1998, Morrisett et al., 1999, Ahmed and Blume, 2008, Perconti and Ahmed,
2014, New et al., 2016], which represents closures as an existential package of a pair
of the code and its environment, whose type is hidden. The existential type hides the
structure of the environment in the type. (Spoiler alert: it doesn’t work for ECCD.)

J(λx.y)K : ∃α.(α → bool → bool)× α

J(λx.x)K : ∃α.(α → bool → bool)× α

This translation works well for simply typed and polymorphic languages, but when we
move to a dependently typed language, we have new challenges. First, the environment
must now be ordered since the type of each new variable can depend on all prior variables.
Second, types can now refer to variables in the closure’s environment. Consider the
polymorphic identity function below.

λA : Prop . λ x : A. x : ΠA : Prop .Πx : A.A

This function takes a type variable, A, whose type is Prop . It returns a function that
accepts an argument x of type A and returns it. There are two closures in this example:

5.1 main ideas 103

the outer closure has no free variables, and thus will have an empty environment, while
the inner closure λ x : A. x has A free, and thus A will appear in its environment.

Below, I present the translation of this example using the existing parametric closure
conversion translation. The translation produces two closures, one nested in the other.
Note that we translate source variables x to x. In the outer closure, the environment
is empty ⟨⟩, and the code simply returns the inner closure. The inner closure has the
argument A from the outer code in its environment. Since the inner code takes an
argument of type A, we project A from the environment in the type annotation for
x. That is, the inner code takes an environment n2 that contains A, and the type
annotation for x is x : fst n2. The type fst n2 is unusual, but is no problem since
dependent types allow terms in types.

⟨⟨λ (n1 : 1,A : Prop). ⟨⟨λ (n2 : Prop × 1,x : fst n2).x, ⟨A, ⟨⟩⟩⟩⟩, ⟨⟩⟩⟩ :

∃α1 :Prop . (Π (n1 : α1,A : Prop).

∃α2 :Type i. (Π (n2 : α2,x : fst n2). fst n2)×α2) ×α1

We see that the inner code on its own is well typed with the closed type Π (n2 :

Prop ×1,x : fst n2). fst n2. That is, the code takes two arguments: the first argument
n2 is the environment, and the second argument x is a value of type fst n2. The
result type of the code is also fst n2. As discussed above, we must hide the type
of the environment to ensure type preservation. That is, when we build the closure
⟨⟨λ (n2 : Prop × 1,x : fst n2).x, ⟨A, ⟨⟩⟩⟩⟩, we must hide the type of the environment
⟨A, ⟨⟩⟩. We use an existential type to quantify over the type α2 of the environment,
and we produce the type Π (n2 : α2,x : fst n2). fst n2 for the code in the inner closure.
But this type is trying to take the first projection of something of type α2. We can only
project from pairs, and something of type α2 isn’t a pair! In hiding the type of the
environment to recover type preservation, we’ve broken type preservation for dependent
types.

A similar problem also arises when closure converting System F, since System F also
features type variables (Minamide et al., 1996; Morrisett et al., 1999). To understand
my solution, it is important to understand why the solutions that have historically
worked for System F do not scale to dependent types. I briefly present these past results
and why they do not scale before moving on to the key idea behind my translation.
Essentially, past work using existential types relies on assumptions about computational
relevance, parametricity, and impredicativity that do not necessarily hold in full-spectrum
dependent type systems.

5.1.1 Why the Well-Known Solution Doesn’t Work

Minamide et al. (1996) give a translation that encodes closure types using existential
types, a standard type-theoretic feature that they use to make environment hiding
explicit in the types. In essence, they encode closures as objects; the environment can

104 abstract closure conversion

be thought of as the private field of an object. Since then, existential types have been
the standard way to encode closure types has been all work on typed closure conversion.

However, the use of existential types to encode closures in a dependently typed
setting is problematic. First, let us just consider closure conversion for System F. As
Minamide et al. (1996) observed, there is a problem when code must be closed with
respect to both term and type variables. This problem is similar to the one discussed
above: when closure environments contain type variables, since those type variables
can also appear in the closure’s type, the closure’s type needs to project from the
closure’s (hidden) environment which has type α. To fix the problem, Minamide et al.
(1996) extend their target language with translucency (essentially, a kind of type-level
equivalence that we now call singleton types), type-level pairs, and kinds. All of these
features can be encoded in ECCD and most dependent type systems, so we could extend
their translation essentially as follows. (In fact, I present the extended translation in
Chapter 7.)

J(Πx : A.B)K def
= ∃α :U.∃n :α.Code (n′ :α,y :n′ = n,x : JAK). JBK

In this translation, we existentially quantify over the type of the environment α, the
term representing the environment n, and generate code that requires an environment n′

plus a proof that the code is only ever given the environment n as the argument n′. The
typing rule for an existential package copies the existentially quantified terms into the
type. That is, for a closure pack ⟨A′,v, e⟩ of type ∃α :U.∃n :α.Code (n′ :α,y :n′ =

n,x : JAK). JBK, the typing rule for pack requires that we show e : Code (n′ :A′,y :n′ =

v,x : JAK). JBK; notice that the variable n has been replaced by the term representing
the environment v. The equality n′ = v essentially unifies projections from n′ with
projections from v, the list of free variables representing the environment.

The problem with this translation is that it relies on impredicativity. That is, if
(Πx : A.B) : Prop , then we require that J(Πx : A.B)K : Prop . Since the existential type
quantifies over a type in an arbitrary universe U but must be in the base universe
Prop , the existential type must be impredicative. Impredicative existential types (weak
dependent pairs) are consistent on their own, but impredicativity causes inconsistency
when combined with other features, including computational relevance and higher uni-
verses. For example, in Coq by default, the base computationally relevant universe Set

is predicative, so this translation would not work. There is a flag to enable impredicative
Set, but this can introduce inconsistency with some axioms, such as a combination of
the law of excluded middle plus the axiom of choice, or ad-hoc polymorphism (Boulier
et al., 2017). Even with impredicative Set, there are computationally relevant higher
universes in Coq’s universe hierarchy, and it would be unsound to allow impredicativity
at more than one universe. Furthermore, some dependently typed languages, such as
Agda, do not allow impredicativity at all.

A second problem arises in developing an η principle, because the existential type
encoding relies on parametricity to hide the environment. So, any η principle would need
to be justified by a parametric relation on environments. Internalizing parametricity for

5.1 main ideas 105

dependent type theory is an active area of research (Krishnaswami and Dreyer, 2013;
Bernardy et al., 2012; Keller and Lasson, 2012; Nuyts et al., 2017) and not all dependent
type theories admit parametricity (Boulier et al., 2017).

Later, Morrisett et al. (1999) improved the existential-type translation for System F,
avoiding translucency and kinds by relying on type erasure before runtime, which meant
that their code didn’t have to close over type variables. This translation does not apply
in a dependently typed setting, since dependent types can contain term variables, not
just “type erasable” type variables.

5.1.2 Abstract Closure Conversion

To solve type-preserving closure conversion for ECCD, I avoid existential types altogether
and instead take inspiration from the so-called abstract closure conversion of Minamide
et al. (1996). They add new forms to the target language to represent code and closures
for a simply typed source language. In this chapter, I scale their design to dependent
types.

I extend ECCD with primitive types for code and closures. I represent code as
λ (n : A′,x : A). e1 of the code type Code (n : A′,x : A).B. These are still dependent
types, so n may appear in both A and B, and x may appear in B. Code must be
well-typed in an empty environment, i.e., when it is closed. For simplicity, code only
takes two arguments.

·,n : A′,x : A ⊢ e : B

Γ ⊢ λn : A′,x : A. e : Code (n : A′,x : A).B
Code

I represent closures as ⟨⟨e, e′⟩⟩ of type Πx :A[e′/n].B[e′/n], where e is code and e′ is
its environment. We continue to use Π types to describe closures; note that “functions”
in ECCD are implicit closures. The typing rule for closures is the following.

Γ ⊢ e : Code (n : A′,x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Πx :A[e′/n].B[e′/n]
Clo

We should think of a closure ⟨⟨e, e′⟩⟩ not as a pair, but as a delayed partial application
of the code e to its environment e′. This intuition is formalized in the typing rule since
the environment is substituted into the type, just as in dependent-function application
in ECCD.

To understand the translation, let us start with the translation of functions; this is
the key translation rule.

J(λ x : A. e)K def
= ⟨⟨(λ (n : Σ (xi : JAiK . . .).1,x : let ⟨xi . . .⟩= n in JAK).

let ⟨xi . . .⟩= n in JeK), ⟨xi . . .⟩⟩⟩
where xi : Ai . . . are the free variables of e and A

106 abstract closure conversion

The translation of functions is simple to construct. We know we want to produce a
closure containing code and its environment. We know the environment should be
constructed from the free variables of the body of the function, namely e, and, due to
dependent types, the type annotation A. The type of the environment, Σ (xi :JAiK . . .).1,
is the type of a dependent list describing the free variables, with a final element of
the unit type. This encodes the fact that type of each variable in the environment
can depend on the value of previous variables. (The syntax let ⟨xi . . .⟩ = n in e is
syntactic sugar for nested projections from a list implemented with pairs, i.e., for
let x1 = fst n in (let x2 = fst sndn in (...let xn = (fst snd ...sndn in e)).)

The question is what the translation of Π types should look like. Let’s return to the
earlier example of the polymorphic identity function. If we apply the above translation,
we produce the following for the inner closure. We know its type by following the typing
rules Clo and Code above.

⟨⟨λ (n2 : Prop × 1,x : fst n2).x, ⟨A, ⟨⟩⟩⟩⟩ :
Π (x : (fst n2)[⟨A, ⟨⟩⟩/n2]). (fst n2)[⟨A, ⟨⟩⟩/n2]

We know that the code λ (n2 : Prop × 1,x : fst n2).x has type Code (Prop × 1,x :

fst n2). fst n2. Following Clo, we substitute the environment into this type, so we get
the following.

Π (x : (fst n2)[⟨A, ⟨⟩⟩/n2]). (fst n2)[⟨A, ⟨⟩⟩/n2]

So how do we translate the function type Πx : A.A into the closure type Π (x :

(fst n2)[⟨A, ⟨⟩⟩/n2]). (fst n2)[⟨A, ⟨⟩⟩/n2]? Note that this type reduces to Πx :A.A.
So by the rule Conv, we simply need to translate Πx : A.A to Πx :A.A!

The key translation rules are given below.

J(Πx : A.B)K def
= Πx : JAK. JBK

J(λ x : A. e)K def
= ⟨⟨(λ (n : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK).

let ⟨xi . . .⟩= n in JeK), ⟨xi . . .⟩⟩⟩
where xi : Ai . . . are the free variables of e and A

Observe that, when the source is in ANF, this translation maintains ANF. A closure
ought to be a value, and therefore its sub-expressions should be values, and the translation
guarantees this. The body of the code should be a configuration, which is also true,
since for any configuration M, let x=NinM is a configuration. I show this in detail
in Section 5.3.3.

A final challenge remains in the design of our target language: we need to know when
two closures are equivalent. As we just saw, ECCD partially evaluates terms while type
checking. If two closures get evaluated while resolving type equivalence, we may inline
a term into the environment for one closure but not the other. When this happens,
two closures that were syntactically identical and thus equivalent become inequivalent.
I discuss this problem in detail in Section 5.3, but essentially we need to know when

5.2 closure-converted intermediate language 107

Universes U ::= Prop | Type i

Expressions e,A,B ::= x | U | Code (x′ : A′,x : A).B | λ (x′ : A′,x : A). e
| Πx :A.B | ⟨⟨e, e′⟩⟩ | e e′ | Σx :A.B
| ⟨e1, e2⟩asΣx :A.B | fst e | snde | bool | true
| false | if e then e1 else e2 | let x= e in e | 1 | ⟨⟩

Figure 5.1: ECCCC Syntax

two syntactically distinct closures are equivalent. The solution is simple: get rid of the
closures and keep inlining things!

Γ,x : A ⊢ e1[e
′
1/n]≡ e2[e

′
2/n]

Γ ⊢ ⟨⟨(λ (n : A′,x : A). e1), e
′
1⟩⟩ ≡ ⟨⟨(λ (n : A′,x : A). e2), e

′
2⟩⟩

Two closures are equivalent when we inline the environment, free variables or not,
and run the body of the code. We leave the argument free, too. We run the bodies of
the code to normal forms, then compare the normal forms. Recall that equivalence runs
terms while type checking and does not change the program, so the free variables do no
harm.

This equivalence essentially corresponds to an η-principle for closures. From it, we
can derive a normal form for closures ⟨⟨e, e′⟩⟩ that says the environment e′ contains only
free variables, i.e., e′ = ⟨xi . . .⟩.

The above is an intuitive, declarative presentation, but is incomplete without addi-
tional rules. I use an algorithmic presentation that is similar to the η-equivalence rules
for functions in ECCD, which I give in Section 5.2.

5.2 Closure-Converted Intermediate Language

The target language ECCCC is based on ECCD, but first-class functions are replaced
by closed code and closures. I add a primitive unit type 1 to support encoding
environments. In Figure 5.1, I extend the syntax of expressions with a unit expression
⟨⟩ and its type 1, closed code expressions λn : A′,x : A. e and dependent code types
Code (n : A′,x : A).B, and closure expressions ⟨⟨e, e′⟩⟩ and dependent closure types
Πx : A.B. The closed code expressions will eventually be separated from closures,
lifted to the top-level and heap allocated, as described in Chapter 3. The syntax of
application e e′ is unchanged, but it now applies closures instead of functions.

I define additional syntactic sugar for sequences of expressions, to support writing
environments whose length is arbitrary. A sequence of expressions ei . . . represents a
sequence of length |i| of expressions ei0 , . . . , ein . I extend the notation to patterns such
as xi : Ai . . . , which implies two sequences xi0 , . . . ,xin and A0, . . . ,Ain each of length

108 abstract closure conversion

Γ ⊢ e▷ e′

...

Γ ⊢ ⟨⟨λx′ : A′,x : A. e1, e
′⟩⟩ e ▷β e1[e

′/x′][e/x]

Figure 5.2: ECCCC Reduction (excerpts)

Γ ⊢ e1 ▷
∗ e Γ ⊢ e2 ▷

∗ e

Γ ⊢ e1 ≡ e2
≡

Γ ⊢ e1 ▷
∗ ⟨⟨λ (x′ : A′,x : A). e′1, e

′⟩⟩
Γ ⊢ e2 ▷

∗ e′2 Γ,x : A ⊢ e1[e
′/x′]≡ e′2 x

Γ ⊢ e1 ≡ e2
≡-Clo1

Γ ⊢ e2 ▷
∗ ⟨⟨λ (x′ : A′,x : A). e′2, e

′⟩⟩
Γ ⊢ e1 ▷

∗ e′1 Γ,x : A ⊢ e′1 x≡ e′2[e
′/x′]

Γ ⊢ e1 ≡ e2
≡-Clo2

Figure 5.3: ECCCC Equivalence

|i|. I define environments as dependent n-tuples, written ⟨ei . . .⟩asΣ (xi : Ai . . .). I
encode dependent n-tuples using dependent pairs—⟨e0, ⟨. . . , ⟨ei, ⟨⟩⟩⟩⟩— i.e., as nested
dependent pairs followed by a unit expression to represent the empty n-tuple. Similarly,
the type of a dependent n-tuple is a nested dependent pair type; Σ (xi : Ai . . .) is
syntactic sugar for Σx0 :A0. . . .Σxi :Ai.1.

As with dependent pairs, I omit the annotation on n-tuples ⟨ei . . .⟩ when it is
obvious from context. I also define pattern matching on n-tuples, written let ⟨xi . . .⟩=
e′ in e, to perform the necessary nested projections, i.e., let x0 = fst e′ in . . . let xi =

fst snd . . . snde′ in e, as described in Section 5.1.

In Figure 5.2, I present the reduction rules for closures. The conversion relation
Γ ⊢ e ▷∗ e′, and evaluation function eval(e) are essentially unchanged from ECCD,
and are given in full in Appendix D. Note that β-reduction only applies to closures.
Code cannot be applied directly, but must be part of a closure. Closures applied to an
argument β-reduce, applying the underlying code to the environment and the argument.
All the other reduction rules remain unchanged.

In Figure 5.3, I present equivalence for ECCCC . The key difference is that I replace the
η-equivalence rules for functions by η-equivalence for closures. Even when η-equivalence
for functions is excluded from the source language, η-equivalence for closures is necessary
for proving Lemma 4.3.3 (Substitution).

5.2 closure-converted intermediate language 109

Γ ⊢ A⪯B

Γ ⊢ A≡B

Γ ⊢ A⪯B
⪯-≡

Γ ⊢ A⪯A′ Γ ⊢ A′ ⪯B

Γ ⊢ A⪯B
⪯-Trans

Γ ⊢ Prop ⪯Type 0
⪯-Prop

Γ ⊢ Type i ⪯Type i+1
⪯-Cum

Γ ⊢ A1 ≡A2

Γ,n1 : A1 ⊢ A′
1 ≡A′

2 Γ,n1 : A1,x1 : A
′
1 ⊢ B1 ⪯B2[n1/n2][x1/x2]

Γ ⊢ Code (n1 : A1,x1 : A
′
1).B1 ⪯Code (n2 : A2,x2 : A

′
2).B2

⪯-Code

Γ ⊢ A1 ≡A2 Γ,x1 : A1 ⊢ B1 ⪯B2[x1/x2]

Γ ⊢ Πx1 :A1.B1 ⪯Πx2 :A2.B2
⪯-Pi

Γ ⊢ A1 ⪯A2 Γ,x1 : A2 ⊢ B1 ⪯B2[x1/x2]

Γ ⊢ Σx1 :A1.B1 ⪯Σx2 :A2.B2
⪯-Sig

Figure 5.4: ECCCC Subtyping

In Figure 5.4, I define subtyping. As usual, subtyping extends equivalence to include
cumulativity. The subtyping rules for code types are essentially the same as for dependent
function types.

· · ·
Γ,x′ : A′,x : A ⊢ B : Prop

Γ ⊢ Code (x′ : A′,x : A).B : Prop
T-Code-Prop

Γ,x′ : A′,x : A ⊢ B : Type i

Γ ⊢ Code (x : A,x′ : A′).B : Type i
T-Code-Type

·,x′ : A′,x : A ⊢ e : B

Γ ⊢ λ (x′ : A′,x : A). e : Code (x′ : A′,x : A).B
Code

Γ ⊢ e : Code (x′ : A′,x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Πx :A[e′/x′].B[e′/x′]
Clo

⊢ Γ

Γ ⊢ 1 : Prop
T-Unit

⊢ Γ

Γ ⊢ ⟨⟩ : 1
Unit

Figure 5.5: ECCCC Typing (excerpts)

110 abstract closure conversion

JeK◦ = e where Γ ⊢ e : A

J1K◦ def
= Πα : Prop .Πx : α. α

J⟨⟩K◦ def
= λα : Prop . λ x : α. x

JCode (x′ : A′,x : A).BK◦ def
= Πx′ : JA′K◦.Πx : JAK◦. JBK◦

Jλ (x′ : A′,x : A). eK◦ def
= λ x′ : JA′K◦. λ x : JAK◦. JeK◦

J⟨⟨e, e′⟩⟩K◦ def
= JeK◦ Je′K◦

Je e′K◦ def
= JeK◦ Je′K◦

...

Figure 5.6: Model of ECCCC in ECCD (excerpts)

I give the new typing rules for ECCCC in Figure 5.5; the full rules are given in
Appendix D, Figure D.7 and Figure D.8. Most rules are unchanged from the source
language. The most interesting rule is Rule Code, which guarantees that code only
type checks when it is closed. This rule captures the goal of typed closure conversion
and gives us static machine-checked guarantees that our translation produces closed
code. Rule Clo for closures ⟨⟨e, e′⟩⟩ substitutes the environment e′ into the type of the
closure, as discussed in Section 5.1. This is similar to Rule App from ECCD, which
substitutes a function argument into the result type of a function. As discussed in
Section 5.1, this is also critical to type preservation, since the translation must generate
closure types with free variables and then synchronize the closure type containing free
variables with a closed code type. As with Π types in ECCD, we have two rules for
well-typed Code types. Rule T-Code-Prop allows impredicativity in Prop , while
Rule T-Code-Type is predicative.

Note that the impredicative rule, Rule T-Code-Prop, is not necessary for type
preservation; we only need to include it if the source language has impredicative
functions.

5.2.1 Meta-Theory

I prove type safety and consistency of ECCCC following the standard architecture
presented in Chapter 3.

The essence of the model translation from ECCCC to ECCD is given in Figure 5.6.
The translation is defined inductively on the syntax of expressions. This includes only
the key translation rules. The translation JeK◦ = e models the ECCCC expression e as
the ECCD expression e. The remaining rules are given in Appendix D, in Figure D.14.1

1 In the previous version of this work (Bowman and Ahmed, 2018), this translation was defined by
induction on typing derivations. That presentation is verbose and not necessary for constructing a
model of ECCCC .

5.2 closure-converted intermediate language 111

As described in Chapter 3, I always assume I only translate well-typed expressions, so
the typing derivation for e is always an implicit parameter whenever we have JeK◦.

I model code λn : A′,x : A. e as a curried function λ n : JA′K◦. λ x : JAK◦. JeK◦,
and a code type Code (n : A′,x : A).B via the curried dependent function type
Πn : JA′K◦.Πx : JAK◦. JBK◦. Observe that the inner function produced in ECCD is not
closed, but that is not a problem since the model only exists to prove type safety and
consistency. It is only in ECCCC programs that code must be closed. I model closures
⟨⟨e, e′⟩⟩ as the application JeK◦ Je′K◦—i.e., the application of the function JeK◦ to its
environment Je′K◦. I model ⟨⟩ with the standard Church-encoding as the polymorphic
identity function, since ECCD does not include a unit expression. (We could just as well
add a unit expression to ECCD.) All other rules simply recursively translate subterms.

As discussed in Chapter 3, we first must prove preservation of falseness Lemma 5.2.1.
I encode the empty type, or invalid specification, ⊥ in ECCCC as ΠA :Prop .A. This
type describes a function that takes any arbitrary specification A and returns a proof
of A. There is only a proof of ⊥ if ECCCC is not consistent. Similar, we encode ⊥ in
ECCD as ΠA : Prop .A. It is clear from the translation of dependent function types
that the translation preserves falseness. I use = as the terms are not just definitionally
equivalent, but syntactically identical.

Lemma 5.2.1 (Preservation of Falseness). J⊥K◦ = ⊥

To prove type preservation, I use the standard architecture from Chapter 3. The
proofs are straightforward, since the typing rules in ECCCC essentially correspond to
partial application already.

Compositionality is an important lemma since the type system and conversion are
defined by substitution.

Lemma 5.2.2 (Compositionality). J(e[e′/x])K◦ = JeK◦[JeK◦/x]

Proof. The proof is by induction on the structure of e. I give the key proof cases.

Case: e = Prop

Trivial, since e = Prop cannot have free variables.

Case: e = x′.

There are two sub-cases:

Sub-case: x′ = x Then the proof follows since J(x[e′/x])K◦ = Je′K◦ = x[JeK◦/x]

Sub-case: x′ ̸= x Then the proof follows since J(x′[e′/x])K◦ = x′ = x′[Je′K◦/x]

Case: e = let x= e1 in e2

Follows easily by the inductive hypotheses, since both the translation of let and
the definition of substitution are structural, except for the capture avoidance
reasoning.

112 abstract closure conversion

Case: e = Πx :A.B

Follows easily by the inductive hypotheses, since both the translation of Π and
the definition of substitution are structural, except for the capture avoidance
reasoning.

Case: e = ⟨⟨e1, e2⟩⟩

Must show that J⟨⟨e1, e2⟩⟩[e′/x]K◦ = J⟨⟨e1, e2⟩⟩K◦[Je′K◦/x].
q
⟨⟨e1, e2⟩⟩[e′/x]

y◦

=
q
⟨⟨e1[e′/x], e2[e′/x]⟩⟩

y◦ (45)

by definition of substitution

=
q
e1[e

′/x]
y◦ q

e2[e
′/x]

y◦ (46)

by definition of translation

= Je1K◦[
q
e′

y◦
/x] Je2K◦[

q
e′

y◦
/x] (47)

by the induction hypothesis applied to e1 and e2

= J⟨⟨e1, e2⟩⟩K◦[
q
e′

y◦
/x] (48)

by substitution

Next I show that the model preserves reduction, or that our model in ECCD weakly
simulates reduction in ECCCC . This is used both to show that equivalence is preserved,
since equivalence is defined by conversion, and to show type safety.

Lemma 5.2.3 (Preservation of Reduction). If e ▷ e′ then JeK◦ ▷∗ Je′K◦

Proof. By cases on e ▷ e′. The only interesting case is for the reduction of closures.

Case: ⟨⟨(λx′ : A′,x : A. eb), e
′⟩⟩ e ▷β eb[e

′/x′][e/x]

We must show that

J(⟨⟨(λx′ : A′,x : A. eb), e
′⟩⟩ e)K◦ ▷∗ J(eb[e′/x′][e/x])K◦

q
(⟨⟨(λx′ : A′,x : A. eb), e

′⟩⟩ e)
y◦

= ((λ x′ :
q
A′y◦. λ x : JAK◦. JebK◦)

q
e′

y◦
) JeK◦ by definition (49)

▷2
β JebK◦[

q
e′

y◦
/x′][JeK◦/x] (50)

=
q
(eb[e

′/x′][e/x])
y◦ by Lemma 5.2.2 (51)

Now I show that conversion is preserved. This essentially follows from preservation of
reduction, Lemma 5.2.3.

5.2 closure-converted intermediate language 113

Lemma 5.2.4 (Preservation of Conversion). If Γ ⊢ e ▷∗ e′ then JΓK◦ ⊢ JeK◦ ▷∗ Je′K◦

Proof. The proof is by induction on derivation Γ ⊢ e ▷∗ e′.2 Each case is essentially
uninteresting, but we give a few representative cases.

Case: Rule Red-Refl

Trivial.

Case: Rule Red-Trans

We have that e ▷ e1 and e1 ▷∗ e′. We must show that JeK◦ ▷∗ Je′K◦.

By Lemma 5.2.3 applied to e ▷∗ e1, we know that JeK◦ ▷∗ Je1K◦, and by the
induction hypothesis applied to e1 ▷∗ e′ we know that Je1K◦ ▷∗ Je′K◦.

By ECCD Rule Red-Trans, we conclude that JeK◦ ▷∗ Je′K◦.

Case: Rule Red-Cong-Let

We have

Γ ⊢ e1 ▷
∗ e′1 Γ,x = e′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 in e2 ▷
∗ let x= e′1 in e′2

Red-Cong-Let

We must show that Jlet x= e1 in e2K◦ ▷∗ Jlet x= e′1 in e′2K
◦, which follows easily

by the induction hypothesis and by ECCD Rule Red-Cong-Let.

Case: Rule Red-Cong-Code

We have

Γ ⊢ A1 ▷
∗ A′

1

Γ,n : A′
1 ⊢ A2 ▷

∗ A′
2 Γ,n : A′

1,x : A′
2 ⊢ e▷∗ e′

Γ ⊢ λ (n : A1,x : A2). e▷
∗ λ (n : A′

1,x : A′
2). e

′ Red-Cong-Code

We must show that Jλ (n : A1,x : A2). eK◦ ▷∗ Jλ (n : A′
1,x : A′

2). e
′K◦.

By definition of the translation, we must show that λ n : JA1K◦. λx : JA2K◦. JeK◦ ▷∗

λ n : JA′
1K

◦. λ x : JA′
2K

◦ Je′K◦..

By the induction hypothesis, we know that

a) JA1K◦ ▷∗ JA′
1K

◦

b) JA2K◦ ▷∗ JA′
2K

◦

c) JeK◦ ▷∗ Je′K◦

The goal follows by two applications of ECCD Rule Red-Cong-Lam.

Case: Rule Red-Cong-Clo

We must show that J⟨⟨e1, e2⟩⟩K◦ ▷∗ J⟨⟨e′1, e′2⟩⟩K
◦, given that e1 ▷∗ e′1 and e2 ▷∗ e′2,

which follows easily by the induction hypothesis and by the ECCD Rule Red-
Cong-App.

2 In the prior version of this work (Bowman and Ahmed, 2018), this proof was incorrectly stated as by
induction on the length of the reduction sequence. This version is corrected.

114 abstract closure conversion

Next, I show that the translation preserves equivalence. The proof essentially follows
from Lemma 5.2.4, but we must show that the η-equivalence for closures is preserved.

Lemma 5.2.5 (Preservation of Equivalence). If e1 ≡ e2 then Je1K◦ ≡ Je2K◦

Proof. The proof is by induction on the derivation e ≡ e′. The only interesting case is
for η equivalence of closures.

Case: Rule ≡ Follows by Lemma 5.2.4 (Preservation of Conversion).

Case: Rule ≡-Clo1

By assumption, we have the following.

a) e1 ▷∗ ⟨⟨λ (x′ : A′,x : A). e′1, e
′⟩⟩

b) e2 ▷∗ e′2

c) e1[e
′/x′] ≡ e′2 x

We must show that Je1K◦ ≡ Je2K◦. By Rule ≡-η1, it suffices to show:

a) Je1K◦ ▷∗ λ x : JAK◦[Je′K◦/x′]. Je′1K
◦[Je′K◦/x′], which follows since:

Je1K◦ ▷∗ q
(⟨⟨λ (x′ : A′,x : A). e′1, e

′⟩⟩)
y◦ by Lemma 5.2.4 (52)

= (λ x′ :
q
A′y◦. λ x : JAK◦.

q
e′1

y◦
)

q
e′

y◦ (53)

▷ λ x :
q
A′y◦[

q
e′

y◦
/x′].

q
e′1

y◦
[
q
e′

y◦
/x′] (54)

b) Je2K◦ ▷∗ Je′2K
◦ which follows by Lemma 5.2.4.

c) Je′1K
◦[Je′K◦/x′] ≡ Je′2K

◦ x, which follows by the inductive hypothesis applied
to e1[e

′/x′] ≡ e′2 x and Lemma 5.2.2.

Case: Rule ≡-Clo2 is symmetric.

Lemma 5.2.6 (Preservation of Subtyping). If Γ ⊢ A⪯B then JΓK◦ ⊢ JAK◦ ⪯ JBK◦

Proof. The proof is by induction on the derivation of Γ ⊢ A⪯B. All cases are completely
uninteresting, but I give a few representative cases anyway.

Case: Rule ⪯-≡

Follows by Lemma 5.2.5.

Case: Rule ⪯-Cum

Must show JType iK◦ ⪯ JType i+1K◦. By translation, we must show that Type i ⪯
Type i+1 which follows by the ECCD Rule ⪯-Cum.

5.2 closure-converted intermediate language 115

Case: Rule ⪯-Code

Must show JCode (n1 : A1,x1 : A
′
1).B1K◦ ⪯ JCode (n2 : A2,x2 : A

′
2).B2K◦. By

translation, we must show that Πn1 :JA1K◦.Πx1 :JA′
1K

◦. JB1K◦ ⪯ Πn2 :JA2K◦.Πx2 :

JA′
2K

◦. JB2K◦ By Lemma 5.2.5 (Preservation of Equivalence), we know that
JA1K◦ ≡ JA′

1K
◦ and JA2 ≡ A′

2K
◦. By the induction hypothesis, we know that

JB1K◦ ⪯ JB2K◦. The goal follows by two applications of the ECCD Rule ⪯-Pi.

We can now show the final lemma for type safety and consistency.

Lemma 5.2.7 (Type and Well-formedness Preservation).

1. If ⊢ Γ then ⊢ JΓK◦

2. If Γ ⊢ e : A then JΓK◦ ⊢ JeK◦ : JAK◦

Proof. I prove parts 1 and 2 by simultaneous induction on the mutually defined judg-
ments ⊢ Γ and Γ ⊢ e : A. Most cases follow easily by the induction hypothesis.

Case: Rule W-Empty

Trivial.

Case: Rule W-Def

We must show that ⊢ J(Γ,x = e)K◦. By Rule W-Def in ECCD and part 1 of the
inductive hypothesis, it suffices to show that JΓK◦ ⊢ JeK◦ : JAK◦, which follows by
part 2 of the inductive hypothesis applied to Γ ⊢ e : A.

Case: Rule W-Assum

We must show that ⊢ J(Γ,x : A)K◦. By Rule W-Assum in ECCD and part 1
of the inductive hypothesis, it suffices to show that JΓK◦ ⊢ JAK◦ : JUK◦, which
follows by part 2 of the inductive hypothesis applied to Γ ⊢ A : U.

Case: Rule Prop

It suffices to show that ⊢ JΓK◦, since JProp K◦ = Prop , which follows by part 1 of
the inductive hypothesis.

...

Case: Rule T-Code-Prop

We have that

Γ ⊢ A′ : U′ Γ,x′ : A′ ⊢ A : U Γ,x′ : A′,x : A ⊢ B : Prop

Γ ⊢ Code (x′ : A′,x : A).B : Prop

We must show that JΓK◦ ⊢ Πx′ : JA′K◦.Πx : JAK◦. JBK◦ : Prop

By two applications of Rule Pi-Prop, it suffices to show

116 abstract closure conversion

• JΓK◦ ⊢ JA′K◦ : JU′K◦, which follows by part 2 of the inductive hypothesis.

• JΓK◦ , x′ : JA′K◦ ⊢ JAK◦ : JUK◦, which follows by part 2 of the inductive
hypothesis.

• JΓK◦ , x′ : JA′K◦ ⊢ JBK◦ : Prop , which follows by part 2 of the inductive
hypothesis and by definition that JProp K◦ = Prop

Case: Rule Code

We have:
Γ,x′ : A′,x : A ⊢ e : B

Γ ⊢ λx′ : A′,x : A. e : Code (x′ : A′,x : A).B

By definition of the translation, we must show JΓK◦ ⊢ λ x′ : JA′K◦. λ x : JAK◦. JeK◦ :
Πx′ : JA′K◦.Πx : JAK◦. JBK◦, which follows by two uses of Rule Lam in ECCD

and part 2 of the inductive hypothesis.

Case: Rule Clo

We have:
Γ ⊢ e : Code (x′ : A′,x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Πx :A[e′/x′].B[e′/x′]

By definition of the translation, we must show that

JΓK◦ ⊢ JeK◦ Je′K◦ : J(Πx :A[e′/x′].B[e′/x′])K◦.

By Lemma 5.2.2 (Compositionality), it suffices to show that

JΓK◦ ⊢ JeK◦ Je′K◦ : Πx : JAK◦[Je′K◦/x′]. JBK◦[Je′K◦/x′].

By Rule App in ECCD, it suffices to show that

• JΓK◦ ⊢ JeK◦ : Πx′ :A′.Πx : JAK◦. JBK◦, which follows with A′ = JA′K◦ by part
2 of the inductive hypothesis.

• JΓK◦ ⊢ Je′K◦ : A′, which follows by part 2 of the inductive hypothesis.

Case: Rule App

Similar to the case for Rule Clo.

Case: Rule Conv

Follows by part 2 of the inductive hypothesis and Lemma 5.2.6 (Preservation of
Subtyping).

The model of ECCCC in ECCD implies the desired consistency and type safety
theorems, as discussed earlier.

Consistency tells us that we can only write proofs of valid specifications.

Theorem 5.2.8 (Logical Consistency of ECCCC). There does not exist a closed expres-
sion e such that · ⊢ e : ⊥.

5.3 closure conversion 117

JeK = e where Γ ⊢ e : t

JxK def
= x

JProp K def
= Prop

JType iK
def
= Type i

JΠx : A.BK def
= Πx : JAK. JBK

Jλ x : A. eK def
= ⟨⟨(λ (n : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK).

let ⟨xi . . .⟩= n in JeK),
⟨xi . . .⟩asΣ (xi : JAiK . . .)⟩⟩

xi : Ai . . . = FV(λ x : A. e,Πx : A.B, Γ)

Je1 e2K
def
= Je1K Je2K
...

Jlet x= e in e′K def
= let x= JeK in Je′K

Figure 5.7: Abstract Closure Conversion from ECCD to ECCCC (excerpts)

Type safety tells us that there is no undefined behavior that causes a program to get
stuck before it produces an observation.

Theorem 5.2.9 (Type Safety of ECCCC). If ⊢ e, then eval(e) is well-defined.

5.3 Closure Conversion

I present the key closure conversion translation rules in Figure 5.7. Formally, the
translation is defined by induction on typing derivations. This is necessary since the
translation must produce a type annotation for the environment argument of the code.
The translation JeK takes the typing derivation for e as an implicit parameter. For
concision, I give a complete definition of translation explicitly defined over typing
derivations in Appendix E, Figure E.4 and Figure E.5.

Every case of the translation except for functions is trivial, including application
since application is still the elimination form for closures after closure conversion. In
the non-trivial case, we translate ECCD dependent functions to ECCCC closures, as
described in Section 5.1. The translation of a function Jλ x : A. eK produces a closure
⟨⟨e1, e2⟩⟩. The first component e1 is closed code. Ignoring the type annotation for a
moment, the code λ (n,x). let ⟨xi . . .⟩= n in JeK projects each of the |i| free variables
xi . . . from the environment n and binds them in the scope of the body JeK. Since
ECCD and ECCCC are dependently typed, we must also bind the free variables from the
environment in the type annotation for the argument x, i.e., producing the annotation
x : let ⟨xi . . .⟩ = n in JAK instead of just x : JAK. Next we produce the environment
type Σ (xi : JAK . . .), from the free source variables xi . . . of types Ai We create the

118 abstract closure conversion

FV(e,B, Γ)
def
= Γ0, . . . , Γn, (x0 : A0, . . . , xn : An)

where x0, . . . , xn = fv(e,B)
Γ ⊢ x0 : A0

...
Γ ⊢ xn : An

Γ0 = FV(A0,_, Γ)
...

Γn = FV(An,_, Γ)

Figure 5.8: Dependent Free Variable Sequences

environment e2 by creating the dependent n-tuple ⟨xi . . .⟩; these free variables will be
instantiated with values at run time before calling the closure.

Notice that application is translated to application. In abstract closure conversion, the
closure is not a pair; its elimination form is still just application, as shown in Figure 5.2.
This makes the translation of application deceptively simple compared to other closure
conversion translations.

Computing free variables in a dependently typed language is more complex than usual.
To compute the sequence of free variables and their types, I define the metafunction
FV(e,B, Γ) in Figure 5.8. Just from the syntax of terms e,B, we can compute some
sequence of free variables x0, . . . , xn = fv(e,B). However, the types of these free variables
A0, . . . ,An may contain other free variables, and their types may contain still others,
and so on! We must, therefore, recursively compute the sequence of free variables and
their types with respect to a typing environment Γ. Note that because the type B

of a term e may contain different free variables than the term, we must compute the
sequence with respect to both a term and its type. However, in all recursive applications
of this metafunction—e.g., FV(A0,_, Γ)—the type of A0 must be a universe and cannot
have any free variables.

5.3.1 Type Preservation

I prove type preservation, using the standard architecture from Chapter 3.
I first show compositionality. This lemma is the key difficulty in the proof of type

preservation because closure conversion changes the binding structure of free variables.
Whether we substitute a term for a variable before or after translation can drastically
affect the shape of closures produced by the translation. For instance, consider the term
(λ y : A. e)[e′/x]. If we perform this substitution before translation, then we will generate
an environment with the shape ⟨xi . . . ,xj . . .⟩, i.e., with only free variables and without
x in the environment. However, if we translate the individual components and then
perform the substitution, then the environment will have the shape ⟨xi . . . , Je′K ,xj . . .⟩—
that is, x would be free when we create the environment and substitution would replace

5.3 closure conversion 119

it by Je′K. I use the η-principle for closures to show that closures that differ in this way
are still equivalent.

Lemma 5.3.1 (Compositionality). J(e1[e2/x])K ≡ Je1K[Je2K/x]

Proof. By induction on the typing derivation for e1. I give the key cases.

Case: Rule Var

We know that e1 is some free variable x′, so either x′ = x, hence Je2K ≡ Je2K, or
x′ ̸= x, hence Jx′K ≡ Jx′K.

Case: Rule Pi-Prop

We know that e1 = Πx′ : A.B. W.l.o.g., assume x′ ̸= x.

We must show J(Πx′ : A[e2/x].B[e2/x])K ≡ J(Πx′ : A.B)K[Je2K/x].
q
(Πx′ : A[e2/x].B[e2/x])

y
(55)

= Πx′ : J(A[e2/x])K. J(B[e2/x])K (56)

by definition of the translation

= Πx′ : (JAK[Je2K/x]). (JBK[Je2K/x]) (57)

by the inductive hypothesis for A and B

= (Πx′ : JAK. JBK)[Je2K/x] (58)

by definition of substitution

=
q
(Πx′ : A.B)

y
[Je2K/x] (59)

by definition of translation

Case: Rule Pi-Type. Similar to Rule Pi-Prop

Case: Rule Lam

We know that e1 = λ y : A. e. W.l.o.g., assume that y ̸= x. We must show that
J((λ y : A. e)[e2/x])K ≡ J(λ y : A. e)K[Je2K/x]. Recall that by convention we have that
Γ ⊢ λ y : A. e : Πy : A.B.

J((λ y : A. e)[e2/x])K (60)

= J(λ y : (A[e2/x]). e[e2/x])K (61)

by substitution

= ⟨⟨(λn : Σ (xi : JAiK . . .),y : let ⟨xi . . .⟩= n in J(A[e2/x])K.

let ⟨xi . . .⟩= n in J(e[e2/x])K), ⟨xi . . .⟩⟩⟩
(62)

by definition of the translation

where xi : Ai . . . = FV(λ y : (A[e2/x]). e[e2/x], Γ). Note that x is not in the sequence
(xi . . .).

120 abstract closure conversion

On the other hand, we have

f = J(λ y : A. e)K[Je2K/x] (63)

= ⟨⟨(λn : Σ (xj : JAjK . . .),y : let ⟨xj . . .⟩= n in JAK.

let ⟨xj . . .⟩= n in JeK), ⟨xj0 . . . , Je2K ,xji+1 . . .⟩⟩⟩
(64)

by definition of the translation

where xj : Aj . . . = FV(λ y : A. e, Γ). Note that x is in xj . . . ; we can write the
sequence as (xj0 . . . x, xji+1 . . .). Therefore, the environment we generate contains
Je2K in position ji.

By Rule ≡-Clo1, it suffices to show that

let ⟨xi . . .⟩= ⟨xi . . .⟩ in J(e[e2/x])K ≡ f y

where f is the closure from Equation (63).

f y ≡ let ⟨xj0 . . .x,xji+1...⟩= ⟨xj0 . . . , Je2K ,xji+1 . . .⟩ in JeK (65)

by ▷β in ECCCC

≡ JeK[Je2K/x] (66)

by |j| applications of ▷ζ , since only x has a value

≡ J(e[e2/x])K (67)

by the inductive hypothesis applied to the derivation for e

≡ let ⟨xi . . .⟩= ⟨xi . . .⟩ in J(e[e2/x])K (68)

by |i| applications of ▷ζ , since no variable has a value

Next I show preservation of reduction: if a source term e takes a step, then its
translation JeK is convertible to a definitionally equivalent term e. This proof essentially
follows by Lemma 5.3.1. Note that since Lemma 5.3.1 relies on our η-equivalence rule
for closures, we can only show reduction up to definitional equivalence. That is, we
cannot show JeK ▷∗ Je′K. This is not a problem; we reason about source programs to
equivalence anyway, and not up to syntactic equality.

Lemma 5.3.2 (Preservation of Reduction). If Γ ⊢ e▷e′ then JΓK ⊢ JeK▷∗e and e ≡ Je′K

Proof. By cases on Γ ⊢ e ▷ e′. Most cases follow easily by Lemma 5.3.1, since most
cases of reduction are defined by substitution.

Case: x ▷δ e
′ where x = e′ : A ∈ Γ.

We must show that x ▷∗ e and Je′K ≡ e. Let e
def
= Je′K. It suffices to show that

x ▷∗ Je′K. By definition of the translation, we know that x = Je′K : JAK ∈ JΓK and
x ▷δ Je′K.

5.3 closure conversion 121

Case: let x= e1 in e2 ▷ζ e2[e1/x]

We must show that J(let x= e1 in e2)K ▷∗ e and J(e2[e1/x])K ≡ e. Let e
def
=

Je2K[Je1K/x].

J(let x= e1 in e2)K = let x= Je1K in Je2K (69)

by definition of the translation

▷ζ Je2K[Je1K/x] (70)

≡ J(e2[e1/x])K (71)

by Lemma 5.3.1 (Compositionality)

Case: (λ x : A. e1) e2 ▷β e1[e2/x]

We must show that J((λ x : A. e1) e2)K ▷∗ e and J(e2[e1/x])K ≡ e. Let e
def
=

Je1K[Je2K/x].

By definition of the translation, J((λ x : A. e1) e2)K = f Je2K, where

f = ⟨⟨(λn : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK.

let ⟨xi . . .⟩= n in Je1K), ⟨xi . . .⟩⟩⟩

and where xi : Ai . . . = FV(λ x : A. e1, Γ).

To complete the proof, observe that,

f Je2K ▷β let ⟨xi . . .⟩= ⟨xi . . .⟩ in Je1K[Je2K/x] (72)

▷|i|
ζ Je1K[Je2K/x] (73)

≡ J(e1[e2/x])K by Lemma 5.3.1 (74)

Lemma 5.3.3 (Preservation of Conversion). If Γ ⊢ e ▷∗ e′ then JΓK ⊢ JeK ▷∗ e and
JΓK ⊢ e≡ Je′K.

Proof. By induction the derivation Γ ⊢ e▷∗ e′.3 I give the key proof cases.

Case: Rule Red-Refl

Trivial.

Case: Rule Red-Trans

Follows by Lemma 5.3.2 and the induction hypothesis.

3 In the previous version of this work (Bowman and Ahmed, 2018), this proof was incorrectly stated by
induction on the length of the reduction sequence.

122 abstract closure conversion

Case: Rule Red-Cong-Let

Follows by Rule Red-Cong-Let and the induction hypothesis.

Case: Rule Red-Cong-App

Follows by Rule Red-Cong-App and the induction hypothesis.

Case: Rule Red-Cong-Lam

We have that

Γ ⊢ A▷∗ A′ Γ, x : A′ ⊢ e▷∗ e′

Γ ⊢ λ x : A. e▷∗ λ x : A′. e′
Red-Cong-Lam

We must show that JΓK ⊢ Jλ x : A. eK▷∗ em and em ≡ Jλ x : A′. e′K

By definition of the translation, it suffices to show that the following is convertible
to em ≡ Jλ x : A′. e′K.

Jλ x : A. eK = ⟨⟨(λ (n : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK).
let ⟨xi . . .⟩= n in JeK),

⟨xi . . .⟩asΣ (xi : JAiK . . .)⟩⟩

where xi : Ai . . . = FV(λ x : A. e,Πx : A.B, Γ)

By the induction hypothesis applied to A ▷∗ A′ and e ▷∗ e′, we know that
JAK ▷∗ A ≡ JA′K and JeK ▷∗ e ≡ Je′K.

Therefore, by Rule Red-Cong-Clo, Rule Red-Cong-Code, and Rule Red-
Cong-Let, we know

Jλ x : A. eK ▷∗ ⟨⟨(λ (n : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n inA).

let ⟨xi . . .⟩= n in e),

⟨xi . . .⟩asΣ (xi : JAiK . . .)⟩⟩

We must show this term is equivalent to Jλ x : A′. e′K.

By Rule ≡-Clo1, it suffices to show that the bodies of the closures are equivalent,
i.e., that e ≡ Je′K, which we know by the earlier appeal to the induction hypothesis
applied to e ▷∗ e′.

I next prove equivalence preservation. As equivalence is defined primarily by conver-
sion, the only interesting part of the next proof is preserving η-equivalence. To show
that η-equivalence is preserved, we require the new η rules for closures.

Lemma 5.3.4 (Preservation of Equivalence). If Γ ⊢ e≡ e′, then JΓK ⊢ JeK ≡ Je′K.

Proof. By induction on the derivation of e ≡ e′.

5.3 closure conversion 123

Case: Rule ≡
By assumption, e ▷∗ e1 and e′ ▷∗ e1.

By Lemma 5.3.3, JeK ▷∗ e and e ≡ Je1K, and similarly. Je′K ▷∗ e′ and e′ ≡ Je1K.
The result follows by symmetry and transitivity.

Case: Rule ≡-η1

By assumption, e ▷∗ λ x : t. e1, e′ ▷∗ e2 and e1 ≡ e2 x.

Must show JeK ≡ Je′K.

By Lemma 5.3.3, JeK ▷∗ e and e ≡ J(λ x : t. e1)K, and similarly Je′K ▷∗ e′ and
e′ ≡ Je2K.

By transitivity of ≡, it suffices to show J(λ x : t. e1)K ≡ Je2K.

By definition of the translation,

J(λ x : t. e1)K = ⟨⟨(λn : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK.

let ⟨xi . . .⟩= n in Je1K), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . = FV(λ x : t. e1, Γ).

By Rule ≡-Clo1 in ECCCC , it suffices to show that

let ⟨xi . . .⟩= ⟨xi . . .⟩ in Je1K

≡ Je1K (75)

by |i| applications of ▷ζ

≡ Je2K x (76)

by the inductive hypothesis applied to e1 ≡ e2 x

Case: Rule ≡-η2 Symmetric to the previous case; requires Rule ≡-η2 instead of
Rule ≡-η1.

Lemma 5.3.5 (Preservation of Subtyping). If Γ ⊢ A⪯ B then JΓK ⊢ JAK ⪯ JBK

Proof. By induction on the derivation Γ ⊢ A⪯ B. I give the key cases.

Case: Rule ⪯-≡
We know that A ≡ B, and must show that JAK ⪯ JBK. By Rule ⪯-≡, it suffices to
show that JAK ≡ JBK which follows by Lemma 5.3.4 (Preservation of Equivalence)
and transitivity of ≡.

Case: Rule ⪯-Cum

We know that Type i ⪯ Type i+1, and we must show that JType iK ⪯ JType i+1K,
which follows trivially from the definition of the translation and Rule ⪯-Cum.

124 abstract closure conversion

Case: Rule ⪯-Pi

We know that

Γ ⊢ A1 ≡ A2 Γ, x1 : A2 ⊢ B1 ⪯ B2[x1/x2]

Γ ⊢ Πx1 : A1.B1 ⪯ Πx2 : A2.B2

⪯-Pi

We must show that JΠx1 : A1.B1K ⪯ JΠx2 : A2.B2K.

By the definition of the translation, it suffices to show that Πx1 : JA1K. JB1K ⪯
Πx2 : JA2K. JB2K.

By Rule ⪯-Pi, it suffices to show that

a) JA1K ≡ JA2K, which follows by Lemma 5.3.4, and

b) JB1K ⪯ JB2K, which follows by the induction hypothesis applied to B1 ⪯ B2.

Now I can prove type preservation. I give the technical version of the lemma required
to complete the proof, followed by the desired statement of the theorem.

Lemma 5.3.6 (Type and Well-formedness Preservation).

1. If ⊢ Γ then ⊢ JΓK

2. If Γ ⊢ e : A then JΓK ⊢ JeK : JAK

Proof. Parts 1 and 2 proven by simultaneous induction on the mutually defined judg-
ments ⊢ Γ and Γ ⊢ e : A.

Part 1 follows easily by the induction hypotheses. I give the key cases for part 2.

Case: Rule Lam

We have that Γ ⊢ λ x : A. e : Πx : A.B. We must show that JΓK ⊢ J(λ x : A. e)K :

J(Πx : A.B)K.

By definition of the translation, we must show that

⟨⟨(λ (n : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK).
let ⟨xi . . .⟩= n in Je1K), ⟨xi . . .⟩⟩⟩

has type Πx : JAK. JBK, where xi : Ai . . . = FV(λ x : t. e1, Γ).

Notice that the annotation in the term x : let ⟨xi . . .⟩= n in JAK, does not match
the annotation in the type x : JAK. However, by Rule Clo, we can derive that
the closure has type:

Π (x : let ⟨xi . . .⟩= ⟨xi . . .⟩ in JAK). (let ⟨xi . . .⟩= ⟨xi . . .⟩ in JBK),

This is equivalent to Πx : JAK. JBK under JΓK since, as we saw in earlier proofs,
(let ⟨xi . . .⟩= ⟨xi . . .⟩ in JAK) ≡ JAK. So, by Rule Clo and Rule Conv, it suffices
to show that the environment and the code are well-typed.

5.3 closure conversion 125

First note that Γ ⊢ e : A implies ⊢ Γ (Luo, 1990). By part 1 of the induction
hypothesis applied to ⊢ Γ, we know ⊢ JΓK. Since each of xi : Ai . . . come from
Γ, and JΓK is well-formed, we know each type in JΓK is well-typed. Thus the
following explicit environment constructed by closure conversion is well-typed:
JΓK ⊢ ⟨xi . . .⟩ : Σ (xi : JAiK . . .).

Now we must show that the code

(λ (n : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK).
let ⟨xi . . .⟩= n in Je1K)

has type Code (n,x). let ⟨xi . . .⟩ = n in JBK. For brevity, I omit the duplicate
type annotations on n and x.

Observe that by the induction hypothesis applied to Γ ⊢ A : U and by weakening

n : Σ (xi : JAiK . . .) ⊢ let ⟨xi . . .⟩= n in JAK : JUK.

Hence, by Rule Code, it suffices to show

·,n,x ⊢ let ⟨xi . . .⟩= n in Je1K : let ⟨xi . . .⟩= n in JBK

which follows by the inductive hypothesis applied to Γ, x : A ⊢ e1 : B, and by
weakening, since xi . . . are the free variables of e1, A, and B.

Case: Rule App

We have that Γ ⊢ e1 e2 : B[e2/x]. We must show that JΓK ⊢ Je1K Je2K : J(B[e2/x])K.
By Lemma 5.3.1, it suffices to show JΓK ⊢ Je1K Je2K : JBK[Je2K/x], which follows
by Rule App and the inductive hypothesis applied to e1, e2 and B.

Theorem 5.3.7 (Type Preservation). If Γ ⊢ e : t then JΓK ⊢ JeK : JtK.

5.3.2 Compiler Correctness

Now I prove correctness of separate compilation. Unlike in Chapter 4, there are no
secondary evaluation semantics, so the proof follows easily following the standard
architecture from Chapter 3.

As usual, I define linking as substitution and use the standard cross-language rela-
tion Chapter 2. Components in both ECCD and ECCCC are well-typed open terms, i.e.,
Γ ⊢ e : A. I extend the compiler to closing substitutions JγK by point-wise application of
the translation.

The separate compilation guarantee is that the translation of the source component e
linked with substitution γ is equivalent to first compiling e and then linking with some
γ that is definitionally equivalent to JγK.

Theorem 5.3.8 (Separate Compilation Correctness). If Γ ⊢ e, Γ ⊢ γ, JΓK ⊢ γ, and
JγK ≡ γ then eval(γ(e)) ≈ eval(γ(JeK))

126 abstract closure conversion

Values V ::= x | | Code (n : A′,x : A).B | ⟨⟨V,V⟩⟩
| Πx :A.B | λn : A′,x : A.M

Computations N ::= V | | V V

Configurations M,A,B ::= N | let x=NinM

Figure 5.9: ECCCC ANF (excerpts)

Proof. Since the translation commutes with substitution, preserves equivalence, reduc-
tion implies equivalence, and equivalence is transitive, the following diagram commutes.

J(γ(e))K γ(JeK)

JvK v′

≡

≡ ≡

≡

Since ≡ on observations implies ≈, we know that v ≈ v′.

As a simple corollary, the compiler must also be whole-program correct.

Corollary 5.3.9 (Whole-Program Correctness). If ⊢ e then eval(e) ≈ eval(JeK).

5.3.3 ANF Preservation

Ultimately we want to compose ANF and closure conversion, so we need closure
conversion to preserve ANF. For simplicity, I’ve defined a more general closure conversion
over ECCD terms, but the translation also preserves ANF.

Typographical Note. In this section, I restrict the source language from ECCD to
ECCA. ECCA is a source language in this section, so I typeset it in blue, non-bold,
sans-serif font.

I define the key ANF syntax for ECCCC in Figure 5.9; the full figure is given
in Appendix D Figure D.15. Recall from Chapter 4 that we define configurations,
computations, and values in ANF. The only interesting addition is closures, which are
values and must contain values as components. Recall that I have an incomplete ANF
translation for dependent conditionals in Chapter 4, so I exclude dependent conditionals
from the ANF definitions here.

To show ANF is preserved, we must show that configurations are translated to
configurations, computations to computations, and values to values. Because the
syntactic categories are mutually defined, we must show each of these is preserved
simultaneously.

Theorem 5.3.10 (Preservation of ANF). Let Γ ⊢ e : A;

1. If e is V then JVK = V.

5.3 closure conversion 127

2. If e is N then JNK = N.

3. If e is M then JMK = M.

Proof. Formally, the proof is by induction on the typing derivation for the expression e

being translated, assuming e is in ANF, i.e., is either a V, an N or an M. The typing
derivation is only necessary since the translation must be defined on typing derivations,
as discussed in Chapter 3. For simplicity, I present the proof as over the syntax of the
expression e, but note that in the case of functions we need the induction hypothesis
for a sub-derivation rather than a sub-expression. I give the key cases.

Case: e = Πx : A.B Note that e is a value V, A and B are configurations, and the
translation e = Πx : JAK.B. By part 3 of the induction hypothesis, JAK and JBK
are configurations, so e is a value.

Case: e = let x = N inM′ Note that e is a configuration. We must show that the
translation e = let x = JNK in JM′K is a configuration, which follows by parts 2
and 3 of the induction hypothesis.

Case: e = λ x : A.M Note that e is a value. We must show that the translation e,
defined as follows, is a value.

e = ⟨⟨(λ (n : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK).
let ⟨xi . . .⟩= n in JeK),

⟨xi . . .⟩asΣ (xi : JAiK . . .)⟩⟩

where xi : Ai . . . = FV(λ x : A. e,Πx : A.B, Γ)

It suffices to show that both the code and environment are values.

The environment ⟨xi . . .⟩asΣ (xi : JAiK . . .) is a value if JAiK . . . are configurations,
which is true by part 3 of the induction hypothesis applied to the typing derivations
for Ai . . . (which are sub-derivations implied by the well-typedness of e).

The code is a value if

a) Σ (xi : JAiK . . .) is a configuration, which is true by part 3 of the induction
hypothesis applied to the typing derivations for Ai

b) let ⟨xi . . .⟩ = n in JAK is a configuration, which is true by part 3 of the
induction hypothesis applied to A.

c) let ⟨xi . . .⟩ = n in JeK is a configuration, which is true by part 3 of the
induction hypothesis applied to JeK.

Case: e = V V′ We must show that e = V V′, which follows by part 1 of the
induction hypothesis.

6 C O N T I N U AT I O N - PA S S I N G S T Y L E

In this chapter, I develop a type-preserving CPS translation for a subset of ECCD.
As mentioned in Chapter 4, CPS presents many challenges and does not scale well to
all features of dependency. However, by understanding the key problems that CPS
introduces into a dependent types system, we can develop type preserving CPS for some
dependently typed languages, which is surprising given past impossibility results.

I start with a brief discussion of the different uses of CPS and discuss the past impos-
sibility result for dependent-type-preserving CPS. I then develop CoCD, a restriction of
ECCD suitable for translations that rely on parametricity, before developing both CBN
and CBV type-preserving CPS translations for CoCD.

Typographical Note. In this chapter, I typeset the source language, CoCD, in a blue,
non-bold, sans-serif font, and the target language, CoCk, in a bold, red, serif font.

6.1 On CPS

The CPS translation presented in this chapter allows implementing type-preserving
compilation for some dependently typed languages, but it will not allow implementing
control effects, a common use for CPS. Many of the design decisions I make do not
apply when implementing control effects, or specifically disallow implementing control
effects. For example, my goal is to avoid restricting dependencies in the source language
so that I can compile existing languages such as Coq. However, to allow mixing control
effects and dependency, one must necessarily restrict certain dependencies, at least for
the effectful parts of the language. This requires different designs for the CPS language
and translation; I discuss some related work in this vein in Section 6.7. Before I present
my CPS translation, I discuss the context of CPS translation as it applies to type
preservation and the core features of dependency.

Typically, type-preserving compilers use one of two common type translations: (1)
the double-negation translation that translates expressions of type A into a computation
of type A÷ = (A+ → ⊥) → ⊥ or ¬¬A+ where A+ represents the value-type translation,
or (2) the locally polymorphic answer type translation that translates expressions of type
A into computations of type A÷ = ∀α.(A+ → α) → α. The value translation differs
depending on whether the translation is encoding CBN or CBV evaluation order, but
essentially recursively translates types that must be values using the value translation
+, and types that could be computations using the computation translation ÷. In each
translation, the computation expects a continuation, either of type A+ → ⊥ or A+ → α.
Intuitively, the computation is forced to call that continuation with a value of type A+.

129

130 continuation-passing style

The double-negation translation represents the final result of a program with the empty
type ⊥ to indicate that programs never return, i.e., programs no longer behave like
mathematical functions that take inputs and produce output values but instead run to
completion and end up in some final answer state. The locally polymorphic answer type
uses parametricity to encode a similar idea: if the computation behaves parametrically
in its answer type, then no computation can do anything but call its continuation with
the underlying value that the computation represents. At the level of a whole program,
this is equivalent to a program never returning—each intermediate computation cannot
return because it must, by parametricity, invoke its continuation.

These two translations admit different reasoning principles, however.
The double-negation translation supports encoding control effects but complicates

compositional reasoning. A computation is free to duplicate its continuation and save it
for later, or call a saved continuation, since the type of computations only requires that
the computation returns ⊥ and every continuation has the answer type ⊥. However,
it becomes difficult to give a compositional interpretation of programs compared to
a standard λ-calculus. In ECCD, for example, we define the meaning of expressions
simply by evaluation to a value. Using the double-negation translation, CPS programs
never return, so we cannot easily define the value of an expression by evaluation; we
have to complete it first to get a whole program, then evaluate it, then look at the final
state.

The locally polymorphic answer type translation makes it difficult to implement
control effects, but easily supports compositional reasoning. Since each computation is
parametric in its answer type, we are essentially forced to call the continuation exactly
once and as the final step in the computation. If we want to encode control effects, this is
a problem. However, it supports compositional reasoning. We can locally evaluate CPS’d
expressions and get the meaning of that expression as a value by picking a meaningful
answer type. For example, given the computation e : ∀α.(Bool → α) → α, we can either
treat it as a program and instantiate the answer type with ⊥ (e ⊥ : (Bool → ⊥) → ⊥),
or get the meaning of the underlying value by instantiating the answer type with Bool,
the type of the underlying value, and applying the identity function as the continuation
e Bool λx.x : Bool. The expression e Bool λx.x will return the underlying value of e,
supporting compositional reasoning.

The standard translation for type-preserving compilation is the double-negation
translation (Morrisett et al., 1999), but extending this translation to dependent types
has proven challenging. Barthe et al. (1999) showed how to scale typed call-by-name
(CBN) CPS translation to a large class of Pure Type Systems (PTSs), including the
Calculus of Constructions (CC) without Σ types. To avoid certain technical difficulties
(which I discuss in Section 6.5), they consider only domain-free PTSs, a variant of
PTSs where λ abstractions do not carry the domain of their bound variable—i.e., they
are of the form λx. e instead of λx : A. e as in the domain-ful variant. Barthe and
Uustalu (2002) tried to extend these results to the Calculus of Inductive Constructions
(CIC), but ended up reporting a negative result, namely that the CBN CPS double-
negation translation is not type preserving for dependent pairs. They go on to prove a

6.2 main ideas 131

general impossibility result: for dependent conditionals (in particular, sum types with
dependent case analysis) type preservation is not possible when the CPS translation
admits unrestricted control effects.

In this chapter, I use the locally polymorphic CPS translation and prove type
preservation for the core features of dependency that were proven “impossible” by
Barthe and Uustalu. The key is that the polymorphic CPS uses parametricity to
guarantee absence of control effects. This first step is an over-approximation; we only
need to prevent control effects in the presence of certain dependencies. However, it
allows us to ignore effects and focus only on dependent-type preservation.

6.2 Main Ideas

Intuitively, in a dependently typed language, the power of the type system comes from
the ability to express decidable equality between terms and types. These equalities are
decided by reducing expressions to canonical forms and checking that the resulting values
are syntactically identical. In the source language—i.e., before CPS translation—since
the language is effect-free, every term can be thought of as a value since every expression
reduces to a value. But CPS translation converts source expressions into computations
of type (A → ⊥) → ⊥. This changes the interface to the values—now we can only
access the value indirectly, by providing a computation that will do something with
the value. In essence, ensuring CPS translations are type-preserving is hard because
every source value has turned into a computation whose underlying value isn’t directly
accessible for purposes of deciding equivalence. In particular, with the double-negation
translation, one cannot recover the underlying value, because every continuation must
return ⊥.

This description in terms of interfaces is just a shallow description of the problem. At
a deeper level, the problem is that dependently typed languages rely on the ability of
the type system to copy expressions from a term-level context into a type-level context,
but CPS transforms expressions into computations whose meaning, or underlying value,
depends on its term-level context. This copying happens in particular in the elimination
rules for features related to dependency—i.e., dependent functions, dependent pairs,
and dependent conditionals—hence these features are at the heart of past negative
results. After CPS, we no longer copy an expression, whose meaning is self-contained;
instead we copy a computation, whose meaning depends on its term-level context. Not
only do we “forget” part of the meaning of computations, but as we discussed before, a
computation cannot run in a type-level context—it requires a term-level context. As I
describe next, the solution to these problems will be to record part of the term-level
contexts during type checking and to provide an interface that allows types to run
computations.

To make this intuition concrete, I present two examples. I focus on two cases of
the double-negation translation that fail to type check: the CBN translation of snd e
(reported by Barthe and Uustalu (2002)) and the CBV translation of e e′.

132 continuation-passing style

Consider the CBN CPS translation. We translate a term e of type A into a CPS’d
computation, written e÷, of type A÷. Given a type A, we define its computation
translation A÷ and its value translation A+. Below, I define the translations for
dependent pairs and dependent functions. As in Chapter 5, the translations are defined
by induction on typing derivations, but I present them less formally in this section.

A÷ def
= (A+→⊥)→⊥ (Σx :A.B)+

def
= Σx :A÷.B÷ (Πx :A.B)+

def
= Πx :A÷.B÷

Note that since this is the CBN translation, the translated argument type for dependent
functions is a computation type A÷ instead of a value type A+, and the translated
component types for dependent pairs are computation types A÷ and B÷.

As a warm-up, consider the CBN translation of fst e (where e : Σx : A.B):

(fst e : A)÷
def
= λk : A+ →⊥.

e÷ (λy : (Σx : A÷.B÷).

let z= (fst y) : A÷ in z k)

It is easy to see that the above type checks (checking the types of y, z, and k).

Next, consider the CBN translation of snd e:

(snd e : B[fst e/x])÷
def
= λk : B+[(fst e)÷/x]→⊥.

e÷ (λy : (Σx : A÷.B÷).

let z= (sndy) : B÷[fst y/x] in z k)

The above does not type check because the computation z expects a continuation of
type B+[fst y/x]→⊥ but k has type B+[(fst e)÷/x]→⊥. Somehow we need to show
that fst y ≡ (fst e)÷. But what is the relationship between y and e? Intuitively, e÷ : A÷

is a computation that will pass its result—i.e., the underlying value of type A+ inside
e÷, which corresponds to the value produced by evaluating the source term e—to its
continuation. So when e÷’s continuation is called, its argument y will always be equal
to the unique underlying value inside e÷. However, since we have used a function to
describe a continuation, we must type check the body of the continuation assuming that
y is any value of the appropriate type instead of the exactly one underlying value from
e÷.

Even if we could communicate that y is equal to exactly one value, we have no way to
extract the underlying A+ value from e÷ since the latter takes a continuation that never
returns (since it must return a term of type ⊥). To extract the underlying value from
a computation, we need a means of converting from A÷ to A+. In essence, after CPS,
we have an interoperability problem between the term language (where computations
have type A÷) and the type language (which needs values of type A+). In the source
language, before CPS, we are able to pretend that the term and type languages are
the same because all computations of type A reduce to values of type A. However, the
CPS translation creates a gap between the term and type languages; it changes the

6.2 main ideas 133

interface to terms so that the only way to get a value out of a computation is to have a
continuation, which can never return, ready to receive that value.

The locally polymorphic answer type translation solves both of the above problems.
We change the computation translation to A÷ = Πα : ⋆. (A+ → α) → α. Now, to
extract the underlying value of type A+ from e÷ : A÷, we can run e÷ with the identity
continuation as follows: e÷ A+ id. Moreover, we can now justify type checking the
body of e÷’s continuation under the assumption that y ≡ e÷ A+ id thanks to a free
theorem we get from the type A÷. The free theorem says that running some e : A÷ with
continuation k : A→B is equivalent to running e with the identity continuation and
then passing the result to k, i.e., e B k ≡ k (e A id).

To formalize this intuition in the target language, I first add new syntax for the
application of a computation to its answer type and continuation: e @ A e′. Next, I
internalize the aforementioned free theorem by adding two rules to the target language.
The first is the following typing rule which records (a representation of) the value of
a computation while type checking a continuation. That is, it allows us to assume
y ≡ e÷ A+ id when type checking the body of e÷’s continuation.

Γ ⊢ e : Πα : ⋆. (A→α)→α

Γ ⊢ B : ⋆ Γ,x = e A id ⊢ e′ : B

Γ ⊢ e @ B (λx :A. e′) : B
Rule T-Cont

The second is the following equivalence rule, which is justified by the free theorem.
Intuitively, this rule normalizes CPS’d computations to the “value” e÷ A+ id.

Γ ⊢ (e1 @ B (λx :A. e2))≡ (λx :A. e2) (e1 A id)
Rule ≡-Cont

I prove these rules admissable in Section 6.4.
Here is the updated CPS translation (snd e : B[fst e/x])÷ that leverages answer-type

polymorphism:

λα : ⋆.λk : B+[(fst e)÷/x]→α.

e÷ @ α (λy : (Σx : A÷.B÷). let z= (sndy) : B÷[fst y/x] in z α k)

To type check e÷ @ α . . . we use Rule T-Cont. When type checking the body of
e÷’s continuation, we have that y ≡ e÷ (Σx : A÷.B÷) id and recall that we need to
show that fst y ≡ (fst e)÷. This requires expanding (fst e)÷ and making use of the Rule
≡-Cont rule we now have available in the target language. Here is an informal sketch
of the proof—I give the detailed proof in Section 6.5.1.

(fst e)÷ ≡ e÷ @ α′ (λy. fst y) by (roughly) the translation (77)

≡ (λy. fst y) (e÷ (Σx : A÷.B÷) id) by Rule ≡-Cont (78)

≡ fst (e÷ (Σx : A÷.B÷) id) by reduction (79)

≡ fst y since y ≡ e÷ (Σx : A÷.B÷) id (80)

134 continuation-passing style

Notice that the CPS translation—as well as the new rules Rule T-Cont and Rule
≡-Cont—only uses the new @ syntax for certain applications. Intuitively, we only
need to use @ only when type checking requires the free theorem. This happens when
CPS translating a depended-upon computation, such as for e in snd e.

Next, let’s look at the translation of dependent function types. Again, we start
with a warm-up; consider the following CBN double-negation translation of e e′ (where
e : Πx : A.B and e′ : A):

(e e′ : B[e′/x])÷ = λk : (B+[e′÷/x])→⊥. e÷ (λ f :Πx : A÷.B÷. (f e′÷) k)

The above type checks (as seen by inspecting the types of f and k). Notice that e′÷

appears as an argument to f so the type of f e′÷ : B÷[e′÷/x].

Now consider the CBV CPS translation based on double negation, which fails to type
check. We define the CBV computation translation A÷ and value translation A+ as
follows.

A÷ = (A+ →⊥)→⊥ (Σx : A.B)+ = Σx : A+.B+ (Πx : A.B)+ = Πx : A+.B÷

Since this is a CBV translation, the translated argument for the dependent function is
a value of type A+ and the translated component types for dependent pairs are values
of types A+ and B+.

Here is the CBV CPS translation e e′ (where e : Πx : A.B and e′ : A):

(e e′ : B[e′/x])÷ = λk : (B+[e′+/x])→⊥. e÷ (λ f :Πx : A+.B÷. e′÷ (λx : A+. (f x) k))

For the moment, ignore that our type annotation on k, (B+[e′+/x]), seems to require
a value translation of terms e′+, which we can’t normally define. Instead, notice that
unlike in the CBN translation, we now evaluate the argument e′÷ before calling f , so in
CBV we have the application f x : B÷[x/x]. This translation fails to type check since
the computation f x expects a continuation of type (B+[x/x]) → ⊥ but k has type
(B+[e′+/x])→ ⊥. Somehow we need to show that x ≡ e′+. This situation is almost
identical to what we saw with the failing CBN translation of snd e. Analogously, this
time we ask what is the relationship between x and e′÷, or e′+? As before, note that
the only value that can flow into x is the unique underlying value in e′÷.

Hence, fortunately, the solution is again to do what we did for the CBN translation:
adopt a CPS translation based on answer-type polymorphism. As before, we change the
computation translation to A÷ = Πα : ⋆. (A+ →α)→α. Here is the updated CBV
CPS translation of (e e′ : B[e′/x])÷:

λα : ⋆.λk : (B+[(e′÷ A+ id)/x])→α.

e÷ α (λ f :Πx : A+.B÷.

e′÷ @ α (λx : A+. (f x) α k))

6.3 the calculus of constructions with definitions 135

Universes U ::= ⋆ | □

Expressions t, e,A,B ::= x | ⋆ | Πx : A. e | λ x : A. e | e e | Σx : A.B
| ⟨e1, e2⟩ asΣ x : A.B | fst e | snd e | bool | true | false
| if e then e1 else e2 | let x= e : A in e

Environments Γ ::= · | Γ, x : A | Γ, x = e : A

Figure 6.1: CoCD Syntax

First, notice that this uses the new @ form when evaluating the argument e′÷, which
tells us we’re using our new typing rule to record the value of e′÷ while we type check its
continuation. Second, notice the type annotation on k. Earlier I observed that the type
annotation for k, (B+[e′+/x]), seemed to require a value translation on terms e′+ that
cannot normally be defined. The translation gives us a sensible way of modeling the
value translation of a term by invoking a computation with the identity continuation—so
e′+ is just the underlying value in e′÷, i.e., (e′÷ A+ id). This is an important point to
note: unlike CBN CPS, where we can substitute computations for variables, in CBV
CPS we must find a way to extract the underlying value from computations of type A÷

since variables expect values of type A+. Without answer-type polymorphism, CBV
CPS is, in some sense, much more broken than CBN CPS! Indeed, Barthe et al. (1999)
already gave a CBN double-negation translation for dependent functions, but typed
CBV double-negation translation for dependent function fails.

Using the new typing rule and equivalence rules from earlier, we are able to type check
the above translation of e e′ in essentially the same way as for the CBN translation of
snd e. I show the detailed proof in Section 6.6.1.

The reader may worry that our CBV CPS translation produces many terms of the
form k (e÷ A+ id), which aren’t really in CPS since e÷ A+ id must return. However,
notice that these only appear in types, not terms. That is, we only run a computation
with the identity continuation to convert a CPS computation into a value in the types
for deciding equivalence. The run-time terms are all in CPS and can be run in a
machine-like semantics in which computations never return.

6.3 The Calculus of Constructions with Definitions

The language CoCD is an extension of the Calculus of Constructions (CoC) with
booleans, dependent pairs and definitions. This is a restriction of the earlier ECCD,
without dependent conditionals, higher universes, and cumulativity. Note that the
booleans in CoCD do not allow dependent elimination; they only serve as a ground type
for observations across languages. I return to dependent conditions in Section 6.7. I

136 continuation-passing style

Γ ⊢ e▷ e′

Γ ⊢ (λ x : A. e1) e2 ▷β e1[e2/x]

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ if true then e1 else e2 ▷ι1 e1

Γ ⊢ if false then e1 else e2 ▷ι1 e2

Γ ⊢ x ▷δ e where x = e : A ∈ Γ

Γ ⊢ let x= e2 : A in e1 ▷ζ e1[e2/x]

Figure 6.2: CoCD Reduction

adapt this presentation from the model of the Calculus of Inductive Constructions (CIC)
given in the Coq reference manual (The Coq Development Team, 2017, Chapter 4).

I present the syntax of CoCD in Figure 6.1 in the style of a Pure Type System (PTS)
with no syntactic distinction between terms and types and kinds, which describe types.
This has been true of earlier chapters, but we will soon make an explicit distinction
in order to selectively CPS translate only terms, as, unlike with ANF and closure
conversion, it is unclear how to uniformly CPS translate types and kinds in addition to
terms. As before, I use the phrase expression to refer to a term, type, or kind in the
PTS syntax. I usually use the meta-variable e to evoke a term expression and I use t

for an expression to be explicitly ambiguous about its nature as a term, type, or kind.
The language includes one impredicative universe, or sort, ⋆, and its type, □. Com-

pared to ECCD from Chapter 2, we can think of ⋆ as Prop and □ as Type 1. The
syntax of expressions includes the universe ⋆, variables x or α, dependent function types
Πx :A.B, dependent functions λ x :A. e, application e1 e2, dependent let let x= e :A in e′,
dependent pair types Σx :A.B, dependent pairs ⟨e1, e2⟩ asΣ x :A.B, and first and second
projections fst e and snd e. Note that, unlike in ECCD, we cannot write □ in source
programs—it is only used by the type system. The typing environment Γ includes
assumptions x : A and definitions x = e : A. Note that definitions in this language
include annotations, unlike in ECCD. Unlike in the ANF translation in Chapter 4,
including annotations on definitions does not complicate the CPS translation because
the CPS translation is already inherently complicated by producing type annotations
for continuations (which I discuss more later).

As with dependent pairs, I omit the type annotations on let expressions, let x= e in e′,
when they are clear from context. I use the notation A→ B for a function type whose
result B does not depend on the input.

The reduction relation, conversion relation, and equivalence relations for CoCD are
essentially the same as for ECCD. I partially duplicate them here anyway for convenience,
and give full definitions in Appendix F. Notice, however, that there is no subtyping
relation since CoCD excludes higher universes. In Figure 6.2, I present the reduction

6.3 the calculus of constructions with definitions 137

Γ ⊢ e≡ e′

Γ ⊢ e▷∗ e1 Γ ⊢ e′ ▷∗ e1

Γ ⊢ e≡ e′
≡

Γ ⊢ e▷∗ λ x : A. e1 Γ ⊢ e′ ▷∗ e2 Γ, x : A ⊢ e1 ≡ e2 x

Γ ⊢ e≡ e′
≡-η1

Γ ⊢ e▷∗ e1 Γ ⊢ e′ ▷∗ λ x : A. e2 Γ, x : A ⊢ e1 x≡ e2

Γ ⊢ e≡ e′
≡-η2

Figure 6.3: CoCD Equivalence

relation for CoCD, and in Figure 6.3, I present the equivalence relation. Note that CoCD

does not fix an evaluation order, but this is not important since CoCD is effect-free.

The typing rules for CoCD, Figure 6.4, are also essentially the same, but missing
removed features. The judgment ⊢ Γ checks that the environment Γ is well-formed; it is
defined by mutual recursion with the typing judgment. Note that there is no typing
rule analogous to Rule Type, so □ is not a well-typed expression. This means □ does
not need a type, and means CoCD excludes higher universes. Since I exclude higher
universes, I exclude cumulativity, so the Rule Conv is different. Notice that the Rule If
does not allow the result type to be dependent; I return to this in Section 6.7. Instead
of subtyping, Rule Conv allows typing an expression e : A as e : B when A ≡ B. The
remaining rules are essentially the same. Rule Pi-* essentially corresponds to Rule
Pi-Prop, and implicitly allows impredicativity in ⋆, since the domain A could be in the
higher universe □. Rule Pi-□ is predicative, similar to Rule Pi-Type.

Note that for simplicity, I include only term-level pairs of type Σx :A.B : ⋆. Type-level
pairs Σx : A.B : □ introduce numerous minor difficulties with CPS translation. For
instance, we can write pairs of terms and types ⟨e,A⟩ or ⟨A, e⟩. It is unclear how these
expression should be CPS translated; should they be considered terms or types? This
is an instance of the more general problem of computational relevance. In general,
dependent-type-preserving compilation is difficult when we try to compile only the
computationally relevant terms, because we cannot easily decide relevance. I discuss
this further in Chapter 8.

To make the upcoming CPS translation easier to follow, I present a second version of
the syntax for CoCD in which we make the distinction between terms, types, and kinds
explicit (see Figure 6.5). The two presentations are equivalent (Barthe et al., 1999), at
least as long as we do not include computationally relevant higher universes. Distin-
guishing terms from types and kinds is useful since we only want to CPS translate terms,
because our goal is to internalize only run-time evaluation contexts. I discuss pervasive
translation, which also internalizes the type-level evaluation context, in Section 6.7.

138 continuation-passing style

Γ ⊢ e : A

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
Var

⊢ Γ

Γ ⊢ ⋆ : □
*

Γ, x : A ⊢ B : ⋆

Γ ⊢ Πx : A.B : ⋆
Pi-*

Γ, x : A ⊢ B : □

Γ ⊢ Πx : A.B : □
Pi-□

Γ, x : A ⊢ e : B Γ ⊢ Πx : A.B : U

Γ ⊢ λ x : A. e : Πx : A.B
Lam

Γ ⊢ e : Πx : A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
App

Γ ⊢ A : ⋆ Γ, x : A ⊢ B : ⋆

Γ ⊢ Σx : A.B : ⋆
Sig

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩ asΣ x : A.B : Σx : A.B
Pair

Γ ⊢ e : Σx : A.B

Γ ⊢ fst e : A
Fst

Γ ⊢ e : Σx : A.B

Γ ⊢ snd e : B[fst e/x]
Snd

⊢ Γ

Γ ⊢ bool : ⋆
Bool

⊢ Γ

Γ ⊢ true : bool
True

⊢ Γ

Γ ⊢ false : bool
False

Γ ⊢ e : bool Γ ⊢ e1 : B Γ ⊢ e2 : B

Γ ⊢ if e then e1 else e2 : B
If

Γ ⊢ e′ : A Γ, x = e′ : A ⊢ e : B

Γ ⊢ let x= e′ : A in e : B[e′/x]
Let

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A≡ B

Γ ⊢ e : B
Conv

Figure 6.4: CoCD Typing

6.4 CPS Intermediate Language

The target language CoCk is CoCD extended with a syntax for parametric reasoning
about computations in CPS, as discussed in Section 6.2. I present these extensions
formally in Figure 6.6, and give the complete language definition in Appendix G. I add
the form e @ A e′ to the syntax of CoCk. This form represents a computation e applied
to the answer type A and the continuation e′. The reduction semantics is the same
as that of the standard application. The equivalence rule Rule ≡-Cont states that a
computation e applied to its continuation λx : B. e′ is equivalent to the application
of that continuation to the underlying value of e. We extract the underlying value by
applying e to the halt continuation, encoded as the identity function in this system.
Rule T-Cont is used to type check applications that use the new @ syntax. This
typing rule internalizes the fact that a continuation will be applied to one particular
input, rather than an arbitrary value. It tells the type system that the application
of a computation to a continuation e @ A (λx :B. e′) jumps to the continuation e′

after evaluating e to a value and binding the result to x. We check the body of the
continuation e′ under the assumption that x = e B id, i.e., with the equality that the

6.4 cps intermediate language 139

Kinds K ::= ⋆ | Πα : K.K | Πx : A.K

Types A,B ::= α | Πx : A.B | Πα : K.B | λ x : A.B | λα : K.B | A e
| A B | Σx : A.B | bool | letα= A : K inB
| let x= e : A inB

Terms e ::= x | λ x : A. e | λα : K. e | e e | e A | ⟨e1, e2⟩ asΣ x : A.B
| fst e | snd e | true | false | if e then e1 else e2
| let x= e : A in e | letα= A : K in e

Environments Γ ::= · | Γ, x : A | Γ, x = e : A, | Γ, α : K | Γ, α = A : K

Figure 6.5: CoCD Explicit Syntax

name x refers to the underlying value in the computation e, which we access using the
interface given by the polymorphic answer type.

Rule ≡-Cont is a declarative rule that requires explicit symmetry and transitivity
rules to complete the definition. I conjecture that the algorithmic versions look something
like the following.

Γ ⊢ e▷∗ (e1 @ A (λx :B. e2)) Γ ⊢ (λx :B. e2) (e1 B id)≡ e′

Γ ⊢ e≡ e′
≡-Cont1

Γ ⊢ e′ ▷∗ (e1 @ A (λx :B. e2)) Γ ⊢ e≡ (λx :B. e2) (e1 B id)

Γ ⊢ e≡ e′
≡-Cont2

Note that Rule ≡-Cont and Rule T-Cont internalize a specific “free theorem” that
we need in order to prove type preservation of the CPS translation. In particular, Rule
≡-Cont only holds when the CPS’d computation e1 has the expected parametric type
Πα : ⋆. (A→ α)→ α given in Rule T-Cont. Notice, however, that our statement
of Rule ≡-Cont does not put any requirements on the type of e1. This is because we
use an untyped equivalence, and this untyped equivalence is necessary to prove type
preservation (see Section 6.5.1). Therefore, we cannot simply add typing assumptions
directly to Rule ≡-Cont. Instead, we must rely on the fact that the term e @ A e′

has only one introduction rule, Rule T-Cont. Since there is only one applicable typing
rule, anytime e @ A e′ appears in our type system, e has the required parametric type.
Furthermore, while equivalence is untyped, we never appeal to equivalence with ill-typed
terms; we only refer to the equivalence A′ ≡ B′ in Rule Conv after checking that both
A′ and B′ are well-typed. For example, suppose the term e @ A e′ occurs in type A′,
and to prove that A′ ≡ B′ requires our new rule Rule ≡-Cont. Because A′ is well-typed,
we know that its subterms, including e @ A e′, are well-typed. Since e @ A e′ can
only be well-typed by Rule T-Cont, we know e has the required parametric type.

140 continuation-passing style

Extensions to Syntax, Figure 6.1

Terms e ::= · · · | e @ A e′

Extensions to Reduction and Equivalence, Figure F.4

Γ ⊢ e▷ e′

λα : ⋆. e1 @ A e2 ▷@ (e1[A/α]) e2
...

Γ ⊢ e≡ e′

· · · Γ ⊢ (e1 @ A (λx :B. e2))≡ (λx :B. e2) (e1 B id)
≡-Cont

Extensions to Typing, Figure 6.4

Γ ⊢ e : A

· · ·

Γ ⊢ e : Πα : ⋆. (B→α)→α Γ ⊢ A : ⋆ Γ,x = e B id ⊢ e′ : A

Γ ⊢ e @ A (λx :B. e′) : A
T-Cont

Figure 6.6: CoCk: CoCD with CPS Extensions (excerpts)

Finally, notice that in Rule T-Cont and Rule ≡-Cont I use standard application
syntax for the term e B id. The new @ syntax is only necessary in the CPS translation
when we require one of our new rules to type check the translated term. The type of
the identity function doesn’t depend on any value, so we never need Rule T-Cont to
type check the identity continuation. In a sense, e B id is the normal form of a CPS’d
“value” so we never need Rule ≡-Cont to rewrite this term—i.e., using Rule ≡-Cont
to rewrite e B id to id (e B id) would just evaluate to the original term.

6.4.1 Meta-Theory

I prove that CoCk is consistent by giving a model of CoCk in the extensional CoC,
following the standard architecture described in Chapter 3.

Typographical Note. In this section, I write terms in extensional CoC using a italic,
black, serif font.

The idea behind the model is that we can translate each use of Rule ≡-Cont in
CoCk to a propositional equivalence in extensional CoC. Next, we translate any term

6.4 cps intermediate language 141

Γ ⊢ e1 ≡ e2

All other rules identical to CoCD

Γ ⊢ p : e1 = e2

Γ ⊢ e1 ≡ e2
≡-Ext

Figure 6.7: Extensional CoC Equivalence

that is typed by Rule T-Cont into a dependent let. Finally, as before, we establish
that if there were a proof of ⊥ in CoCk, our translation would construct a proof of ⊥
in extensional CoC. But since extensional CoC is consistent, there can be no proof of ⊥
in CoCk.

As our model is in the extensional CoC, it is not clear that type checking in CoCk is
decidable. I believe that type checking should be decidable for all programs produced
by the CPS translations, since type checking in the source language CoCD is decidable.
In the worst case, to ensure decidability we could change the translation to use a
propositional version of Rule ≡-Cont. The definitional presentation is simpler, but it
should be possible to change the translation so that, in any term that currently relies
on Rule ≡-Cont, we insert type annotations that compute type equivalence using a
propositional version of Rule ≡-Cont. I leave the issue of decidability of type checking
in CoCk for future work.

Modeling [≡-Cont]

The extensional CoC differs from the source language CoCD in one key way: it allows
using the existence of a propositional equivalence as a definitional equivalence, as shown
in Figure 6.7. The syntax and typing rules are otherwise similar to CoCD presented in
Section 6.3, but must be extended to include the identity type.

In extensional CoC, we can model each use of the definitional equivalence Rule
≡-Cont by Rule ≡-Ext, as long as there exists a proof p : (e A k) = (k (e B id)), i.e.,
a propositional proof of Rule ≡-Cont; I prove this propositional proof always exists by
using the parametricity translation of Keller and Lasson (2012). This translation gives
a parametric model of CoC in itself. This translation is based on prior translations that
apply to all Pure Type Systems (Bernardy et al., 2012), but includes an impredicative
universe and provides a Coq implementation that I use for the key proof.

The parametricity translation of a type A, written JAKP , essentially transforms the
type into a relation on terms of that type. On terms e of type A, the translation JeKP

produces a proof that e is related to itself in the relation given by JAKP . For example,
a type ⋆ is translated to the relation J⋆KP = λ (x, x′ : ⋆). x→ x′ → ⋆. The translation of
a polymorphic function type JΠα : ⋆.AKP is the following.

λ (f, f ′ : (Πα : ⋆.A)).Π(α, α′ : ⋆).Παr : J⋆KP α α′. (JAKP (f α) (f ′ α′))

142 continuation-passing style

Γ ⊢ e : A⇝◦ e

All other rules are homomorphic

Γ ⊢ e : _⇝◦ e
Γ ⊢ B : _⇝◦ B Γ ⊢ A : _⇝◦ A Γ,x = e B id ⊢ e′ : A⇝◦ e

′

Γ ⊢ e @ A (λx :B. e′) : A⇝◦ let x= e B id :B in e′
Un-Cont

Figure 6.8: Model of CoCk in Extensional CoC

This relation produces a proof that the bodies of functions f and f ′ are related when
provided a relation αr for the two types of α and α′. This captures the idea that functions
at this type must behave parametrically in the abstract type α. This translation gives
us Theorem 6.4.1 (Parametricity for extensional CoC), i.e., that every expression in
extensional CoC is related to itself in the relation given by its type.

Theorem 6.4.1 (Parametricity for extensional CoC). If Γ ⊢ t : t′ then JΓKP ⊢ JtKP :

Jt′KP t t

I apply Theorem 6.4.1 to the CPS type Πα : ⋆. (B → α)→ α to prove Lemma 6.4.2.
Since a CPS’d term is a polymorphic function, we get to provide a relation αr for the
type α. The translation then gives us a proof that e A k and e B id are related by αr,
so we simply choose αr to be a relation that guarantees e A k = k (e B id). I formalize
part of the proof in Coq, given in Appendix G. By Rule ≡-Ext, Theorem 6.4.1, and
the relation just described, we arrive at a proof of Lemma 6.4.2 for CPS’d computations
encoded in the extensional CoC.

Lemma 6.4.2 (Continuation Shuffling). If Γ ⊢ A : ⋆, Γ ⊢ B : ⋆, Γ ⊢ k : B → A, and
Γ ⊢ e : Πα : ⋆. (B → α)→ α then Γ ⊢ e A k ≡ k (e B id)

Note that this lemma relies on the type of the term e. We must only appeal to this
lemma, and the equivalence justified by it, when e has the right type. In CoCk, this is
guaranteed by the typing rule Rule T-Cont, as discussed earlier in this section.

Modeling T-Cont

In Figure 6.8, I present the key translation rule for modeling CoCk in extensional CoC.
All other rules are inductive on the structure of typing derivations. Note that since we
only need to justify the additional typing rule Rule T-Cont, this is the only rule that
is changed by the translation.

For brevity in the proofs, I define the following notation for the translation of
expressions and from CoCk into extensional CoC.

e◦
def
= e where Γ ⊢ e : A⇝◦ e

6.4 cps intermediate language 143

By writing e◦, I refer to the expression produced by the translation with the typing
derivation Γ ⊢ e : A as an implicit parameter.

First, I show that the definition of ⊥ is preserved. As in Chapter 5, I define ⊥ as
Πα : ⋆.α, i.e., the function that accepts any proposition and returns a proof that the
proposition holds. It is simple to see that this type has type ⋆ in CoCk by the rule Rule
Pi-*. Note that Πα : ⋆.α is translated to Πα : ⋆. α of type ⋆, i.e., ⊥ is translated to ⊥.

Lemma 6.4.3 (Preservation of Falseness). Γ ⊢ (Πα : ⋆.α) : ⋆⇝◦ Πα : ⋆. α

Again, I start by proving compositionality, a crucial lemma to both equivalence
preservation and type preservation. The proof is straightforward by induction on the
typing derivation of e.

Lemma 6.4.4 (Compositionality). (e[e′/x])◦ ≡ e◦[e′◦/x]

Proof. By induction on the typing derivation of e. There is one interesting case.

Case: Rule T-Cont e = e1 @ B (λx′ :A. e2) and e◦ = let x′ = (e1
◦ A◦ id) in e2

◦

Without loss of generality, assume x ̸= x′.

It suffices to show that

(e1[e
′/x] @ B[e′/x] (λx′ :A. e2)[e

′/x])◦ = (let x′ = (e1
◦ A◦ id) in e2

◦)[e′◦/x]

(e1[e
′/x] @ B[e′/x] (λx′ :A. e2)[e

′/x])
◦

= (e1[e
′/x] @ B[e′/x] (λx′ :A[e′/x]. e2[e

′/x]))
◦ (81)

by definition of substitution

= (let x′ = ((e1[e
′/x])

◦
(A[e′/x])

◦
id) in (e2[e

′/x])
◦
) (82)

by definition of the translation

= (let x′ = (e1
◦[e′◦/x] A◦[e′◦/x] id) in e2

◦[e′◦/x]) (83)

by the induction hypothesis

= (let x′ = e1
◦ A◦ id in e2

◦)[e′◦/x] (84)

by definition of substitution

The equivalence rules of extensional CoC with the addition of Lemma 6.4.2 (Con-
tinuation Shuffling) subsume the equivalence rules of CoCk. Therefore, to show that
equivalence is preserved, it suffices to show that conversion is preserved. I first show that
reduction is preserved, Lemma 6.4.5, which easily implies preservation of conversion
Lemma 6.4.6.

Lemma 6.4.5 (Preservation of Reduction). If e1 ▷ e2, then e◦1 ▷
∗ e′ and e◦2 ≡ e′

Proof. By cases on the reduction step e1 ▷ e2. There is one interesting case.

144 continuation-passing style

Case: e = (λα : ⋆. e1) @ B (λx′ :A. e2) ▷@ (e1[B/α]) (λx′ :A. e2)

By definition

e◦ = (let x′ = ((λα : ⋆. e1)
◦ A◦ id) in e2

◦) ▷ζ e2
◦[((λα : ⋆. e1)

◦ A◦ id)/x′]

We must show ((e1[B/α]) (λx′ :A. e2))
◦ ≡ e2

◦[((λα : ⋆. e1)
◦ A◦ id)/x′].

((e1[B/α]) (λx′ :A. e2))
◦

≡ ((e1
◦[B◦/α]) (λx′ :A◦. e2

◦)) (85)

by Lemma 6.4.4 and definition of ◦

≡ (λα : ⋆. e1
◦) B◦ (λx′ :A◦. e2

◦) (86)

by Rule ≡ and ▷β

≡ (λx′ :A◦. e2
◦) ((λα : ⋆. e1

◦) A◦ id) (87)

by Lemma 6.4.2 (Continuation Shuffling)

≡ e2
◦[((λα : ⋆. e1

◦) A◦ id)/x′] (88)

by Rule ≡ and ▷β

≡ e2
◦[((λα : ⋆. e1)

◦ A◦ id)/x′] (89)

by Lemma 6.4.4

Lemma 6.4.6 (Preservation of Conversion). If e1 ▷∗ e2, then e1
◦ ▷∗ e′ and e2

◦ ≡ e′.

Proof. By induction on the derivation of e1 ▷∗ e2.1 The proof is completely straightfor-
ward; I give the key case.

Case: Rule Red-Cong-Cont

We have that e1 @ A λx :B. e2 ▷∗ e′1 @ A′ λx :B′. e′2, and we must show that
let x= e1

◦ B◦ id :B◦ in e2
◦ ▷∗ e′ where e′ ≡ let x= e′1

◦ B′◦ id :B′◦ in e′2
◦.

By the induction hypothesis, we know that e1◦ ▷∗ e1 ≡ e′1
◦, B◦ ▷∗ B ≡ B′◦, and

e2
◦ ▷∗ e2 ≡ e′2

◦.

Therefore, by the congruence rules for extensional CoC Rule Red-Cong-Let
and Rule Red-Cong-App, we know that let x= e1

◦ B◦ id :B◦ in e2
◦ ▷∗ let x=

e1 B id :B in e2.

The goal follows by transitivity of ≡, since

let x= e1 B id :B in e2 ≡ let x= e′1
◦
B′◦ id :B′◦ in e′2

◦

1 In the previous version of this work (Bowman et al., 2018), this proof was incorrectly stated as by
induction on the length of reduction sequences.

6.5 call-by-name cps translation 145

Lemma 6.4.7 (Preservation of Equivalence). If e1 ≡ e2, then e1
◦ ≡ e2

◦

Finally, I can show type preservation, which completes the proof of consistency. Since
the translation is homomorphic on all typing rules except Rule T-Cont, there is only
one interesting case in the proof of Lemma 6.4.8. We must show that Rule Un-Cont is
type preserving. Note that the case for Rule Conv appeals to Lemma 6.4.7.

Lemma 6.4.8 (Type Preservation). If Γ ⊢ e : A then Γ◦ ⊢ e◦ : A◦

Proof. By induction on the derivation Γ ⊢ e : A. There is one interesting case.

Case: Rule T-Cont

We have the following.

Γ ⊢ e1 : Πα : ⋆. (B→α)→α Γ ⊢ A : ⋆ Γ,x′ = e1 B id ⊢ e2 : A

Γ ⊢ e1 @ A (λx′ :B. e2) : A

We must show Γ◦ ⊢ let x′ = (e1
◦ B◦ id) in e2

◦ : A◦.

By Rule Let in Extensional CoC, it suffices to show

• Γ◦ ⊢ (e1
◦ B◦ id) : B◦, which follows easily by the induction hypothesis

applied to the premises of Rule T-Cont.

• Γ◦, x′ = (e1
◦ B◦ id) : B◦ ⊢ e2

◦ : A◦, which follows immediately by the
induction hypothesis.

Theorem 6.4.9 (Logical Consistency of CoCk). There does not exist a closed term e

such that · ⊢ e : ⊥.

6.5 Call-By-Name CPS Translation

I now present the call-by-name CPS translation (CPSn) of CoCD. There are two main
differences compared to the CBN CPS translation of Barthe et al. (1999): (1) I use
a locally polymorphic answer type instead of the double-negation translation, which
enables proving type-preservation with dependent pairs, and (2) I use a domain-full
target language, which is a necessary step to get decidable type-checking for dependently
typed languages.

For CPS, it is helpful to present the translation as a relation over typing derivations
instead of as a function over syntax. The CPS translation requires the type of each
expression in order to produce type annotation on continuations. Furthermore, the
translation is not uniformly defined on expressions: terms are translated differently
than types, types are translated either using the computation translation or the value

146 continuation-passing style

Γ ⊢ U⇝n
U U

Γ ⊢ ⋆⇝n
U ⋆

CPSn
U -Star

Γ ⊢ □⇝n
U □

CPSn
U -Box

Figure 6.9: CPSn of Universes

Γ ⊢ K : U⇝n
κ κ Lemma 6.5.5 will show Γ+ ⊢ K+ : U+

Γ ⊢ ⋆ : □⇝n
κ ⋆

CPSn
κ-Ax

Γ ⊢ K : U⇝n
κ κ Γ, α : K ⊢ K′ : U′⇝n

κ κ′

Γ ⊢ Πα : K.K′ : U′⇝n
κ Πα : κ.κ′ CPSn

κ-PiK

Γ ⊢ A : K′⇝n
A÷ A Γ, x : A ⊢ K : U⇝n

κ κ

Γ ⊢ Πx : A.K : U⇝n
κ Πx :A.κ

CPSn
κ-PiA

Figure 6.10: CPSn of Kinds

translation depending on the derivation, and kinds and universes have separate trans-
lations. The presentation as a relation on typing derivation is verbose, but makes all
of these details explicit and thus easier to follow and understand why the translation
is type preserving. However, as in Section 6.2, it is also useful to abbreviate these as
translations over expressions for the purposes of examples and proofs. I continue to
use t÷ for the computation translation and t+ for the value translation. Below I give
the abbreviations for all of the translation judgments. Note that anywhere I use this
notation, I require the typing derivation as an implicit parameter, since formally the
translation is defined over typing derivations.

A÷ def
= A where Γ ⊢ A : ⋆⇝n

A÷ A

e÷
def
= e where Γ ⊢ e : A⇝n

e e

U+ def
= U where Γ ⊢ U⇝n

U U

K+ def
= κ where Γ ⊢ K : U⇝n

κ κ

A+ def
= A where Γ ⊢ A : K⇝n

A A

I start with the simple translations. The translation on universes and kinds are
essentially homomorphic on the structure of the typing derivation. I define the translation
for universes CPSn

U in Figure 6.9 and kinds CPSn
κ in Figure 6.10, both of which I

abbreviate with +. There is no separate computation translation for kinds or universes,
which cannot appear as computations in CoCD.

I give the key CPSn translations of types in Figure 6.11; the full definition is in
Appendix H Figure H.5. For types, I define a value translation CPSn

A and a computation
translation CPSn

A÷ . We need separate computation and value translations for types since
we internalize the concept of evaluation at the term-level, and types describe term-level
computations and term-level values. Recall that this is the call-by-name translation, so
function arguments, even type-level functions, are computations. Note, therefore, that

6.5 call-by-name cps translation 147

Γ ⊢ A : K⇝n
A A Lemma 6.5.5 will show Γ+ ⊢ A+ : K+

Γ ⊢ α : K⇝n
A α

CPSn
A-Var

Γ ⊢ A : K⇝n
A÷ A Γ, x : A ⊢ B : K′⇝n

A÷ B

Γ ⊢ Πx : A.B : K′⇝n
A Πx :A.B

CPSn
A-Pi

Γ ⊢ K : U⇝n
κ κ Γ, x : A ⊢ B : K′⇝n

A÷ B

Γ ⊢ Πα : K.B : K′⇝n
A Πα : κ.B

CPSn
A-PiK

Γ ⊢ A : K′⇝n
A÷ A Γ, x : A ⊢ B : K⇝n

A B

Γ ⊢ λ x : A.B : Πx : A.K⇝n
A λx :A.B

CPSn
A-Constr

Γ ⊢ A : Πx : B.K⇝n
A A Γ ⊢ e : B⇝n

e e

Γ ⊢ A e : K[e/x]⇝n
A A e

CPSn
A-AppConstr

Γ ⊢ A : ⋆⇝n
A÷ A Γ, x : A ⊢ B : ⋆⇝n

A÷ B

Γ ⊢ Σx : A.B : ⋆⇝n
A Σx :A.B

CPSn
A-Sig

Γ ⊢ e : A⇝n
e e Γ ⊢ A : K⇝n

A÷ A Γ, x = e : A ⊢ B : K′⇝n
A B

Γ ⊢ let x= e : A inB : K′⇝n
A let x= e :AinB

CPSn
A-Let

Γ ⊢ A : K′ Γ ⊢ K≡ K′ Γ ⊢ A : K′⇝n
A A

Γ ⊢ A : K⇝n
A A

CPSn
A-Conv

· · ·

Γ ⊢ A : ⋆⇝n
A÷ A Lemma 6.5.5 will show Γ+ ⊢ A÷ : ⋆+

Γ ⊢ A : ⋆⇝n
A A

Γ ⊢ A : ⋆⇝n
A÷ Πα : ⋆. (A→α)→α

CPSn
A÷-Comp

Figure 6.11: CPSn of Types (excerpts)

the rule Rule CPSn
κ-PiA uses the computation translation on the domain annotation A

of Πx : A.K—i.e., the kind describing a type-level function that abstracts over a term
of type A. Most rules are straightforward. We translate type-level variables α in-place
in Rule CPSn

A-Var. Again, since this is the CBN translation, we use the computation
translation on domain annotations. Rule CPSn

A-Constr for the value translation
of type-level functions that abstract over a term, λ x : A.B, translates the domain
annotation A using the computation translation. The rule for the value translation of
a dependent function type, Rule CPSn

A-Pi, translates the domain annotation A using
the computation translation. This means that a function is a value when it accepts

148 continuation-passing style

a computation as an argument. Rule CPSn
A-Sig produces the value translation of a

dependent pair type by translating both components of a pair using the computation
translation. This means we consider a pair a value when it contains computations as
components. Note that since the translation is defined on typing derivations, we have
an explicit translation of the conversion rule Rule CPSn

A-Conv.
There is only one rule for the computation translation of a type, Rule CPSn

A÷-Comp,
which is the polymorphic answer type translation described in Section 6.2. Notice that
Rule CPSn

A÷-Comp is defined only for types of kind ⋆, since only types of kind ⋆ have
inhabitants in CoCD. For example, we cannot apply Rule CPSn

A÷-Comp to type-level
function since no term inhabits a type-level function.

The main CPSn translation rules for terms are given in Figure 6.12; the full definition
is in Appendix H Figure H.6 and Figure H.7. Intuitively, we translate each term e of
type A to a term e of type Πα : ⋆. (A→ α)→ α, where A is the value translation
of A. This type represents a computation that, when given a continuation k that
expects a value of type A, promises to call k with a value of type A. Since we have
only two value forms in the call-by-name translation, we do not explicitly define a
separate value translation for terms, but inline that translation. Note that the value
cases, Rule CPSn

e -Fun and Rule CPSn
e -Pair, feature the same pattern—i.e., produce a

computation λα.λk.k v that expects a continuation and then immediately calls that
continuation on the value v. In the case of Rule CPSn

e -Fun, the value v is the function
λx :A. e produced by translating the source function λ x : A. e using the computation
type translation from A⇝n

A÷ A and the computation term translation e⇝n
e e. In the

case of Rule CPSn
e -Pair, the value we produce ⟨e1, e2⟩ contains computations, not

values.
The rest of the term translation rules are for computations. Notice that while all terms

produced by the term translation have a computation type, all continuations take a value
type. Since this is a CBN translation, we consider variables as computations in Rule
CPSn

e -Var. We translate term variables as an η-expansion of a CPS’d computation. We
must η-expand the variable case to guarantee CBN evaluation order, as I discuss shortly.
In Rule CPSn

e -App, we encode the CBN evaluation order for function application e e′ in
the usual way. We translate the computations e⇝n

e e and e′ ⇝n
e e′. First, we evaluate

e to a value f , then apply f to the computation e′. The application f e′ is itself a
computation, which we call with the continuation k.

Notice that only the translation rules Rule CPSn
e -Fst and Rule CPSn

e -Snd use
the new @ form. As discussed in, Section 6.2, to type check the translation of snd e
produced by Rule CPSn

e -Snd, we require the rule Rule T-Cont when type checking the
continuation that performs the second projection. While type checking the continuation,
we know that the value y that the continuation receives is equivalent to e÷ α id. The
reason we must use the @ syntax in the in the translation Rule CPSn

e -Fst, whose
type is not dependent, is so that we can apply the Rule ≡-Cont rule to resolve the
equivalence of the two first projections in the type of the second projection. That is,
as we saw in Section 6.2, type preservation fails because we must show equivalence
between (fst e)÷ and fst y. Since these are the only two cases that require our new

6.5 call-by-name cps translation 149

Γ ⊢ e : A⇝n
e A Lemma 6.5.5 will show Γ+ ⊢ e÷ : A÷

Γ ⊢ A : K⇝n
A A

Γ ⊢ x : A⇝n
e λα : ⋆.λk :A→α.x α k

CPSn
e -Var

Γ ⊢ A : K⇝n
A÷ A Γ, x : A ⊢ B : K′⇝n

A÷ B Γ, x : A ⊢ e : B⇝n
e e

Γ ⊢ λ x : A. e : Πx : A.B⇝n
e λα : ⋆.λk : (Πx :A.B)→α.k (λx :A. e)

CPSn
e -Fun

Γ ⊢ e : Πx : A.B⇝n
e e Γ ⊢ A : K⇝n

A÷ A÷

Γ, x : A ⊢ B : K′⇝n
A÷ B÷ Γ, x : A ⊢ B : K′⇝n

A B+ Γ ⊢ e′ : A⇝n
e e′

Γ ⊢ e e′ : B[e′/x]⇝n
e λα : ⋆.λk : (B+[e′/x])→α.

e α (λ f :Πx :A÷.B÷. (f e′) α k)

CPSn
e -App

Γ ⊢ e1 : A⇝
n
e e1

Γ ⊢ e2 : B[e1/x]⇝
n
e e2 Γ ⊢ A : ⋆⇝n

A÷ A Γ, x : A ⊢ B : ⋆⇝n
A÷ B

Γ ⊢ ⟨e1, e2⟩ : Σx : A.B⇝n
e λα : ⋆.λk :Σx :A.B→α.

k ⟨e1, e2⟩asΣx :A.B

CPSn
e -Pair

Γ ⊢ A : ⋆⇝n
A÷ A÷

Γ, x : A ⊢ B : ⋆⇝n
A÷ B÷ Γ ⊢ A : ⋆⇝n

A A+ Γ ⊢ e : Σx : A.B⇝n
e e

Γ ⊢ fst e : A⇝n
e λα : ⋆.λk :A+ →α.

e @ α (λy :Σx :A÷.B÷. let z= fst y in z α k)

CPSn
e -Fst

Γ ⊢ A : ⋆⇝n
A÷ A÷ Γ, x : A ⊢ B : ⋆⇝n

A÷ B÷ Γ, x : A ⊢ B : ⋆⇝n
A B+

Γ ⊢ (fst e) : A⇝n
e (fst e)÷ Γ ⊢ e : Σx : A.B⇝n

e e

Γ ⊢ snd e : B[(fst e)/x]⇝n
e λα : ⋆.λk :B+[(fst e)÷/x]→α.

e @ α (λy :Σx :A÷.B÷.
let z= sndy in z α k)

CPSn
e -Snd

Γ ⊢ e : A⇝n
e e Γ ⊢ A : K⇝n

A÷ A
Γ, x = e : A ⊢ B : K′⇝n

A B Γ, x = e : A ⊢ e′ : B⇝n
e e′

Γ ⊢ let x= e : A in e′ : B[e/x]⇝n
e λα : ⋆.λk :B[e/x]→α.

let x= e :Aine′ α k

CPSn
e -Let

Γ ⊢ e : B⇝n
e e

Γ ⊢ e : A⇝n
e e

CPSn
e -Conv

· · ·

Figure 6.12: CPSn of Terms (excerpts)

rules, these are the only cases where we need to use the @ form in the translation; all
other translation rules use standard application. In Section 6.6, I show that that the
CBV translation must use the @ form much more frequently since, intuitively, the new

150 continuation-passing style

⊢ Γ⇝n Γ Lemma 6.5.5 will show ⊢ Γ+

⊢ ·⇝n ·
CPSn

Γ-Empty
⊢ Γ⇝n Γ Γ ⊢ A : K⇝n

A÷ A

⊢ Γ, x : A⇝n Γ,x : A
CPSn

Γ-AssumT

⊢ Γ⇝n Γ Γ ⊢ K : U⇝n
κ κ

⊢ Γ, α : K⇝n Γ,α : κ
CPSn

Γ-AssumK

⊢ Γ⇝n Γ Γ ⊢ A : K⇝n
A÷ A Γ ⊢ e : A⇝n

e e

⊢ Γ, x = e : A⇝n Γ,x = e : A
CPSn

Γ-Def

⊢ Γ⇝n Γ Γ ⊢ A : K⇝n
A A Γ ⊢ K : U⇝n

κ κ

⊢ Γ, α = A : K⇝n Γ,α = A : κ
CPSn

Γ-DefT

Figure 6.13: CPSn of Environments

equivalence rule recovers a notion of “value” in the CPS’d language, and in call-by-value
types can only depend on values.

The CPS translation encodes the CBN evaluation order explicitly so that the evalua-
tion order of compiled terms is independent of the target language’s evaluation order.
This property is not immediately obvious since Rule CPSn

e -Let binds a variable x to
an expression e, making it seem like there are two possible evaluation orders: either
evaluate e first, or substitute e for x first. Note, however, that the CBN translation
always produces a λ term—even in the variable case since Rule CPSn

e -Var employs
η-expansion as noted above. Therefore, in Rule CPSn

e -Let, e will always be a value,
which means it doesn’t evaluate in either CBN or CBV. Therefore, there is no ambiguity
in how to evaluate the translation of let.

The translation rule Rule CPSn
e -Conv is deceptively simple. We could equivalently

write this translation as follows, which makes its subtlety apparent.

Γ ⊢ e : B

Γ ⊢ A≡ B Γ ⊢ e : B⇝n
e e Γ ⊢ A : K⇝n

A A Γ ⊢ B : K⇝n
A B

Γ ⊢ e : A⇝n
e λα : ⋆.λk :A→α. e α (λx :B.k x)

CPSn
e -Conv

Notice now that while the continuation k expects a term of type A, we call k with a term
of type B. Intuitively, k x should be well-typed since A and B should be equivalent.
However, recall from Chapter 3 that we cannot prove that A and B are equivalence
until we prove compositionality, which requires that we appeal to this translation rule.
As a result, we require equivalence to be non-type-directed.

I lift the translations to typing environments in the usual way in Figure 6.13. Since
this is the CBN translation, we recur over the environment applying the computation
translation.

6.5 call-by-name cps translation 151

6.5.1 Type Preservation

The proof of type preservation follows the standard architecture from Chapter 3.
First I show Lemma 6.5.1 (CPSn Compositionality), which states that the CPSn

translation commutes with substitution. The formal statement of the lemma is somewhat
complicated since we have the cross product of four syntactic categories and two
translations. However, the intuition is simple: first substituting and then translating is
equivalent to translating and then substituting.

Lemma 6.5.1 (CPSn Compositionality).

1. (K[A/α])+ ≡ K+[A+/α]

2. (K[e/x])+ ≡ K+[e÷/x]

3. (A[B/α])+ ≡ A+[B+/α]

4. (A[e/x])+ ≡ A+[e÷/x]

5. (A[B/α])÷ ≡ A÷[B+/α]

6. (A[e/x])÷ ≡ A÷[e÷/x]

7. (e[A/α])÷ ≡ e÷[A+/α]

8. (e[e′/x])÷ ≡ e÷[e′÷/x]

Proof. In the PTS syntax, we represent source expressions as t[t′/x]. The proof is by
induction on the typing derivations for t. Note that our ÷ and + notation implicitly
require the typing derivations as premises. The proof is completely straightforward.
Part 6 follows immediately by part 3. Part 7 follows immediately by part 4. I give
representative cases for the other parts.

Case: Rule *, parts 1 and 2. Trivial, since no free variables appear in ⋆.

Case: Rule Pi-* and Rule Pi-□: t = Πx : B.K′

Sub-case: Part 1. We must show that ((Πx : B.K′)[A/α])+ = (Πx : B.K′)+[A+/α].

((Πx : B.K′)[A/α])+

= (Πx : B[A/α].K′[A/α])+ (90)

by definition of substitution

= Πx′ : (B[A/α])÷. (K′[A/α])+ (91)

by definition of the translation

= Πx′ : B÷[A+/α].K′+[A+/α] (92)

by parts 1 and 5 of the induction hypothesis

= (Πx′ : B÷.K′+)[A+/α] (93)

by definition of substitution

= (Πx′ : B.K′)+[A+/α] (94)

by definition of the translation

Sub-case: Part 2. Similar to the previous sub-case.

152 continuation-passing style

Case: Rule Var

Sub-case: Part 3 t = α′. Part 4 is trivial since x is not free in α.

We must show that (α′[A/α])+ = α′[A+/α].

Sub-sub-case: α = α′. It suffices to show that A+ = A+, which is trivial.

Sub-sub-case: α ̸= α′. α+ = α by definition.

Sub-case: x, parts 7 and 8. Similar to previous case.

Case: Rule App

Sub-case: t = e1 e2, Part 7

We must show ((e1 e2)[A
′/α′])÷ = (e1 e2)

÷[A′+/α′].

((e1 e2)[A
′/α′])÷

= (e1[A/α
′] e2[A

′/α′])÷ (95)

by definition of substitution

= λα : ⋆.λk : ((B[A′/α′])+[(e2[A
′/α′])÷/x])→α.

(e1[A
′/α′])÷ α (λ f :Πx : (A[A′/α′])÷. (B[A′/α′])÷.

(f (e2[A
′/α′])÷) α k)

(96)

by def. of translation

= λα : ⋆.λk : (B+[A′+/α′][e÷2 [A
′+/α′]/x])→α.

e÷1 [A
′+/α′] α (λ f :Πx : A÷[A′+/α′].B÷[A′+/α′].

(f e÷2 [A
′+/α′]) α k)

(97)

by part 3, 5, and 7 of IH

= (λα : ⋆.λk : (B+[e÷2 /x])→α.

e÷1 α (λ f :Πx : A÷.B÷.

(f e÷2) α k))[A′+/α′]

(98)

by definition of substitution

= (e1 e2)
÷[A′+/α′] (99)

by definition of translation

Sub-case: Part 8

We must show ((e1 e2)[e/x])
÷ = (e1 e2)

÷[e÷/x].

Similar to previous case.

Case: Rule Conv. The proof is trivial, now that we have staged the proof appro-
priately. I give part 8 as an example.

Γ ⊢ e : B Γ ⊢ A : U Γ ⊢ A≡ B

Γ ⊢ e : A

6.5 call-by-name cps translation 153

We must show that (e[e′/x])÷ ≡ e÷[e′÷/x] (at type A). Note that by part 8 of
the induction hypothesis, we know that (e[e′/x])÷ ≡ e÷[e′÷/x] (at the smaller
derivation for type B). But recall that equivalence is not type directed, so the
proof is complete.

I next prove that the translation preserves reduction and conversion, Lemma 6.5.2
and Lemma 6.5.3. Note that kinds cannot take steps in the reduction relation, but can
in the conversion relation since it reduces under all contexts. Note that we can only
preserve reduction and conversion up to equivalence, in particular η-equivalence. The
intuition for this is simple. The computation translation of a term e′÷ always produce a
λ-expression λα.λk. e′′. However, when e÷ ▷∗ e′, we do not know that the term e′ is
equal to a λ-expression, although it is η-equivalent to one.

Lemma 6.5.2 (CPSn Preservation of Reduction).

• If Γ ⊢ e : A and e ▷ e′ then e÷ ▷∗ e′ and e′ ≡ e′÷

• If Γ ⊢ A : K and A ▷ A′ then A+ ▷∗ A′ and A′ ≡ A′+

• If Γ ⊢ A : ⋆ and A ▷ A′ then A÷ ▷∗ A′ and A′ ≡ A′÷

Proof. The proof is straightforward by cases on the reduction relation. I give some
representative cases.

Case: x ▷δ e
′ where x = e′ : A′ ∈ Γ

It suffices to show that x÷ ▷δ e′÷ where x÷ = e′÷ : A′÷ ∈ Γ+, which follows by
Rule CPSn

Γ-Def.

Case: (λ x : _. e1) e2 ▷β e1[e2/x]

We must show that ((λ x : _. e1) e2)
÷ ▷∗ e′ and e′ ≡ (e1[e2/x])

÷.

((λ x : _. e1) e2)

= λα : ⋆.λk : _.

(λα : ⋆.λk : _.k (λx : _. e÷1)) α (λ f : _. (f e÷2) α k)

(100)

by definition of translation

▷∗ λα : ⋆.λk : _. (((λx : _. e÷1) e
÷
2) α k) (101)

by ▷β

▷∗ λα : ⋆.λk : _. (e÷1 [e
÷
2 /x]) α k (102)

≡ e÷1 [e
÷
2 /x] (103)

by Rule ≡-η

= (e1[e2/x])
÷ (104)

by Lemma 6.5.1

154 continuation-passing style

Case: snd ⟨e1, e2⟩ ▷π2 e2

We must show that (snd ⟨e1, e2⟩)÷ ▷∗ e′ and e′ ≡ e÷2 .

(snd ⟨e1, e2⟩)÷

= λα : ⋆.λk : _.

(λα : ⋆.λk : _.k ⟨e÷1 , e
÷
2 ⟩) @ α (λy : _. let z= sndy in z α k)

(105)

▷∗ λα : ⋆.λk : _. let z= snd ⟨e÷1 , e
÷
2 ⟩ in z α k (106)

▷∗ λα : ⋆.λk : _. e÷2 α k (107)

≡ e÷2 by Rule ≡-η (108)

Lemma 6.5.3 (CPSn Preservation of Conversion).

• If Γ ⊢ e : A and e ▷∗ e′ then e÷ ▷∗ e′ and e′ ≡ e′÷

• If Γ ⊢ A : K and A ▷∗ A′ then A+ ▷∗ A′ and A′ ≡ A′+

• If Γ ⊢ A : ⋆ and A ▷∗ A′ then A÷ ▷∗ A′ and A′ ≡ A′÷

• If Γ ⊢ K : U and K ▷∗ K′ then K+ ▷∗ κ′ and κ′ ≡ K′+

Proof. The proof is straightforward by induction on the conversion derivation, i.e., on
Γ ⊢ t▷∗ t′.2

Lemma 6.5.4 (CPSn Preservation of Equivalence).

• If e ≡ e′ then e÷ ≡ e′÷

• If A ≡ A′ then A+ ≡ A′+

• If A ≡ A′ then A÷ ≡ A′÷

• If K ≡ K′ then K+ ≡ K′+

Proof. The proof is by induction on the derivation of e ≡ e′. The base case follows by
Lemma 6.5.3, and the cases of η-equivalence follow from Lemma 6.5.3, the induction
hypothesis, and the fact that we have the same η-equivalence rules in the CoCk.

I first prove type and well-formedness preservation, Lemma 6.5.5, using the explicit
syntax on which I defined CPSn. In this lemma, proving that the translation of snd e
preserves typing requires both the new typing rule Rule T-Cont and the equivalence
rule Rule ≡-Cont. The rest of the proof is straightforward.

Lemma 6.5.5 (CPSn Type and Well-formedness Preservation).

2 In the previous version of this work (Bowman et al., 2018), this proof was incorrectly stated as by
induction on the length of reduction sequences.

6.5 call-by-name cps translation 155

1. If ⊢ Γ then ⊢ Γ+

2. If Γ ⊢ e : A then Γ+ ⊢ e÷ : A÷

3. If Γ ⊢ A : K then Γ+ ⊢ A+ : K+

4. If Γ ⊢ A : ⋆ then Γ+ ⊢ A÷ : ⋆+

5. If Γ ⊢ K : U then Γ+ ⊢ K+ : U+

Proof. All cases are proven simultaneously by simultaneous induction on the type
derivation and well-formedness derivation. Part 4 follows easily by part 3 in every case,
so I elide its proof. Most cases follow easily from the induction hypotheses.

Case: Part 5, Rule *: Γ ⊢ ⋆ : □

We must show that Γ+ ⊢ ⋆+ : □+, which follows by part 1 of the induction
hypothesis and by definition of the translation, since ⋆+ = ⋆ and □+ = □.

Case: Rule Pi-*: Γ ⊢ Πx : e1. e2 : K

There are two sub-cases: either e2 is a type, or a kind.

Sub-case: Part 3, e2 = B, i.e., is a type.

There are two sub-cases: either e1 is a type or a kind.

Sub-sub-case: e1 = A, i.e., is a type.

We have Γ ⊢ Πx : A.B : ⋆.

We must show that Γ+ ⊢ (Πx : A.B)+ : ⋆+

By definition, must show Γ+ ⊢ Πx : A÷.B÷ : ⋆, which follows by the part 4 of
the induction hypothesis applied to A and B.

Sub-sub-case: e1 = K, i.e., is a kind.

We have Γ ⊢ Πα : K.B : ⋆.

We must show that Γ+ ⊢ (Πα : K.B)+ : ⋆+

By definition, must show Γ+ ⊢ Πα :K+.B÷ : ⋆, which follows by the part 4 of the
induction hypothesis applied to B, and part 5 of the induction hypothesis applied
to K.

Sub-case: Part 5, e2 = K′, i.e., is a kind.

There are two sub-cases: either e1 is a type or a kind.

Sub-sub-case: e1 = A, i.e., is a type.

We have Γ ⊢ Πx : A.K′ : U.

We must show that Γ+ ⊢ (Πx : A.K′)+ : ⋆+

By definition, must show Γ+ ⊢ Πx :A÷.K′+ : ⋆, which follows by the part 4 of the
induction hypothesis applied to A and part 5 of the induction hypothesis applied
to K.

156 continuation-passing style

Sub-sub-case: e1 = K, i.e., is a kind.

We have Γ ⊢ Πα : K.K′ : ⋆.

We must show that Γ+ ⊢ (Πα : K.K′)+ : ⋆+

By definition, must show Γ+ ⊢ Πα : K+.K′+ : ⋆, which follows by the part 5 of
the induction hypothesis applied to K and K′+.

Case: Rule Pi-□ Similar to the previous case, except with ⋆ replaced by □; there
are two fewer cases since this must be a kind.

Case: Rule Sig Γ ⊢ Σx : A.B : ⋆

We must show that Γ+ ⊢ Σx : A÷.B÷ : ⋆, which follows easily by the part 4 of
the induction hypothesis applied to A and B.

Case: Rule Pair Γ ⊢ ⟨e1, e2⟩ : Σx : A.B

By definition of the translation, we must show that

Γ+ ⊢ λα : ⋆.λk : (Σx : A÷.B÷ →α).

k ⟨e÷1 , e
÷
2 ⟩asΣx : A÷.B÷ : Πα : ⋆. (Σx : A÷.B÷ →α)→α

It suffices to show that Γ+ ⊢ ⟨e÷1 , e
÷
2 ⟩asΣx : A÷.B÷ : Σx : A÷.B÷, which

follows easily by part 2 of the induction hypothesis applied to Γ ⊢ e1 : A and
Γ ⊢ e2 : B[e1/x].

Case: Rule Snd Γ ⊢ snd e : B[fst e/x]

We must show that

λα : ⋆.λk : B+[(fst e)÷/x]→α.

e÷ @ α (λy :Σx : A÷.B÷. let z= sndy in z α k)

has type (B[fst e/x])÷.

By part 6 of Lemma 6.5.1, and definition of the translation, this type is equivalent
to

Πα : ⋆. (B+[(fst e)÷/x]→α)→α

By Rule Lam, it suffices to show that

Γ+,α : ⋆,k : B+[(fst e)÷/x]→α ⊢ e÷ @ α (λy :Σx : A÷.B÷.

let z= sndy in z α k) : α

This is the key difficulty in the proof. Recall from Section 6.2 that the term z α

has type (B+[fst y/x]→α)→α while the term k has type B+[(fst e)÷/x]→α.
To show that z α k is well-typed, we must show that (fst e)÷ ≡ fst y. I proceed
by the new typing rule Rule T-Cont, which will help us prove this.

First, note that e÷ (Σx : A÷.B÷) id is well-typed. By part 4 of the induction
hypothesis we know that Γ+ ⊢ A÷ : ⋆ and Γ+,x : A÷ ⊢ B÷ : ⋆. By part 2

6.5 call-by-name cps translation 157

of the induction hypothesis applied to Γ ⊢ e : Σx : A.B, we know Γ+ ⊢ e÷ :

Πα : ⋆. (Σx : A÷.B÷ →α)→α.

Now, by Rule T-Cont, it suffices to show that

Γ+,α : ⋆,k : B+[(fst e)÷/x]→α,y = e÷ Σx:A÷.B÷id ⊢ let z=sndy in zα k : α

Note that we now have the definitional equivalence y = e÷ (Σx : A÷.B÷) id. By
Rule Let it suffices to show

Γ+,α : ⋆,k : B+[(fst e)÷/x]→α,

y = e÷ Σx : A÷.B÷ id,

z = sndy : B÷[fst y/x]

⊢ z α k : α

Note that

z : B÷[fst y/x] (109)

= Πα : ⋆. (B+[fst y/x]→α)→α by definition of B÷ (110)

≡ Πα : ⋆. (B+[fst (e÷ _ id)/x]→α)→α by δ reduction on y (111)

Equation (111) above, in which we δ-reduce y, is impossible without Rule T-Cont.

By Rule Conv, and since k : B+[(fst e)÷/x]→α, to show z α k : α it suffices to
show that (fst e)÷ ≡ fst (e÷ _ id).

Note that (fst e)÷ = λα : ⋆.λk′ : (A+ →α).

e÷ @ α (λy :Σx : A÷.B÷. let z′ = fst y : A÷ in z′ α k′)
by definition of the translation.

By Rule ≡-η, it suffices to show that

e÷ @ α (λy :Σx : A÷.B÷. let z′ = fst y : A÷ in z′ α k′) (112)

≡ (λy :Σx : A÷.B÷. let z′ = fst y in z′ α k′) (e÷ _ id) Rule ≡-Cont (113)

≡ (fst (e÷ _ id)) α k′ by reduction (114)

Notice that Equation (113) requires Rule ≡-Cont applied to the translation of
the fst.

Case: Rule Lam

I give proofs for only the term-level functions; the type-level functions follow
exactly the same structure as type-level function types. There are two subcases.

Sub-case: The function abstracts over a term, Γ ⊢ λ x : A. e : Πx : A.B

We must show

Γ+ ⊢ (λ x : A. e)÷ : (Πx : A.B)÷.

By definition of the translation, we must show

158 continuation-passing style

Γ+ ⊢ λα : ⋆.λk : (Πx : A÷.B÷)→α.

(k (λx : A÷. e÷)) : Πα : ⋆. (Πx : A÷.B÷ →α)→α

It suffices to show that

Γ+,α : ⋆,k : Πx : A÷.B÷ →α ⊢ k (λx : A÷. e÷) : α.

By Rule App, it suffices to show that

Γ+,α : ⋆,k : Πx : A÷.B÷ →α ⊢ (λx : A÷. e÷) : Πx : A÷.B÷

By part 2 of the induction hypothesis applied to Γ, x : A ⊢ e : B, we know
that

Γ+,x : A÷ ⊢ e÷ : B÷

It suffices to show that

⊢ Γ+,α : ⋆,k : Πx : A÷.B÷ → α which follows easily by part 4 of the
induction hypothesis applied to the typing derivations for A and B.

Sub-case: The function abstracts over a type, Γ ⊢ λα : K. e : Πα : K.B

We must show Γ+ ⊢ (λα : K. e)÷ : (Πα : K.B)÷.

By definition of the translation, we must show that

Γ+ ⊢ λαans : ⋆.λk : (Πα : K+.B÷)→α.

(k (λα : K+. e÷)) : Παans : ⋆. (Πα : K+.B÷ →αans)→αans

It suffices to show that

Γ+,αans : ⋆,k : Πα : K+.B÷ →αans ⊢ k (λα : K+. e÷) : αans.

By Rule App, it suffices to show that

Γ+,αans : ⋆,k : Πα : K+.B÷ →αans ⊢ (λx : A÷. e÷) : Πα : K+.B÷

By part 2 of the induction hypothesis applied to Γ, α : K ⊢ e : B, we know
that

Γ+,α : K+ ⊢ e÷ : B÷

It suffices to show that ⊢ Γ+,αans : ⋆,k : Πα :K+.B÷→αans which follows
easily by parts 5 and 4 of the induction hypothesis applied to the typing
derivations for K and B.

Case: Rule App

Sub-case: A term-level function applied to a term Γ ⊢ e1 e2 : B[e2/x]

We must show that

Γ+ ⊢ (e1 e2)
÷ : (B[e2/x])

÷

By definition of the translation, we must show:

Γ+ ⊢ λα : ⋆.λk : (B[e2/x])
+ →α.

e÷1 α (λ f :Πx : A÷.B÷. (f e÷2) α k) : (B[e2/x])
÷

By part 6 of Lemma 6.5.1 and definition of B÷, we must show:

6.5 call-by-name cps translation 159

Γ+ ⊢ λα : ⋆.λk : (B+[e÷2 /x])→α.

e÷1 α (λ f :Πx : A÷.B÷.

(f e÷2) α k) : Πα : ⋆. (B+[e÷2 /x]→α)→α

It suffices to show that

• Γ+ ⊢ B+[e÷2 /x] : κ By part 3 of the induction hypothesis we know that
Γ+,x : A÷ ⊢ B+ : κ, and by part 2 of the induction hypothesis we know
that Γ+ ⊢ e÷2 : A÷, hence the goal follows by substitution.

• Γ+ ⊢ e÷1 : Πα : ⋆. (Πx : A÷.B÷ →α)→α, which follows by part 2 of
the induction hypothesis and by definition of (Πx : A.B)÷.

• Γ+,α : ⋆,k : (B+[e÷2 /x])→ α ⊢ (λ f :Πx : A÷.B÷. (f e÷2) α k) : Πx :

A÷.B÷ →α, which follows since by part 2 of the induction hypothesis
e÷2 : A÷ we know (f e÷2) : B÷[e÷2 /x] and by definition B÷[e÷2 /x] =

Πα : ⋆. (B+[e÷2 /x]→α)→α.

Sub-case: A term-level function applied to a type Γ ⊢ e1 A : B[A/α]

The proof is similar to the previous case, but relies on showing that Γ+ ⊢
A+ : K+, which follows by part 3 of the induction hypothesis.

Sub-case: A type-level function applied to a term Γ ⊢ A e : K[e/x]

This case is straightforward by the part 3 and part 2 of the induction
hypothesis.

Sub-case: A type-level function applied to a type Γ ⊢ A B : K[B/α]

This case is straightforward by the part 3 of the induction hypothesis.

Case: Rule Conv Γ ⊢ e : A such that Γ ⊢ e : B and A ≡ B.

We must show that e÷ has type A÷ = Πα : ⋆. (A+ →α)→α.

By the induction hypothesis, we know that e÷ : B÷ = Πα : ⋆. (B+ →α)→α. By
Rule Conv it suffices to show that A+ ≡ B+, which follows by Lemma 6.5.4.

To recover a simple statement of the type-preservation theorem over the PTS syntax,
I define two meta-functions for translating expressions depending on their use. I define
cps JtK to translate a PTS expression in “term” position, i.e., when used on the left side
of a type annotation as in t : t′, and define cpsT Jt′K to translate an expression in “type”
position, i.e., when used on the right side of a type annotation. I define these in terms
of the translation shown above, noting that for every t : t′ in the PTS syntax, one of
the following is true: t is a term e and t′ is a type A in the explicit syntax; t is a type A

and t′ is a kind K in the explicit syntax; or t is a kind K and t′ is a universe U in the
explicit syntax.

cps JtK def
= e÷ when t is a term

cps JtK def
= A+ when t is a type

cps JtK def
= K+ when t is a kind

cpsT Jt′K def
= A÷ when t′ is a type

cpsT Jt′K def
= K+ when t′ is a kind

cpsT Jt′K def
= U+ when t′ is a universe

160 continuation-passing style

Γ ⊢ e

Γ ⊢ e : Πα :Prop . (bool→α)→α

Γ ⊢ e

⊢ e

· ⊢ e

⊢ e

Figure 6.14: CoCk Components and Programs

eval(e) = v

eval(e) = v if ⊢ e and · ⊢ e @ bool id▷∗ v

Figure 6.15: CoCk Evaluation

This notation is based on Barthe and Uustalu (2002).

Theorem 6.5.6 (CPSn Type Preservation). Γ ⊢ t : t′ then Γ+ ⊢ cps JtK : cpsT Jt′K

6.5.2 Compiler Correctness

Recall from Chapter 3 that since we preserve conversion, proving compiler correctness
is simple. I use the standard definition of linking by substitution and the standard
cross-language relation.

I extend the CPSn translation in a straightforward way to translate closing substitu-
tions, written γ÷, and allow translated terms to be linked with the translation of any
valid closing substitution γ. This definition supports a separate compilation theorem
that allows linking with the output of this translation, but not with the output of other
compilers.

Now I can show that the CPSn translation is correct with respect to separate
compilation—if we first link and run to a value, we get a related value when we compile
and then link with the compiled closing substitution. I first define well-formed programs
and the evaluation function for CoCk. These are different than described in Chapter 2.
I present well-formed programs and components in Figure 6.14. CPS programs are
well-formed when they are computations that produce a ground values, i.e., when they
expect a continuation that expects a value of type bool. The evaluation function
is given in Figure 6.15 Since the target language is in CPS, we must apply the halt
continuation id at the top-level to evaluate a program to an observation.

Theorem 6.5.7 (Separate Compilation Correctness). If Γ ⊢ e and Γ ⊢ γ, then
eval(γ(e)) ≈ eval(γ+(e÷)).

Proof. Since conversion implies equivalence, we reason in terms of equivalence. By
Lemma 6.5.3, (γ(e))÷ ▷∗ e and v÷ ≡ e. By Lemma 6.5.1, (γ(e))÷ ≡ γ÷(e÷), hence
γ÷(e÷) ▷∗ e and v÷ ≡ e. Since the translation on all observations is v÷ = λα.λk.k v,
where v ≈ v, we know v÷ A+ id ▷∗ v such that v ≈ v. Since v÷ ≡ e ≡ γ÷(e÷), we

6.6 call-by-value cps translation 161

Γ ⊢ K : U⇝v
κ κ Lemma 6.6.6 will show Γ+ ⊢ K+ : U+

Γ ⊢ ⋆ : □⇝v
κ ⋆

CPSv
κ-Ax

Γ ⊢ K : U⇝v
κ κ Γ, α : K ⊢ K′ : U⇝v

κ κ
′

Γ ⊢ Πα : K.K′ : U⇝v
κ Πα : κ.κ′ CPSv

κ-PiK

Γ ⊢ A : K′⇝v
A A Γ, x : A ⊢ K : U⇝v

κ κ

Γ ⊢ Πx : A.K : U⇝v
κ Πx :A.κ

CPSv
κ-PiA

Figure 6.16: CPSv of Kinds

also know that γ÷(e÷) A+id ▷∗ v′ and v′ ≡ v. Since v is an observation, v′ = v and
v ≈ v′.

Corollary 6.5.8 (Whole-Program Correctness). If ⊢ e then eval(e) ≈ eval(e÷).

6.6 Call-By-Value CPS Translation

In this section, I present the call-by-value (CBV) CPS translation (CPSv) of CoCD.
First, I redefine the short-hand from Section 6.5 to refer to call-by-value translation.

A÷ def
= A where Γ ⊢ A : ⋆⇝v

A÷ A

e÷
def
= e where Γ ⊢ e : A⇝v

e e

U+ def
= U where Γ ⊢ U⇝v

U U

K+ def
= e where Γ ⊢ K : U⇝v

κ κ

A+ def
= A where Γ ⊢ A : K⇝v

A A

In general, CPSv differs from CPSn in two ways. First, all term variables must
have value types, so the translation rules for all binding constructs now use the value
translation for type annotations. Second, we change the definition of value types
so that functions must receive values are arguments and pairs must contain values
as components. Since the translation must force every computation to a value, the
translation of every feature of dependency requires the new typing rule Rule T-Cont.
Furthermore, all substitutions of a term into a type must substitute values instead of
computations, so all dependent type annotations must explicitly convert computations
to values by supplying the identity continuation.

The translation of universes is unchanged compared to the CBN translation, so I
leave its definition in Appendix I Figure I.2.

I define the translation of kinds in Figure 6.16. The only difference is in Rule CPSv
κ-

PiA. Now Rule CPSv
κ-PiA translates the kind of type-level functions Πx : A.K to

accept a value as argument x : A+. In the CBN translation, the domain of a dependent
function is a computation, so the domain annotation is translated with the computation
translation on types. Now, in the CBV translation, all arguments to dependent functions

162 continuation-passing style

Γ ⊢ A : K⇝v
A A Lemma 6.6.6 will show Γ+ ⊢ A+ : K+

Γ ⊢ A : K′⇝v
A A Γ, x : A ⊢ B : K⇝v

A÷ B

Γ ⊢ Πx : A.B : K⇝v
A Πx :A.B

CPSv
A-Pi

Γ ⊢ K : U′⇝v
κ κ Γ, x : A ⊢ B : U⇝v

A÷ B

Γ ⊢ Πα : K.B : U⇝v
A Πα : κ.B

CPSv
A-PiK

Γ ⊢ A : K′⇝v
A A Γ, x : A ⊢ B : K⇝v

A B

Γ ⊢ λ x : A.B : Πx : A.K⇝v
A λx :A.B

CPSv
A-Constr

Γ ⊢ A : Πx : B.K⇝v
A A

Γ, x : A ⊢ B : K′⇝v
A B Γ ⊢ e : B⇝v

e e

Γ ⊢ A e : K[e/x]⇝v
A A (e B id)

CPSv
A-AppConstr

Γ ⊢ A : ⋆⇝v
A A Γ, x : A ⊢ B : ⋆⇝v

A B

Γ ⊢ Σx : A.B : ⋆⇝v
A Σx :A.B

CPSv
A-Sigma

Γ ⊢ e : A⇝v
e e Γ ⊢ A : K′⇝v

A A Γ, x = e : A ⊢ B : K⇝v
A B

Γ ⊢ let x= e : A inB : K⇝v
A let x= e A id :AinB

CPSv
A-Let

· · ·

Figure 6.17: CPSv of Types (excerpts)

are values, so Rule CPSv
κ-PiA uses the value translation on types to translate the

domain annotation.
I present the translation on types in Figure 6.17. The type translation has multiple

rules with type annotations that have changed from CBN. The computation translation
of types is unchanged. In the value translation of types, similar to the kind translation,
dependent function types that abstract over terms now translate the domain annotation
x : A using the value translation. After CBV translation, dependent pairs must contain
values, so the translation of Σx :A.B uses the value translation on the component types,
i.e., the CBV translation is Σx :A+.B+. When terms appear in the type language, such
as in CPSv

A-AppConstr and CPSv
A-Let, we must explicitly convert the computation

to a value to maintain the invariant that all term variables refer to values. For example,
in CPSv

A-AppConstr we translate a type-level application with a term argument A e

to A+ (e÷ B+ id). We similarly translate let-bound terms CPSv
A-Let by casting the

computation to a value. Recall from Section 6.2 that, while expressions of the form
A+ (e÷ B+ id) are not in CPS, this expression is a type and will be evaluated during
type checking. Terms that evaluate at run time are always in CPS and never return.

The term translation (Figure 6.18 and Figure 6.19) changes in three major ways.
As in Section 6.5, we implicitly have a computation and a value translation on term
values, with the latter inlined into the former. First, unlike in CPSn, variables are

6.6 call-by-value cps translation 163

Γ ⊢ e : A⇝v
e e Lemma 6.6.6 will show Γ+ ⊢ e÷ : A÷

Γ ⊢ A : K⇝v
A A

Γ ⊢ x : A⇝v
e λα : ⋆.λk :A→α.k x

CPSv
e-Var

Γ ⊢ A : K′⇝v
A A Γ, x : A ⊢ B : K⇝v

A÷ B Γ, x : A ⊢ e : B⇝v
e e

Γ ⊢ λ x : A. e : Πx : A.B⇝v
e λα : ⋆.λk : (Πx :A.B)→α.k (λx :A. e)

CPSv
e-Fun

Γ ⊢ K : _⇝v
κ κ Γ, α : K ⊢ B : _⇝v

A÷ B Γ, α : K ⊢ e : B⇝v
e e

Γ ⊢ λα : K. e : Πα : K.B⇝v
e λαans : ⋆.λk : (Πα : κ.B)→αans.

k (λα : κ. e)

CPSv
e-Abs

Γ ⊢ e : Πx : A.B⇝v
e e Γ, x : A ⊢ B : K⇝v

A÷ B÷

Γ, x : A ⊢ B : K⇝v
A B+ Γ ⊢ e′ : A⇝v

e e
′ Γ ⊢ A : K′⇝v

A A

Γ ⊢ e e′ : B[e′/x]⇝v
e λα : ⋆.λk : (B+[(e′ A id)/x])→α.

e α (λ f :Πx :A.B÷.
e′ @ α (λx :A. (f x) α k))

CPSv
e-App

Γ ⊢ e : Πα : K.B⇝v
e e Γ, α : K ⊢ B : _⇝v

A÷ B Γ ⊢ A : K⇝v
e A

Γ ⊢ e A : let x= A inB⇝v
e λαans : ⋆.λk : (B[A/α])→αans.

e α (λ f :Πα : κ.B.
(f A) αans k)

CPSv
e-Inst

Γ ⊢ true : bool⇝n
e λα : ⋆.λk : bool→α.k true

CPSn
e -True

Γ ⊢ false : bool⇝n
e λα : ⋆.λk : bool→α.k false

CPSn
e -False

Γ ⊢ e : bool⇝v
e e

Γ ⊢ B : ⋆⇝v
A B Γ ⊢ e1 : B⇝

v
e e1 Γ ⊢ e2 : B⇝

v
e e2

Γ ⊢ if e then e1 else e2 : B⇝
v
e λα : ⋆.λk :B→α.

e @ α (λx : bool. if x then (e1 @ α k)
else (e2 @ α k))

CPSn
e -If

Γ ⊢ e : A⇝v
e e

Γ ⊢ A : K′⇝v
A A Γ ⊢ B : K⇝v

A B Γ, x = e : A ⊢ e′ : B⇝v
e e

′

Γ ⊢ let x= e : A in e′ : B[e/x]⇝v
e λα : ⋆.λk :B[(e A id)/x]→α.

e @ α (λx :A. e′ α k)

CPSv
e-Let

Figure 6.18: CPSv of Terms (1/2)

164 continuation-passing style

Γ ⊢ e1 : A⇝
v
e e1

Γ ⊢ e2 : B[e1/x]⇝
v
e e2 Γ ⊢ A : ⋆⇝v

A A Γ, x : A ⊢ B : ⋆⇝v
A B

Γ ⊢ ⟨e1, e2⟩ : Σx : A.B⇝v
e λα : ⋆.λk :Σx :A.B→α.

e1 @ α (λx1 :A.
e2 @ α (λx2 :B[(e1 A id)/x].

k ⟨x1,x2⟩asΣx :A.B))

CPSv
e-Pair

Γ ⊢ A : ⋆⇝v
A A Γ ⊢ e : Σx : A.B⇝v

e e

Γ ⊢ fst e : A⇝v
e λα : ⋆.λk :A+ →α.

e @ α (λy :Σx :A.B. let z= fst y ink z)

CPSv
e-Fst

Γ ⊢ A : ⋆⇝v
A A Γ, x : A ⊢ B : ⋆⇝v

A B
Γ ⊢ (fst e) : A⇝v

e (fst e)
÷ Γ ⊢ e : Σx : A.B⇝v

e e

Γ ⊢ snd e : B[fst e/x]⇝v
e λα : ⋆.λk :B[((fst e)÷ A id)/x]→α.

e @ α (λy :Σx :A.B. let z= sndy ink z)

CPSv
e-Snd

Γ ⊢ e1 : A⇝
v
e e1

Γ ⊢ e2 : B[e1/x]⇝
v
e e2 Γ ⊢ A : ⋆⇝v

A A Γ, x : A ⊢ B : ⋆⇝v
A B

Γ ⊢ ⟨e1, e2⟩ : Σx : A.B⇝v
e λα : ⋆.λk :Σx :A.B→α.

e1 @ α (λx :A.
e2 @ α (λx2 :B.k ⟨x,x2⟩))

CPSv
e-Pair-Alt

Γ ⊢ A : K⇝v
A A Γ ⊢ K : U⇝v

κ κ
Γ, α = A : K ⊢ B : K′⇝v

A B Γ, α = A : K ⊢ e : B⇝v
e e

Γ ⊢ letα= A : K in e : B[A/α]⇝v
e λαans : ⋆.λk :B[A/α]→αans.

letα=A : κ in e αans k

CPSv
e-LetK

Γ ⊢ e : B⇝v
e e

Γ ⊢ e : A⇝v
e e

CPSv
e-Conv

Figure 6.19: CPSv of Terms (2/2)

values, whereas the translation must produce a computation. Therefore, we translate
x by “value η-expansion” into λα.λk.k x, a computation that immediately applies
the continuation to the value. Second, as discussed above, we change the translation
of application CPSv

e-App to force the evaluation of the function argument. Third,
in the translation of pairs CPSv

e-Pair, we force the evaluation of the components of
the pair and produce a pair of values for the continuation. Note that in cases of the
translation where we have types with dependency—CPSv

e-App, CPSv
e-Let, CPSv

e-Pair,
and CPSv

e-Snd—we cast computations to values in the types by applying the identity
continuation, and require the @ form to use the new typing rule Rule T-Cont.

6.6 call-by-value cps translation 165

⊢ Γ⇝v Γ Lemma 6.6.6 will show ⊢ Γ+

⊢ ·⇝v ·
CPSv

Γ-Empty
⊢ Γ⇝v Γ Γ ⊢ A : K⇝v

A A

⊢ Γ, x : A⇝v Γ,x : A
CPSv

Γ-AssumT

⊢ Γ⇝v Γ Γ ⊢ K : U⇝v
κ κ

⊢ Γ, α : K⇝v Γ,α : κ
CPSv

Γ-AssumK

⊢ Γ⇝v Γ Γ ⊢ A : K⇝v
A A Γ ⊢ e : A⇝v

e e

⊢ Γ, x = e : A⇝v Γ,x = e A id : A
CPSv

Γ-Def

⊢ Γ⇝v Γ Γ ⊢ A : K⇝v
A A Γ ⊢ K : U⇝v

κ κ

⊢ Γ, α = A : K⇝v Γ,α = A : κ
CPSv

Γ-DefT

Figure 6.20: CPSv of Environments

digression Interestingly, because typing the application of a continuation is essen-
tially a dependent let, we can simplify the translation of pairs. I present this in the
rule CPSv

e-Pair-Alt. Instead of explicitly substituting the value of e1 into the type
B, we simply use the same variable name x to bind the value of e1 in both the term
and the type. Since that variable is free in the type annotation B on the variable x2,
we implicitly substitute its value into B rather than being so explicitly. This is rather
subtle so I prefer the more direct and explicit translation, CPSv

e-Pair.

Given the translation of binding constructs in the language, the translation of the
typing environment (Figure 6.20) should be unsurprising. Since all variables are values,
we translate term variables x : A using the value translation on types to produce x : A+

instead of x : A÷. We must also translate term definitions x = e : A by casting the
computation to a value, producing x = e÷ A+ id : A+.

6.6.1 Type Preservation

The type-preservation proof follows the standard architecture presented in Chapter 3.
First we prove compositionality, then preservation of reduction, preservation of con-
version, then preservation of equivalence, then preservation of subtyping, then type
preservation. However, we must reason about CPS’d “values” of the form e @ A k in
all uses of dependency. This requires a few extra steps of reasoning, particularly in the
proof of Lemma 6.6.2 (CPSv Compositionality). Otherwise, the proofs of the supporting
lemmas are essentially the same as in Section 6.5.

166 continuation-passing style

I begin with a technical lemma that is essentially an η-principle for CPS’d computa-
tions, which simplifies the aforementioned reasoning about CPS’d “values”.3 The lemma
states that any CPS’d computation e÷ is equivalent to a new CPS’d computation that
accepts a continuation k simply applies e÷ to k. The proof is straightforward. Note the
type annotations are apparently mismatched, as in our explanation of the translation
of Rule Conv in Section 6.5 and the discussion of untyped vs type equivalence in
Chapter 3, but the behaviors of the terms are the same and equivalence is untyped.

Lemma 6.6.1 (CPSv Computation η). e÷ ≡ λα :⋆.λk :A→α. e÷ @ α (λx :B.k x)

Proof. Note that e÷ ≡ λα : ⋆.λk :A→α. e÷ α (λx :B.k x), by η-equivalence. By
transitivity, it suffices to show that
λα : ⋆.λk :A→α. e÷ α (λx :B.k x) ≡ λα : ⋆.λk :A→α. e÷ @ α (λx :B.k x)

Intuitively, this is true since @ dynamically behaves exactly like application, only
changing which typing rule is used. Since equivalence is untyped, the semantics of @ as
far as equivalence is concerned is no different than normal application.

Note that by definition of the translation, e÷ must be of the form λα.λk. e′.
The goal follows since
λα : ⋆.λk :A→α. (λα.λk. e′) α (λx :B.k x) ▷∗ λα : ⋆.λk :A→α. e′

and
λα : ⋆.λk :A→α. (λα.λk. e′) @ α (λx :B.k x) ▷∗ λα : ⋆.λk :A→α. e′

Since variables are values in call-by-value, we adjust the statement of Lemma 6.6.2
to cast computations to values. Proving this lemma now requires the new equivalence
rule Rule ≡-Cont for cases involving substitution of terms. Recall that all terms
being translated have an implicit typing derivation, so the omitted types are easy to
reconstruct.

Lemma 6.6.2 (CPSv Compositionality).

1. (K[A/α])+ ≡ K+[A+/α]

2. (K[e/x])+ ≡ K+[e÷ _ id/x]

3. (A[B/α])+ ≡ A+[B+/α]

4. (A[e/x])+ ≡ A+[e÷ _ id/x]

5. (A[B/α])÷ ≡ A÷[B+/α]

6. (A[e/x])÷ ≡ A÷[e÷ _ id/x]

7. (e[A/α])÷ ≡ e÷[A+/α]

8. (e[e′/x])÷ ≡ e÷[e′÷ _ id/x]

Proof. The proof is straightforward by induction on the typing derivation of the expres-
sion t being substituted into.

Part 6 follows immediately by part 3 of the induction hypothesis. Part 7 follows
immediately by part 4 of the induction hypothesis. I give representative cases for the
other parts. In most cases, it suffices to show that the two terms are syntactically
identical.

3 The proofs for the CBN setting only require a specialized instance of this property although the general
form holds.

6.6 call-by-value cps translation 167

Case: Rule * t = U, parts 1 and 2. Trivial, since no free variables appear in U.

Case: Rule Pi-* t = Πx : B.K′

Sub-case: Part 1. We must show that ((Πx : B.K′)[A/α])+ = (Πx : B.K′)+[A+/α].

((Πx : B.K′)[A/α])+

= (Πx : B[A/α].K′[A/α])+ (115)

by definition of substitution

= Πx′ : (B[A/α])+. (K′[A/α])+ (116)

by definition of the translation

= Πx′ : B+[A+/α].K′+[A+/α] (117)

by parts 1 and 3 of the induction hypothesis

= (Πx′ : B+.K′+)[A+/α] (118)

by definition of substitution

= (Πx′ : B.K′)+[A+/α] (119)

by definition of the translation

Sub-case: Part 2. Similar to the previous subcase.

Case: Rule Var

Sub-case: t = α′, part 3. Part 4 is trivial since x is not free in α.

We must show that (α′[A/α])+ = α′[A+/α].

Sub-case: α = α′. It suffices to show that A+ = A+, which is trivial.

Sub-case: α ̸= α′. Trivial.

Sub-case: t = x, part 7 is trivial.

Sub-case: Part 8

Case: Rule Var Part 8, (x[e/x′])÷

We must show (x[e/x′])÷ = x÷[e÷ _ id/x′].

W.l.o.g., assume x = x′.

(x[e/x])÷

= e÷ by definition of substitution (120)

≡ λα.λk. (e÷ @ α λx.k x) by Lemma 6.6.1 (121)

≡ λα.λk. (λx.k x) (e÷ _ id) by Rule ≡-Cont (122)

= (λα.λk. (λx.k x) x)[(e÷ _ id)/x] by substitution (123)

≡ (λα.λk.k x)[(e÷ _ id)/x] by ▷β (124)

168 continuation-passing style

= x÷[(e÷ _ id)/x] by definition of translation (125)

Case: Rule App e1 e2

Sub-case: Part 7

We must show ((e1 e2)[A
′/α′])÷ = (e1 e2)

÷[A′+/α′].

((e1 e2)[A
′/α′])÷

= (e1[A/α
′] e2[A

′/α′])÷ by substitution (126)

= λα : ⋆.λk : ((B[A′/α′])+[(e2[A
′/α′])÷/x])→α.

(e1[A
′/α′])÷ α (λ f :Πx : (A[A′/α′])+. (B[A′/α′])÷.

(e2[A
′/α′])÷ @ α (λx : (A[A′/α′])+. (f x) α k))

by translation (127)

= λα : ⋆.λk : (B+[A′+/α′][e÷2 [A
′+/α′]/x])→α.

e÷1 [A
′+/α′] α (λ f :Πx : A+[A′+/α′].B÷[A′+/α′].

e÷2 [A
′+/α′] @ α (λx : A+[A′+/α′]. (f x) α k))

by IH (3,5,7) (128)

= (λα : ⋆.λk : (B+[e÷2 /x])→α.

e÷1 α (λ f :Πx : A÷.B÷.

e÷2 @ α (λx : A+. (f x) α k)))[A′+/α′]

(129)

by substitution

= (e1 e2)
÷[A′+/α′] by translation (130)

Lemma 6.6.3 (CPSv Preservation of Reduction).

• If Γ ⊢ e : A and e ▷ e′ then e÷ ▷∗ e′ and e′ ≡ e′÷

• If Γ ⊢ A : K and A ▷ A′ then A+ ▷∗ A′ and A′ ≡ A′+

• If Γ ⊢ A : ⋆ and A ▷ A′ then A÷ ▷∗ A′ and A′ ≡ A′÷

Proof. The proof is straightforward by cases on the reduction (▷) relation. I give some
representative cases.

Case: x ▷δ e
′ where x = e′ : A′ ∈ Γ

We must show that x÷ ▷δ e such that e ≡ e′÷ _ id where x÷ = e′÷ _ id : A′+ ∈
Γ+, which follows by the same argument as Sub-Case Part 8 of the x case of

Lemma 6.6.3.

Case: (λ x : _. e1) e2 ▷β e1[e2/x]

We must show that ((λ x : _. e1) e2)
÷ ▷∗ e′ and e′ ≡ (e1[e2/x])

÷.

((λ x : _. e1) e2)

6.6 call-by-value cps translation 169

= (λα.λk.

(λα.λk.k (λx. e÷1)) α (λ f . e÷2 @ α (λx. (f x) α k)))

(131)

by translation

▷∗ (λα.λk. e÷2 @ α (λx. ((λx. e÷1) x) α k)) (132)

by ▷β

▷∗ (λα.λk. e÷2 @ α (λx. e÷1 α k)) (133)

by ▷β

≡ (λα.λk. (λx. e÷1 α k) (e÷2 _ id)) (134)

by Rule ≡-Cont

▷∗ (λα.λk. (e÷1 α k)[(e÷2 _ id)/x]) (135)

by ▷β

= (λα.λk. (e÷1 α k))[(e÷2 _ id)/x] (136)

by substitution

≡ e÷1 [e
÷
2 _ id/x] (137)

by Rule ≡-η

= (e1[e2/x])
÷ (138)

by Lemma 6.6.2

Note that kinds do not take steps in the reduction relation, but can in the conversion
relation.

Lemma 6.6.4 (CPSv Preservation of Conversion).

• If Γ ⊢ e : A and e ▷∗ e′ then e÷ ▷∗ e′ and e′ ≡ e′÷

• If Γ ⊢ A : K and A ▷∗ A′ then A+ ▷∗ A′ and A′ ≡ A′+

• If Γ ⊢ A : ⋆ and A ▷∗ A′ then A÷ ▷∗ A′ and A′ ≡ A′÷

• If Γ ⊢ K : U and K ▷∗ K′ then K+ ▷∗ κ′ and κ′ ≡ K′+

Proof. The proof is straightforward by induction on the derivation of t ▷∗ t′.4

Lemma 6.6.5 (CPSv Preservation of Equivalence).

• If e ≡ e′ then e÷ ≡ e′÷

• If A ≡ A′ then A+ ≡ A′+

• If A ≡ A′ then A÷ ≡ A′÷

• If K ≡ K′ then K+ ≡ K′+

4 In the previous version of this work (Bowman et al., 2018), this proof was incorrectly stated as by
induction on the length of reduction sequences.

170 continuation-passing style

Lemma 6.6.6 (CPSv Type and Well-formedness Preservation).

1. If ⊢ Γ then ⊢ Γ+

2. If Γ ⊢ e : A then Γ+ ⊢ e÷ : A÷

3. If Γ ⊢ A : K then Γ+ ⊢ A+ : K+

4. If Γ ⊢ A : ⋆ then Γ+ ⊢ A÷ : ⋆+

5. If Γ ⊢ K : U then Γ+ ⊢ K+ : U+

Proof. All cases are proven simultaneously by simultaneous induction on the type
derivation and well-formedness derivation. Part 4 follows easily by part 3 in every case,
so we elide its proof. Most cases follow easily from the induction hypotheses.

Case: Rule W-Assum ⊢ Γ, x : A

There are two sub-cases: either A is a type or a kind.

Sub-case: A is a type

We must show ⊢ Γ+,x : A+.

It suffices to show that Γ+ ⊢ A+ : κ, which follows by part 3 of the induction
hypothesis.

Sub-case: A is a kind; similar to the previous case, except the goal follows by part 5 of
the induction hypothesis.

Case: Rule W-Def ⊢ Γ, x = e : A

We give the case for when A is a type; the case when A is a kind is similar.

We must show ⊢ Γ+,x = e÷ A+ id : A+.

It suffices to show that Γ+ ⊢ e÷ A+ id : A+.

By part 2 of the induction hypothesis and definition of the translation, we know
that Γ+ ⊢ e÷ : Πα : ⋆. (A+ →α)→α, easily which implies the goal.

Case: Rule Var Γ ⊢ x : A

We give the case for when A is a type; the case when A is a kind is simple since
the translation on type variables is the identity.

We must show that Γ+ ⊢ λα : ⋆.λk : A+ →α.k x : A÷

By the part 1 of the induction hypothesis, we know Γ+ ⊢ x : A+, which implies
the goal.

Case: Rule App Γ ⊢ e1 e2 : B[e2/x].

There are four sub-cases: e1 can be either a term or a type, and e2 can be either
a term or a type. The interesting case is when both are terms, since this is the
case most affected by the CPS translation.

6.6 call-by-value cps translation 171

Sub-case: CPSv
e-App, both e1 and e2 are terms.

We must show that

λα : ⋆.λk : (B+[(e÷2 A+ id)/x])→α.

e÷1 α (λ f :Πx : A+.B÷. e÷2 @ α (λx : A+. (f x) α k))

has type (B[e2/x])
÷.

Note that,

(B[e2/x])

≡ B÷[e÷2 A+ id/x] by Lemma 6.6.2 (139)

≡ Πα : ⋆. ((B+[e÷2 A+ id/x])→α)→α by translation (140)

Hence it suffices to show that

Γ+,α : ⋆,k : (B+[(e÷2 A+ id)/x])→α ⊢ e÷1 α (λ f :Πx : A+.B÷.

e÷2 @ α (λx : A+.

(f x) α k)

)

: α

By part 2 of the induction hypothesis, we know that

Γ+ ⊢ e÷1 : Πα : ⋆. ((Πx : A+.B÷)→α)→α,

hence it suffices to show that

Γ+,α : ⋆,

k : (B+[(e÷2 A+ id)/x])→α,

f : Πx : A+.B÷

⊢ e÷2 @ α (λx : A+. (f x) α k) : α

By Rule T-Cont, we must show

Γ+,α : ⋆,

k : (B+[(e÷2 A+ id)/x])→α,

f : Πx : A+.B÷,

x = e÷2 A+ id,

⊢ (f x) α k : α

Note that f x : B÷[x/x] and B÷[x/x] = Πα : ⋆. (B+[x/x])→α→α.

But k : (B+[(e÷2 A+ id)/x])→α.

Hence it suffices to show that (B+[x/x]) ≡ (B+[(e÷2 A+ id)/x]), which follows by
δ reduction on x since we have x = e÷2 A+ id by Rule T-Cont.

Note that without the new typing rule, we would be here stuck. However, thanks
to Rule T-Cont, we have the equality that x = e÷2 A+ id, and we are able to
complete the proof.

Sub-case: e1 is a term but e2 is a type A′. This case is similar to the application case of
the CBN translation. It does not require the new typing rule Rule T-Cont, as
the argument is a type, the argument is not CPS translated.

172 continuation-passing style

Sub-case: e1 is a type and e2 is a term. This case is simple; note that the translate
CPSv

A-AppConstr translates the argument e2 into e÷2 A+ id since the term
variable must have a value type.

Sub-case: Both e1 and e2 are types. This case is trivial by the induction hypothesis.

Case: Rule Let Γ ⊢ let x= e1 : A in e2 : B[e1/x]

There are four sub-cases, as in the case of application, and the proofs are nearly
identical. This should be unsurprising, since the new typing rule Rule T-Cont
essentially gives the typing of application of a continuation the same expressive
power as dependent let. I give the case for both e1 and e2 are terms, since this is
the most interesting case.

Sub-case: CPSv
e-Let

We must show that Γ+ ⊢ λα : ⋆.λk : B+[e÷2 A+ id/x]→α.

e÷1 @ α (λx : A+. e÷2 α k)

: (B[e2/x])
÷

By Lemma 6.6.2 and the definition of the translation, it suffices to show

Γ+,α : ⋆,k : B+[e÷2 A+ id/x]→α ⊢ e÷1 @ α (λx : A+. e÷2 α k) : α

By Rule T-Cont, we must show

Γ+,α : ⋆,k : B+[e÷2 A+ id/x]→α,x = e÷1 A+ id ⊢ e÷2 α k : α

Note that by the induction hypothesis,

Γ+,x = e÷1 A+ id ⊢ e÷2 : Πα : ⋆. (B+ →α)→α

Hence by δ-reduction and Rule Conv,

Γ+,x = e÷1 A+ id ⊢ e÷2 : Πα : ⋆. (B+[(e÷ A+ id)/x]→α)→α which implies the
goal.

Case: Rule Pair

Note that the translation of dependent pairs, CPSv
e-Pair, also requires a use of

the rule Rule T-Cont. Since the source language allows pairs of expressions,
but our target language for the CBV translation should not, we must evaluate
both components of the pair before calling the continuation. However, since the
type of second component depends on the value of the first component, we must
apply Rule T-Cont when typing the application of the continuation to the first
component so that we have x1 = e÷1 A+ id when typing the continuation for the
second component.

The proof is similar to the case for Rule App.

Case: Rule Snd The proof is exactly like the case for the CBN translation.

Theorem 6.6.7 (CPSv Type Preservation). If Γ ⊢ e : A then Γ+ ⊢ cps JeK : cpsT JAK.

6.7 related and future work 173

6.6.2 Compiler Correctness

To prove correctness of separate compilation for CPSv, I follow the standard architecture
from Chapter 3 and used in Section 6.5.2. I use the same cross-language relation ≈ on
observation. However, note that in CBV, we should only link with values, so I restrict
closing substitutions γ to values and use the value translation on substitutions γ+. The
proofs follow exactly the same structure as in Section 6.5.2.

Theorem 6.6.8 (Separate Compilation Correctness). If Γ ⊢ e and Γ ⊢ γ, then
eval(γ(e)) ≈ eval(γ+(e÷)).

Corollary 6.6.9 (Whole-Program Correctness). If ⊢ e then eval(e) ≈ eval(e÷).

6.7 Related and Future Work

dependent conditionals In addition to showing that the traditional double-
negation CPS for Σ types is not type preserving, Barthe and Uustalu (2002) demonstrate
an impossibility result for CPS and dependent conditionals. They prove that no type-
correct CPS translation can exist for sums with dependent case. However, careful
inspection of their proof reveals that this impossibility result only applies if the CPS
translation allows unrestricted control effects. As my translation does not allow control
effects, I conjecture it is possible to prove type preservation for dependent conditionals.

The impossibility result by Barthe and Uustalu relies on the ability to implement
call/cc via the CPS translation. Assuming there is a type-preserving CPS translation,
they construct a model of CoC extended with call/cc and sum types (CC∆+) in CoC
with sum types (CoC+). Since CoC+ is consistent, this model proves that CoC∆+

is consistent. However, it is known that CoC∆+ is inconsistent (Coquand, 1989).
Therefore, the type-preserving CPS translation of CoC∆+ cannot exist.

Their proof is valid; however, it is well known that the polymorphic answer type CPS
translation that I use cannot implement call/cc (Ahmed and Blume, 2011). Therefore,
my translation does not give a model of CoC∆+ in CoC+.

I further conjecture that my CPS translation is type preserving for dependent con-
ditionals. Since the original work by Barthe and Uustalu uses sums with dependent
case, I use these instead of the dependent if presented in Chapter 2, but the same core
idea applies to either implementation of dependent conditionals. The typing rule for
dependent case is the following.

Γ, y : A+ B ⊢ A′ : ⋆

Γ ⊢ e : A+ B Γ, x : A ⊢ e1 : A
′[inj1 x/y] Γ, x : B ⊢ e2 : A

′[inj2 x/y]

Γ ⊢ case e of x. e1; x. e2 : A
′[e/y]

174 continuation-passing style

I would extend the CPSn with the following rule.

(case e of x. e1; x. e2)
÷ = λα : ⋆.λk : A′+[e÷/y]→α.

e÷ @ α (λy : A+ + B+. casey of x. (e÷1 α k); x. (e÷2 α k))

Focusing on the first branch of the case above, note that e÷1 α : (A′+[(inj1 x)
÷/y]→

α)→ α, however k : A′+[e÷/y]→α. We need to show that e÷ ≡ (inj1 x)
÷, similar

to the problem with the second projection of dependent pairs. This time, however, to
show e÷ ≡ (inj1 x)

÷ we need to reason about the flow of the underlying value of e÷ into
y and also about the relationship between y and x. Specifically, we need to first use my
new T-Cont rule, which allows us to assume y = e÷ α id. Next, we need to know that
since the case analysis is on the value y, in the first branch y ≡ inj1 x (and similarly
for the other branch), but the problem is that the existing typing rule for dependent
case does not let us assume that.

Nonetheless, I conjecture the same extension I propose in Chapter 4 works to allow
type preservation for CPS. We simply change the typing rule for case to record the
equality e ≡ inj1 x while typing the first branch, and similarly for the second branch,
like in the following rule.

Γ, y : A+ B ⊢ A′ : ⋆ Γ ⊢ e : A+ B

Γ, x : A, p : e = inj1 ⊢ e1 : A
′[inj1 x/y] Γ, x : B, p : e = inj2 ⊢ e2 : A

′[inj2 x/y]

Γ ⊢ case e of x. e1; x. e2 : A
′[e/y]

With this modification in the target language CoCk, we can type check the above
translation of dependent case. I have not yet shown the consistency of the target
language CoCk once it is extended with this modified typing rule for dependent case,
primarily due to problems scaling the CPS translation to higher universes, which I
discuss next, and further in Chapter 8.

higher universes It is unclear how to scale this CPS translation to higher universes.
In this work, I have a single impredicative universe ⋆, and the locally polymorphic answer
type α lives in that universe. With an infinite hierarchy, it is not clear what the universe
of α should be. Furthermore, the translation relies on impredicativity in ⋆. We can
only use impredicativity at one universe level and the locally polymorphic answer-type
translation does not seem possible in the context of predicative polymorphism, so it’s
unclear how to adapt our translation to the infinite predicative hierarchy.

I initially conjectured that the right solution for handling universes was universe
polymorphism (Sozeau and Tabareau, 2014). My thought was that since the type is
provided by the calling context, it seems sensible that the calling context should also
provide the universe. Then, we could modify the type translation to be Π ℓ :Level.Πα :

Type ℓ. (A
+ →α)→α. However, one of the authors of Sozeau and Tabareau (Sozeau)

suggested to me that this would not work.5

5 Personal communication. Jan. 2018.

6.7 related and future work 175

control operators and dependent types This chapter explicitly avoids control
effects and dependent types to focus on type preservation. However, in general, we
may want to combine the two. Herbelin (2005) shows that unrestricted use of call/cc
and throw in a language with Σ types and equality leads to an inconsistent system.
The inconsistency is caused by type dependency on terms involving control effects.
Herbelin (2012) solves the inconsistency by constraining types to depend only on
negative-elimination-free (NEF) terms, which are free of effects. This restriction makes
dependent types compatible with classical reasoning enabled by the control operators.

After the initial publication of the work in this chapter (Bowman et al., 2018), Cong
and Asai (2018a) extended the CPS translation to control effects in the NEF fragment,
and use this locally polymorphic translation to disallow control effects for terms that
use unsafe dependencies.

This is similar to recent work by Miquey (2017) uses the NEF restriction to soundly
extend the λ̄µµ̃-calculus of Curien and Herbelin (2000), a computational classic calculus,
with dependent types. He then extends the language with delimited continuations, and
defines a type-preserving CPS to a standard intuitionistic dependent type theory. By
comparison, our source language CoCD is effect-free, therefore we do not need the NEF
condition to restrict dependency. My use of the identity function serves a similar role
to their delimited continuations—allowing local evaluation of a CPS’d computation.

effects and dependent types Pédrot and Tabareau (2017) define the weaning
translation, a monadic translation for adding effects to dependent type theory. The
weaning translation allows us to represent self-algebraic monads, i.e., monads whose
algebras’ universe itself forms an algebra, such as exception and non-determinism
monads. However, it does not apply to the standard continuation monad, which is not
self-algebraic. The paper extends the translation to inductive types, with a restricted
form of dependent elimination. Full dependent elimination can be implemented only for
terms whose type is first-order, and this comes at the cost of inconsistency, although
one can recover consistency by requiring that every inductive term be parametric. My
translation does not lead to inconsistency, and requires no restrictions on the type to
be translated. However, my translation appears to impose the self-algebraic structure
on the computation types, and my use of parametricity to cast computations to values
is similar to their parametricity restriction.

internalizing parametricity My work internalizes a specific free theorem, but
ongoing work focuses on how to internalize parametricity more generally in a dependent
type theory. Krishnaswami and Dreyer (2013) develop a technique for adding new rules
to the extensional CoC. They present a logical relation for terms that are not syntactically
well typed, but are semantically well behaved and equivalent at a particular type. Using
this logical relation, they prove the consistency of several extensions to extensional
CoC, including sum types, dependent records, and natural numbers. Bernardy et al.
(2012); Keller and Lasson (2012) give translations from one dependent type theory
into another that yield a parametric model of the original theory. These essentially

176 continuation-passing style

encode the logical relation in the target type theory, similar to the approach we took in
Section 6.4.1 (Meta-theory). Recent work by Nuyts et al. (2017) develops a theory that
internalizes parametricity, including the important concept of identity extension, and
gives a thorough comparison of the literature. By building a target language based on
one of these systems, it’s possible that we could eliminate the rule ≡-Cont as an axiom
and instead derive it internally. This could allow the translation to scale to theories
that are orthogonal to parametricity.

pervasive translation In this chapter, I only CPS translate terms, i.e., run-time
expressions. However, other work (Barthe et al., 2001) studies pervasive translation
of PTSs. A pervasive CPS translation internalizes evaluation order for all expressions:
terms, types, and kinds. This is necessary in general, since in a language such as Coq,
we cannot easily distinguish between terms, types, and kinds. A pervasive translation
may be necessary to scale type-preserving translation to higher universes and more
type-level computation. The translations in Chapter 4 and Chapter 5 both use pervasive
translation for this reason.

A pervasive CPS translation is also used in a partial solution to the Barendregt-
Geuvers-Klop conjecture (Geuvers, 1993) which essentially states that every weakly
normalizing PTS is also strongly normalizing. The conjecture has been solved for
non-dependent PTSs, but the solution for dependent PTSs remains open.

7 PA R A M E T R I C C LO S U R E C O N V E R S I O N

In this chapter, I develop a parametric closure conversion translation, i.e., a closure
conversion translation that does not add primitive closures to the target language
but instead encodes them using existential types. As discussed in Chapter 5, this
translation is not suitable in all dependent type theories, since it relies on parametricity
and impredicativity. However, parametric closure conversion has some advantages
over abstract closure conversion which makes studying this translation worthwhile. In
particular, known optimizations for recursive closures that avoid rebuilding the closure
every time through the loop use parametric closure conversion (Minamide et al., 1996;
Morrisett and Harper, 1998). We can develop a parametric closure conversion if we
admit impredicativity and parametricity, and avoid higher universes.

I begin with a review of the problems with parametric closure conversion discussed
in Chapter 5. To accommodate the restrictions, the parametric closure conversion
translation is defined on CoCD, the same source language used in Chapter 6, and a
restriction of ECCD presented in Chapter 2. I then design a target language, CoCCC ,
before developing the full translation, and proofs of type preservation and compiler
correctness.

Typographical Note. In this chapter, I typeset the source language, CoCD, in a blue,
non-bold, sans-serif font, and the target language, CoCCC , in a bold, red, serif font.

7.1 Main Ideas

As review, recall from Chapter 5 the problem with preserving dependent types through
closure conversion using the existential types. I reproduce the example from Chapter 5
below.

λA : ⋆. λ x : A. x : ΠA : ⋆.Πx : A.A

Here we have the polymorphic identity function, where the first argument A, a type,
is free in the second function and is used in the type of the function. The standard
parametric closure conversion translation of this example is below, reproduced from
Chapter 5.

⟨⟨λ (n1 : 1,A : Prop). ⟨⟨λ (n2 : Prop × 1,x : fst n2).x, ⟨A, ⟨⟩⟩⟩⟩, ⟨⟩⟩⟩ :

∃α1 :Prop . (Π (n1 : α1,A : Prop).

∃α2 :Type . (Π (n2 : α2,x : fst n2). fst n2)×α2) ×α1

177

178 parametric closure conversion

Unfortunately, while the code is well-typed, the closure is not. Recall that the code of
the inner closure has type Π (n2 : α2,x : fst n2). fst n2. In the type of the closure, this
projection fst n2 is not well-typed since the type of the environment is hidden—fst n2

is invalid when n2 has type α2.
A similar problem presents itself in the type-preserving closure conversion of System F

by Minamide et al. (1996). In that work, type variables in System F are included in the
environment, introducing the same problem as above of closures not being well-typed.
In subsequent work, Morrisett et al. (1999) observed that in System F type variables
can be considered computationally irrelevant (and will, therefore, be erased before
runtime). This justified a simple translation where closure-converted functions were
allowed to have free type (though not term) variables. In dependently typed languages,
this solution does not apply since term variables can also appear in types.

As before in Chapter 5, and in the work of Minamide et al. (1996), we have a dilemma.
We must close the type of code since code must be closed after closure conversion, but
we must also leave the type of the closure open since we cannot project from the hidden
environment. The challenge is to unify the closed type of the code and the open type of
the closure.

In this chapter, I adapt the parametric closure conversion of Minamide et al. (1996)
to dependent types. Previously, in Chapter 5, I essentially axiomatize the target
language with closures, adapting the abstract closure conversion of Minamide et al.
(1996) to dependent types. The primitive closure captures exactly the above needs.
I use existential types to encode closures, and use a form of singleton types, called
translucent types, to encode an equality between the hidden environment and the free
variables. The translucent type unifies the hidden environment with the type variables,
thus unifying the closed type of the closure and the open type of the code.

Below is the nearly complete translation to demonstrate how this unifies the two
seemingly different types.Notice that this type

translation relies on
impredicativity, since the
existential type must be in
the same universe as the

type variable α over
which it quantifies.

J(Πx : A.B)K = ∃α : ⋆. (α×Coden : α,x : A+. JBK)
J(λ x : A. e)K = pack ⟨⟨⟨xi . . .⟩, λ (n : A′,x : let ⟨xi . . .⟩= n in JAK).

let ⟨xi . . .⟩= n in JeK⟩,A′⟩
whereA′ = Σxi : JAiK . . .

xi : Ai . . . are the free variables of e and A

This translation uses the code type as in Chapter 5 to distinguish closed code from
closures, but lacks a Π-type since closures are encoded using existential types. Using
this translation, we need to complete the following derivation in order to prove type
preservation. As we will see, we cannot complete the derivation for the standard
existential type translation.

stuck

n : A′,x : A ⊢ let ⟨xi . . .⟩= n in e : JBK

Γ ⊢ λ (n : A′,x : A). let ⟨xi . . .⟩= n in e : Coden : A′,x : JAK . JBK

7.1 main ideas 179

I focus on showing the code is well-typed at the translated type, since that is where
the problem arises. Notice that JBK has free variables in the type. To complete this
derivation, we must show let ⟨xi . . .⟩= n in e : JBK. However, by the typing rule for
dependent let, we can only conclude let ⟨xi . . .⟩ = n in e : JBK[πi n/xi]. We cannot
complete the derivation and this translation is not type preserving because dependent
types allow types to depend on free term variables from the environment.

However, intuitively, it should be the case that JBK ≡ JBK[πi n/xi]. By parametricity,
we know n will only get replaced by exactly the environment generated by our compiler.
Since the compiler generates the environment n = ⟨xi . . .⟩, this substitution is essentially This is why we rely on

parametricity, and where
the type preservation
argument fails if we
cannot have parametricity
in the target language.

a no-op, replacing xi by xi. To develop a type-preserving translation, we need to find a
way to internalize this reasoning so that the type system can decide this equivalence.

To solve this, I use a form of singleton types called translucent types (Harper and
Lillibridge, 1994; Lillibridge, 1997) to encode this equivalence in a type. The translucent
function type1, written e′ ⇒B, represents a function (or in our case, code) that must
be applied to (an expression equivalent to) the term e′ and produces something of type
B. The translucent function type rules are the following. Essentially, any function f can
be statically specialized to a particular argument e′. This has the effect of instantiating
the dependent function type before the function is actually applied. After that, it must
be dynamically applied to that argument.

Γ ⊢ f : Πn :A′.B Γ ⊢ e′ : A′

Γ ⊢ f : e′ ⇒B[e′/n]
TrFun

Γ ⊢ f : e′ ⇒B

Γ ⊢ f e′ : B
TrApp

To encode closures, we existentially quantify over the value of the environment n, in
addition to the type of the environment α, leveraging dependent types. Then we describe
type of the code f using a translucent type (n⇒Codex : JAK . JsBK), which requires
that the code be applied to exactly the environment n and an arbitrary argument x of
type JAK, and produces an output of type JBK. The translation becomes the following.

J(Πx : A.B)K = ∃ (α : ⋆,n : α, f : (n⇒Codex : JAK . JBK)).
J(λ x : A. e)K = pack ⟨A′, ⟨xi . . .⟩,λ (n : A′,x : let ⟨xi . . .⟩= n in JAK).

let ⟨xi . . .⟩= n in JeK⟩
whereA′ = Σ (xi : JAiK . . .)

xi : Ai . . . are the free variables of e and A

Now, the environment is still hidden from the client of the closure, but when checking
that the closure is well-typed, the variable n is replaced by the value of the closure. Then
all we need is to prove JBK ≡ JBK[πi ⟨xi . . .⟩/xi], which is trivial. This was essentially
the insight in Minamide et al. (1996), although in a simpler setting.

1 This particular presentation of translucent function types is due to Minamide et al. (1996).

180 parametric closure conversion

Universes U ::= ⋆ | □

Expressions e,A,B ::= x | ⋆ | Code (n : A′,x : A).B
| e⇒Coden : A′.B | λ (n : A′,x : A). e | ef e1 e2
| Σx :A.B | ⟨e, e⟩asΣx :A.B | fst e | snde
| let x= e :Aine | ∃ (α : A,n : A′).B
| pack ⟨A, e′, e⟩as∃ (α : A,n : A′).B
| unpack ⟨x,x,x⟩= e in e | · · ·

Environments Γ ::= · | Γ,x : A | Γ,x = e : A

Figure 7.1: CoCCC Syntax (excerpts)

As we descend into the pack expression, the existentially quantified environment
flows into the type and the translucent type yields an additional equivalence. The
completed derivation is the following.

...
Γ ⊢ λ (n : A′,x : JAK). e′ : Coden : A′,x : JAK . JBK[πi n/xi]

trivial, since env = ⟨xi . . .⟩
JBK[πi n/xi][env/n] ≡ JBK

... Γ ⊢ λ (n : A′,x : JAK). let ⟨xi . . .⟩= n in JeK : env ⇒Codex : JAK . JBK
Γ ⊢ pack ⟨A′, env,λ (n : A′,x : JAK). e′⟩ : ∃α : ⋆,n : α, f : (n⇒Codex : JAK .). JBK

While the translation is similar in essence to Minamide et al. (1996), dependent types
introduce additional difficulties. The above translation disrupts the syntactic reasoning
about functions that the type system relies on, in particular, η-equivalence of functions.

To preserve η-equivalence, as in Chapter 5, I develop a principle of equivalence
for closures. Essentially, closures are equivalent when we compute equivalent results
under equivalent environments. This gives us an η-principle for closures that extends
the η-principle for functions to include the environment. This principle also relies on
parametricity to justify.

7.2 Parametric Closure Conversion IL

In Figure 7.1, I present the syntax of CoCCC , a dependently typed closure con-
verted language based on CoCD. As in Chapter 5, closed code is written as λ (n :

A′,x : A). e and has type Code (n : A′,x : A).B. All code takes two argu-
ments, which are intuitively the environment n and the original argument x. I
add 2-ary existential types ∃ (α : A,n : A′).B to encode closures, with the in-
troduction form pack ⟨A, e′, e⟩as∃ (α : A,n : A′).B and the elimination form
unpack ⟨α,n, f⟩ = e′ in e. As with dependent pairs, I omit the type annotation on
pack for brevity, as in pack ⟨A, e′, e⟩. Finally, I add a variant of translucent function

7.2 parametric closure conversion il 181

Γ ⊢ e : A

· · ·
Γ ⊢ B : ⋆

Γ ⊢ Code (x′ : A′,x : A).B : ⋆
Code-*

Γ ⊢ e : A′ Γ ⊢ Code (x′ : A′,x : A).B : U

Γ ⊢ e⇒Codex : A.B : U
⇒

Γ ⊢ e : Code (x′ : A′,x : A).B Γ ⊢ e′ : A′

Γ ⊢ e : e′ ⇒Code (x : A[e′/x′]).B[e′/x′]
TrFun

·,x′ : A′,x : A ⊢ e : B

Γ ⊢ λ (x′ : A′,x : A). e : Codex′ : A′,x : A.B
Code

Γ ⊢ f : e′ ⇒Codex : A.B Γ ⊢ e : A

Γ ⊢ f e′ e : B[e/x]
TrApp

Γ ⊢ A : U Γ,x : A ⊢ A′ : U′ Γ,x : A,x′ : A′ ⊢ B : ⋆

Γ ⊢ ∃ (x : A,x′ : A′).B : ⋆
Exist

Γ ⊢ ∃ (x : A,x′ : A′).B : U
Γ ⊢ e : A Γ ⊢ e′ : A′[e/x] Γ ⊢ eb : B[e/x][e′/x′]

Γ ⊢ pack ⟨e, e′, eb⟩as∃ (x : A,x′ : A′).B : ∃ (x : A,x′ : A′).B
Pack

Γ ⊢ e : ∃ (x : A,x′ : A′).B
Γ,x : A,x′ : A′,xb : B ⊢ e′ : B′ Γ ⊢ B′ : U

Γ ⊢ unpack ⟨x,x′,xb⟩= e in e′ : B′ Unpack

Figure 7.2: CoCCC Typing (excerpts)

types, specialized to code types, written e⇒Codex : A.B. Since all code is 2-ary, the
translucent function type is specialized to only curry code types. This type represents a
code that can only be applied to the term e as its first argument, and something of type
A as its second argument, and results in a term of the type B. Note that this type is
not dependent in the usual sense on its first argument—i.e., there is no name bound for
the term e—since e has already been substituted into the types A and B. We could simplify the type

system by encoding 2-ary
constructs such as code
and pack the same way
we encode n-ary
dependent pairs.
However, this complicates
η-equivalence for closures,
which relies on the
canonical forms.

In Figure 7.2, I define the key typing rules for the target language; the complete
definition is given in Appendix J. I explain translucent function types in detail shortly.
I add the standard rules for existential types. Notice that existential types are impred-
icative (Rule Exist); unlike dependent pairs (strong dependent pairs with projection),
existential types (weak dependent pairs with pattern matching) are consistent with
impredicativity. Furthermore, impredicativity is necessary for expressing the type of

182 parametric closure conversion

Γ ⊢ e▷ e′

...
unpack ⟨x,x′,xb⟩= pack ⟨e, e′, eb⟩ in e2 ▷∃ e2[⟨e, e′, eb⟩/⟨x,x′,xb⟩]

Figure 7.3: CoCCC Reduction (excerpts)

closures. Rule TrFun is the introduction rule for the translucent type. Intuitively,
any function can be statically specialized to a specific argument. To ascribe a term
a translucent type, we must check that the specific argument is of the same type as
expected by the code. Rule TrApp eliminates a translucent type. When applying code
ascribed a translucent type, we check that the first argument is equal to the argument
specified by the translucent type.

As an example of the translucent type, consider the following example in which we
ascribe two different types to the polymorphic identity function.

id : Code (A : ⋆,x : A).A

id : bool⇒Codex : bool.bool

In the first case, we ascribe id the type Code (A : ⋆,a : A).A. This is the standard
type, compiled to a code type. In the second case, we ascribe id a translucent type.
Notice that we do not actually apply id to any arguments; we specialize only its type.
By ascribing it a translucent type, we know statically that when this function is applied
to the type bool, it accepts and return a bool. This gives us the ability to reason
about the result of applying id before applying it. As a result, after ascribing this type
we must only apply id to bool, or the additional static reasoning would not be valid.

In Figure 7.3 I give the new reduction rule for existential types. The rule is completely
standard. Translucent types do not introduce new dynamic semantics.

Digression. If we had recursion, and therefore recursive closures, we would need a
non-standard reduction rule for unpack to ensure normalization. In the same way that
recursive functions in Coq only reduce when applied to a constant, a recursive closure
should only reduce when unpacked and applied to a constant.

In Figure 7.4 I present new η-equivalence rules for closures. These new rules are the
result of closure converting the η-equivalence rules from CoCD.

This η-equivalence is specialized to closures and necessarily differs from the standard
η-equivalence for existential types. To see why, consider the normal η-equivalence for
existential types.

C[e] ≡ unpack ⟨α,x⟩= e inC[pack ⟨x, α⟩]

This states that the expression e in some arbitrary program context (a program with
a hole, or single linear variable, [·]) C is equivalent to unpacking e and executing C

7.2 parametric closure conversion il 183

Γ ⊢ e≡ e′

· · ·

Γ ⊢ e1 ▷
∗ pack ⟨A′, e′,λ (n : A′,x : A). e′1⟩

Γ ⊢ e2 ▷
∗ e′2 Γ,x : A[e′/n] ⊢ e′1[e

′/n]≡ unpack ⟨α,n, f⟩= e′2 in f n x

Γ ⊢ e1 ≡ e2
≡-η1

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ pack ⟨A′, e′,λ (n : A′,x : A). e′2⟩
Γ,x : A[e′/n] ⊢ unpack ⟨α,n, f⟩= e′1 in f n x≡ e′2[e

′/n]

Γ ⊢ e1 ≡ e2
≡-η2

Figure 7.4: CoCCC Equivalence (excerpts)

with the canonical form of the existential type pack ⟨x, α⟩. In a closure-converted
language, we can’t use this rule, since C may be code λy : A. [·], and we can’t push this
context under the scope of the free variables α,x. In general, after closure conversion
we cannot introduce references to free variables in arbitrary contexts. Since the normal
η-equivalence for existential types introduces references to free variables in an arbitrary
context, it is not valid in our closure-converted language.

7.2.1 Meta-Theory

As the target language is relatively standard, I do not prove any meta-theoretic results
about CoCCC ; I sketch most of a model below. I conjecture that CoCCC is consistent and
type safe, strongly normalizing, and satisfies subject reduction. However, decidability is
an open question; the presentation of translucent types is not syntax directed and likely
requires changes to ensure decidability.

Both translucent types and existential types are easily modeled in CIC. Existential
types are included in Coq’s standard library, so I focus on translucent types. I give an
implementation in Appendix J, but give an intuitive presentation here.

The translucent type is easily modeled with the identity type as follows.

Je⇒BK◦ def
= Πx : JAK◦. x = JeK◦ → JBK◦

where e : A

Here, I write JeK◦ to give a model of e in ECCD extended with existential types and
the identity type. The translucent type is modeled as a function that demands some
argument x of type A and a proof that x is equal to e, using the identity type.

184 parametric closure conversion

JeK = e where Γ ⊢ e : A

JxK def
= x

J⋆K def
= ⋆

JΠx : A.BK def
= ∃ (α : ⋆,n : α).n⇒Codex : A.B

Jλ x : A. eK def
= pack ⟨Σ (xi : JAiK . . .), ⟨xi . . .⟩,

(λ (n : Σ (xi : JAiK . . .),x : let ⟨xi . . .⟩= n in JAK).
let ⟨xi . . .⟩= n in JeK)⟩

xi : Ai . . . = FV(λ x : A. e,Πx : A.B, Γ)

Je1 e2K
def
= unpack ⟨α,n, f⟩= Je1K in f n Je2K

Jlet x= e : A in e′K def
= let x= JeK : JAK in Je′K
...

Figure 7.5: Parametric Closure Conversion from CoCD to CoCCC (excerpts)

The introduction and elimination forms are modeled as the following.

Je : e′ ⇒BK◦ def
= λ (x : JAK◦ , y : x = Je′K◦). case y of refl. JeK◦ x

Je e′K◦ def
= JeK◦ Je′K◦ refl

where e : e′ ⇒B

The introduction form is modeled as a function of two arguments, which pattern matches
on the equality proof and applies the underlying function e to the argument x. The
elimination form simply applies the translucent function e to its argument e′ and the
proof of equality refl.

The new η-equivalence for closures is the only non-standard rule and constructing
a model of the rule requires a parametricity argument that I leave for future work.
While essentially based on the η-principle for existential types, it is not exactly the
same. It should be similar in some ways to the model for the CPS target language in
Chapter 6. That is, a model should be possible using the parametricity translation
into the extensional Calculus of Constructions. However, it is unclear how to formalize
the relation between two environments of type α. Intuitively, we must allow any two
environments, with potentially different sets of free variables, to be related as long as
the codes are related after inlining the environments into the codes.

7.3 Parametric Closure Conversion Translation

In Figure 7.5, I present the key parametric closure-conversion rules. As in Chapter 5,
formally, this translation must be defined on typing derivations, but for brevity I present
the key translation rules on syntax. I define the complete translation in Appendix K

7.3 parametric closure conversion translation 185

Figure K.3 and Figure K.4. The translation of dependent function types is the key to
understanding our translation. As described in Section 7.1, the idea in this translation
is to translate dependent functions of type Πx : A.B to existential packages of type
∃α : ⋆,n : α. (n⇒Codex : A.B). In the translation of types, we leave type variables
free in the type of the closure–i.e., in A and B–but we leave them free under a translucent
type (n ⇒ Codex : A.B) that describes the new closed Code. In the translation
of functions, Jλ x : A. eK, we produce closed type annotations that are only valid with
respect to the environment we produce in the closure. When we check that the closure
produced by the translation has the type produced by the translation, i.e., when showing
type preservation for functions, the translucent type introduces an equality n = env

into the type, unifying the closed type of the closure and the open type of the code.

The rest of the translation is straightforward. We translate each ⋆ to ⋆. Similarly, we
translate names x into x. All omitted rules are structural.

7.3.1 Type Preservation

In this section, I show that parametric closure-conversion is type preserving. I follow
the standard architecture presented in Chapter 3.

Recall from Section 7.1 that the type preservation argument relies on an equivalence
between a type A with free variables xi . . . and the same type with those free variables
projected out of the closure’s environment ⟨xi . . .⟩, i.e., A ≡ A[⟨xi . . .⟩/⟨xi . . .⟩]. Since
the environment is always generated from the same free variables, this substitution is
essentially a no-op. This argument is used in several proofs. I formalize this equivalence
in Lemma 7.3.1. The proof is a straightforward computation.

Lemma 7.3.1. Γ,n = ⟨xi . . .⟩ : A′ ⊢ (let ⟨xi . . .⟩= n in e)≡ e.

Proof. let ⟨xi . . .⟩= n in e ▷δ let ⟨xi . . .⟩= ⟨xi . . .⟩ in e ▷n
ζ e[xi/xi] = e

Next I prove compositionality. As in Chapter 5, this is where we use most of the
complexity of the target language, such as translucent types and the η-principle for
closures. I go into detail for the key proof cases, i.e., those for the encoding of closures.

Lemma 7.3.2 (Compositionality). J(e[e′/x])K ≡ JeK[Je′K/x]

Proof. By cases on structure of e. Omitted cases are straightforward.

Case: e = Πy : A.B

186 parametric closure conversion

Show J((Πy : A.B)[e′/x])K ≡ J(Πy : A.B)K[Je′K/x].
q
((Πy : A.B)[e′/x])

y

=
q
(Πy : A[e′/x].B[e′/x])

y
(141)

by substitution

= ∃ (α : ⋆,n : α).n⇒Codey : JAK[
q
e′

y
/x]. JBK[

q
e′

y
/x] (142)

by definition of translation

= (∃ (α : ⋆,n : α).n⇒Codey : JAK . JBK)[
q
e′

y
/x] (143)

by substitution

= J(Πy : A.B)K[
q
e′

y
/x] (144)

Case: e = λ x : A. e1.
This case essentially asks “when are two closures equivalent?”, since substitution
on a function changes its closure by changing the environment. The η rules for
closures allows us to answer that question. When substituting into a closure before
translation, we produce a closure whose environment contains only free variables.
When substituting into a closure after translation, we can put a (potentially open)
term into the environment of a closure.

pL = J(e[e′/x])K = pack ⟨Σ′
env, env

′,λn : Σ′
env,y : AL.

let env′ = n in Je1K[Je′K/x]⟩
where env′ = ⟨x0, . . . ,xi−1,xi+1, . . . ,xm,xm+1, . . . ,xn⟩

x0, . . . ,xi−1,x,xi+1, . . . ,xm = fv(JeK)
xm+1, . . . ,xn = fv(Je′K)
AL = let env′ = n in JAK

pR = JeK[Je′K/x] = pack ⟨Σenv, env,λn : Σenv,y : AR. let env = n in JeK⟩
where env = ⟨x0, . . . ,xi−1, Je′K ,xi+1, . . . ,xm⟩

x0, . . . ,xi−1,x,xi+1, . . . ,xm = fv(JtK)
tR = let env = n in JAK

Note that in pL, the environment env′ is missing x between xi−1 and xi+1 and
contains the free variables from Je′K. In pR, the environment env contains Je′K
in place of x. To show that pL ≡ pR, it suffices by Rule CC-≡-η1 to show
JeK[Je′K/x] ≡ unpack ⟨α,n, f⟩= pR in f n y. Observe that

unpack ⟨α,n, f⟩= pR in f n y

▷∗ let env = env in JeK
▷ζ let ⟨x0, . . . ,xi−1,xi+1, . . . ,xm⟩= ⟨x0, . . . ,xi−1,xi+1, . . . ,xm⟩ in JeK[Je′K/x]
≡ JeK[Je′K/x] by Lemma 7.3.1.

7.3 parametric closure conversion translation 187

Now we can show that the translation preserves reduction up to equivalence, i.e.,
that the translation e of a term e weakly simulates one step of reduction of e. Since
Lemma 7.3.2 is in terms of definitional equivalence, I show weak simulation up to
definitional equivalence. I give the key cases.

Lemma 7.3.3 (Preservation of Reduction). If Γ ⊢ e ▷x e′ then JΓK ⊢ JeK ▷∗ e and
e ≡ Je′K

Proof. By cases on the judgment e ▷x e′. All cases are straightforward by computation
and Lemma 7.3.2.

Case: x ▷δ e
′ where x = e′ ∈ Γ

Suffices to show that x ▷δ Je′K where x = Je′K ∈ Γ, which follows by definition of
⊢ Γ⇝ Γ.

Case: (λ x : A. e1) e2 ▷β e1[e2/x]

We must show that J((λ x : A. e1) e2)K ▷∗ e′ ≡ J(e1[e2/x])K.

J((λ x : A. e1) e2)K

= unpack ⟨α,n, f⟩= (pack ⟨A′, ⟨xi . . .⟩,λ (n : A′,x : A).

let ⟨xi . . .⟩= n in Je1K⟩)
in

f n Je2K

(145)

▷∃ (λ (n : A′,x : A). let ⟨xi . . .⟩= n in Je1K) ⟨xi . . .⟩ Je2K (146)

▷β let ⟨xi . . .⟩= ⟨xi . . .⟩ in Je1K[Je2K/x] (147)

≡ Je1K[Je2K/x] (148)

by Lemma 7.3.1

≡ J(e1[e2/x])K (149)

by Lemma 7.3.2 (Compositionality)

Lemma 7.3.4 (Preservation of Conversion). If Γ ⊢ e ▷∗ e′ then JΓK ⊢ JeK ▷∗ e and
JΓK ⊢ e≡ Je′K.

Proof. The proof is by induction on the derivation of Γ ⊢ e▷∗ e′. The proof is entirely
uninteresting, following essentially from Lemma 7.3.3 (Preservation of Reduction).

To show that equivalence is preserved, we require η-equivalence for closures in the
case of η-equivalent source terms.

Lemma 7.3.5 (Preservation of Equivalence). If Γ ⊢ e≡ e′, then JΓK ⊢ JeK ≡ e′+.

Proof. By induction on the e ≡ e′ judgment.

188 parametric closure conversion

Case: Rule ≡ By assumption, e ▷∗ e1 and e′ ▷∗ e1.

By Lemma 7.3.4, JeK ▷∗ e and e ≡ Je1K, and similarly. Je′K ▷∗ e′ and e′ ≡ Je1K.
The result follows by symmetry and transitivity of ≡.

Case: Rule ≡-η1 By assumption, e ▷∗ λ x : t. e1, e′ ▷∗ e2 and e1 ≡ e2 x.

Must show JeK ≡ Je′K.

By Lemma 7.3.4 (Preservation of Conversion), JeK ▷∗ e and e ≡ Jλ x : t. e1K, and
similarly Je′K ▷∗ e′ and e′ ≡ Je2K.

By transitivity, it suffices to show Jλ x : t. e1K ≡ Je2K.

By Rule ≡-η1 and Lemma 7.3.1, it suffices to show

Je1K ≡ unpack ⟨α,n, f⟩= Je2K in f n x.

Note that unpack ⟨α,n, f⟩= Je2K in f n x is exactly J(e2 x)K, so the result follows
by the induction hypothesis.

Case: Rule ≡-η2 Symmetric to the previous case; requires Rule ≡-η2 instead of
Rule ≡-η1.

Now we can prove the central lemma necessary for showing type preservation.

Lemma 7.3.6 (Type and Well-formedness Preservation).

1. If Γ ⊢ then ⊢ JΓK

2. If Γ ⊢ e : A then JΓK ⊢ JeK : JAK

Proof. Parts 1 and 2 proven by simultaneous induction on the mutually defined judg-
ments Γ ⊢ and Γ ⊢ e : A.

Part 1 follows easily by induction and part 2. I give the key cases for part 2.

Case: Rule *, follows by part 1.

Case: Rule Var, follows by part 1.

Case: Rule Pi-*

We have that Γ ⊢ Πx : A.B : ⋆.

We must show that Γ ⊢ ∃ (α : ⋆,n : α).n⇒Codex : JAK . JBK : ⋆

By Rule Exist, it suffices to show Γ,α : ⋆,n : α ⊢ (n⇒Codex : JAK . JBK) : ⋆.

By Rule ⇒, it suffices to show Γ,α : ⋆,n : α ⊢ Coden′ : α,x : JAK . JBK : ⋆

By Rule Code-*, it suffices to show Γ,α : ⋆,n : α,n′ : α,x : JAK ⊢ JBK : ⋆, which
follows by the induction hypothesis applied to Γ, x : A ⊢ B : ⋆.

7.3 parametric closure conversion translation 189

Case: Rule Lam

We must show that Γ ⊢ J(λ x : A. e)K : J(Πx : A.B)K

The key to this proof is to show that

Γ ⊢ (λ (n : A′,x : let env = n in JAK). let env = n in JeK) : env ⇒ Codex :

JAK . JBK

where env = ⟨x0, · · ·xn⟩
A′ = Σ (x0 : A0, . . . ,xn : An)

Note that by definition, Γ ⊢ env : A′.

Note also that Γ,n = env : A′ ⊢ let env = n in JAK ≡ JAK, by Lemma 7.3.1.

So, by Rule Conv and Rule ⇒, it suffices to show:

Γ ⊢ λ (n : A′,x : let env = n in JAK). let env = n in JeK :
Code (n : A′,x : let env = n in JAK). let env = n in JBK

By Rule Code and Rule Let, it suffices to show that

n : A′,x : let env = n in JAK ,x0 = π0 n : t0, . . . ,xn = πn n : An ⊢ JeK : JBK

Note that by the induction hypothesis we know that Γ,x : JAK ⊢ JeK : JBK.

The goal follows since, by definition of the translation, the free variables of JeK
are exactly x0,xn, and all other variables of Γ are not referenced in JeK or JBK.

Case: Rule App

We must show that Γ ⊢ J(e e′)K : J(B[e′/x])K

That is, we must show

Γ ⊢ unpack ⟨α,n, f⟩= JeK in f n Je′K : J(B[e′/x])K

By Rule Unpack, it suffices to show, (1):

Γ ⊢ JeK : ∃α : ⋆,n : α.n⇒Codex : JAK . JBK,

which follows immediately from the induction hypothesis, and (2):

Γ,α : ⋆,n : α, f : n⇒Codex : JAK . JBK ⊢ f n Je′K : J(B[e′/x])K

By Rule Conv and Lemma 7.3.2 (Compositionality), it suffices to show

Γ,α : ⋆,n : α, f : n⇒Codex : JAK . JBK ⊢ f n Je′K : JBK[Je′K/x]

By Rule TrApp, it suffices to show that

Γ,α : ⋆,n : α,y : n ⇒ Codex : JAK . JBK ⊢ Je′K : JAK, which follows by the
induction hypothesis.

Corollary 7.3.7 (Type Preservation). If Γ ⊢ e : A then JΓK ⊢ JeK : JAK.

190 parametric closure conversion

7.3.2 Compiler Correctness

The proof of correctness with respect to separate compilation follows exactly the pattern
in Chapter 3. I define linking by substitution, as usual, and define observations and
whole program as evaluation to booleans.

Theorem 7.3.8 (Separate Compilation Correctness). If Γ ⊢ e, Γ ⊢ γ, JΓK ⊢ γ, and
JγK ≡ γ then eval(γ(e)) ≈ eval(γ(JeK))

Proof. Since ≡ on observations implies ≈, it suffices to show eval(γ(e)) ≡ eval(γ(JeK)).
Since the translation commutes with substitution, preserves equivalence, reduction
implies equivalence, and equivalence is transitive, the following diagram commutes.

J(γ(e))K γ(JeK)

JvK v′

≡

≡ ≡

≡

Corollary 7.3.9 (Whole-Program Correctness). If · ⊢ e then eval(e) ≈ eval(JeK)

8 C O N C L U S I O N S

In this chapter, I summarize the lessons of the four translations presented earlier in this
dissertation and conjecture how to apply those lessons to complete the project described
in Chapter 1. In a sense, I consider the previous four chapters to be mathematical case
studies. When this project began, I had no idea how hard any given type-preserving
translation would be. The only prior work on dependent-type-preserving compilation
for full-spectrum dependent types studied CPS, which proved difficult. I approached my
thesis by attempting the standard type-preserving translations to see what worked and
what failed. From these case studies, I conclude lessons about the individual translations,
and general lessons about dependent-type preservation. I end by conjecturing how to
apply these lessons to future work: completing the compiler from Coq to dependently
typed assembly.

8.1 Viability of the Individual Translations

Recall from Chapter 1 my stated thesis: type-preserving compilation of dependent types
is a theoretically viable technique for eliminating miscompilation errors and linking errors.
The key word in this thesis is viable, that is, “capable of working successfully; feasible”.
For type-preserving compilation to be, theoretically, capable of working successfully for
eliminating errors, we must be able to apply the theory to real tools and languages used
in practice. I summarize the “viability” of the translations in Figure 8.1—describing
which translations are most promising in the sense that they should scale to use in
practice, and which need further work.

Two of the translations—the ANF translation, Chapter 4, and the abstract closure
conversion, Chapter 5—should scale to languages used in practice, such as Coq. They
support all the core features of dependency and are orthogonal to additional axioms
such as parametricity and impredicativity, meaning they should scale to a variety of
dependently typed languages used in practice. I consider these two the most promising
for further development into a practical compiler for Coq.

The other two translations—the CPS translation, Chapter 6, and the parametric
closure conversion, Chapter 7—do not scale to Coq in their current form, although I
conjecture that we can apply more advanced type theories to the target language to
develop variants of these translations that do scale. In their current form, both these
translations rely on parametricity and impredicativity for type preservation. The CPS
translation relies on parametricity and impredicativity of all computationally relevant
functions, since it encodes computations using parametric functions, and the type of

191

192 conclusions

ANF (Chapter 4) CPS (Chapter 6)
Viable: works with higher universes;
orthogonal to parametricity and im-
predicativity.

Not Yet Viable: unknown how to scale
to higher universes; currently requires
parametricity and impredicativity of
all computationally relevant functions.

Abstract CC (Chapter 5) Parametric CC (Chapter 7)
Viable: works with higher universes;
orthogonal to parametricity and im-
predicativity.

Not Yet Viable: unknown how to scale
to higher universes; currently requires
parametricity and impredicativity of
all computationally relevant recursive
closures.

Figure 8.1: Viability of Translations

computations require impredicativity. Similarly, the parametric closure type requires
parametricity to justify the η-equivalence for closures, and would require impredicativity
to express recursive closures. Unfortunately, using multiple impredicative universes in
the same hierarchy is inconsistent in general, so we can’t create a different impredicative
universe for each computationally relevant universe in the source. Furthermore, the
combination of impredicativity and computational relevance is inconsistent with some
set-theoretic axioms that are used in Coq in practice; and parametricity is orthogonal
to dependent type theory, so requiring it disallows some axioms that user programs or
proofs could soundly rely on.

However, I conjecture that both of these translations could be extended to scale to
Coq by using more advanced type theories in the target language. For example, we
could introduce a separate type for computations, instead of encoding them using the
same function type that source functions are compiled to. It might be possible to safely
allow impredicativity in this computation type, without requiring impredicativity in all
functions. Unfortunately, I’m unfamiliar with any type theories that mix predicative
and impredicative quantification at every universe level, as this idea would require.
Similarly, we only require parametricity for computations and closures. If we could
isolate parametricity in a modality, we might be able to use it without requiring it
for all functions or closures. Nuyts and Devriese (2018) develop a type theory with a
modality for parametricity, but it does not yet support higher universes.

8.2 Lessons for Dependent-Type Preservation

In Chapter 3, I describe the general proof recipe I use to prove dependent-type preser-
vation, but there’s a missing step before we can use that proof recipe: model the
dependencies of the implicit semantic object from the high-level source as an explicit
syntactic object in the low-level target. For example, CPS and ANF are encoding
continuations in the syntax of the target, and closure conversion is encoding closures.

8.2 lessons for dependent-type preservation 193

In each of these translations, I had to come up with a typed encoding that preserved
all the dependencies from the source language. This is the hard part in each of the
translations I presented, but there is a pattern to come up with this encoding, which I
describe in this section.

the pattern

1. Model the semantic object as syntax.

For example, CPS and ANF model continuations. In the source language, con-
tinuations are implicit, and the semantics ensure they are used linearly. When
we model continuations explicitly in the syntax, we must preserve this property;
trying to preserve dependent types essentially forces us to. The CPS translation
modeled continuations by relying on parametricity, which enforces linearity as long
as there are no effects. ANF modeled this by keeping continuations non-first-class,
enforcing linearity in the syntax.

Closure conversion models closures. In the source closures have the following
properties: a closure’s environment is not part of the type, types can refer to the
environment, and no term can modify a closure’s environment. Both the abstract
closure and the closure modeled with existential types, via parametricity, enforce
all of these properties.

2. Record machine steps in the typing derivation.

In a source dependently typed language, we compose by nesting expressions and
by substitution. To compose an expression e : Σx : A.B with a second projection
snd, we just nest them as in snd e. This shows up in the typing derivation in
dependent typing rules like Rule App and Rule Snd. For example, Rule Snd is
reproduced below.

Γ ⊢ e : Σx : A.B

Γ ⊢ snd e : B[fst e/x]

Note how the expression e is copied into the typing derivation, using substitution
to compose the expressions B and fst e.

In a target language, we move away from a compositional expression-based syntax
and instead encode the steps of a machine (abstract or concrete) directly in syntax.
In dependently typed languages, machine steps affect typing. For example, the
expression snd e in CPS is represented (roughly) as e÷ (λy.k (sndy)), where
k is the current continuation. This represents three steps of computation, and
should be read as “the machine first evaluates e÷, and then evaluates sndy, and
then continues the computation at k”.

194 conclusions

In a dependently typed language, we need to recover dependencies on expressions
that have been decomposed into steps in a machine. For example, naïvely typing
the above CPS expression gives us, roughly, the following typing derivation.

Γ ⊢ e÷ : Cont→R

Γ,y : Σx : A+.B+ ⊢ sndy : B+[fst y/x]

...

Γ ⊢ e÷ (λy.k (sndy)) : R

Here, I ignore the types of the result R and the continuation Cont. Recall from
Chapter 6 that this derivation fails. In the source, snd e : B[fst e/x], that is, snd e
depends on e. However, after decomposing the expression snd e into three machine
steps, we end up type checking sndy, forgetting the dependency on e÷. To fix
this, we have to record all the machine steps that lead up to sndy so we can use
them to re-establish the dependency on the computations e÷. This is essentially
what both the CPS translation in Chapter 6 and the ANF translation in Chapter 4:
record machine steps in typing derivations.

Intuitively, the CPS typing derivation should look like the following.

Γ ⊢ e÷ : Cont→R

Γ,y : Σx : A+.B+,y := e÷ ⊢ sndy : B+[fst y/x]

Γ,y : Σx : A+.B+,y := e÷ ⊢ k (sndy) : R

Γ ⊢ e÷ (λy.k (sndy)) : R

That is, when go up the derivation, we record the machine step y := e÷. We
should read this as “the machine step sndy takes place after the machine steps of
e÷, which leave the value of those steps in y”. This records a dependency on e÷,
allowing us to re-establish the dependency from the source language.

Both CPS and ANF record machine steps going up the typing derivation, pushing
machine steps into the leaves. This happens since CPS and ANF un-nest and
sequence expressions. In Chapter 6, we encoded this machine step as a definition
y = e÷ id, that is, as the computation applied to the halt continuation. In
Chapter 4, we encoded machine steps as the series of definitions introduced by let
bindings. By recording the machine steps in the typing derivation, we can recover
dependencies that have been separated from a single expression into multiple
machine steps.

Closure conversion is simpler, since it does not sequence expressions and thus does
not need to push dependencies into the leaves of the derivation trees. However,
closure conversion still introduces a machine step, in particular, creating a closure.
The typing rule for creating a closure records a machine step in the typing

8.2 lessons for dependent-type preservation 195

derivation by substituting the closure’s environment into the closure’s type. Recall
the typing rule for closures, Rule Clo, from Chapter 5, reproduced below.

Γ ⊢ e : Code (n : A′,x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Πx :A[e′/n].B[e′/n]

Closure conversion introduces an explicit abstraction over the environment n.
Creating a closure is the machine step that instantiates the environment. For
dependent types, the machine step of creating a closure must re-introduce de-
pendencies in the type, by substituting the environment e′ for the environment
variable n. With abstract closure conversion, Chapter 5, we model this directly
with a new syntactic form. With parametric closure conversion, Chapter 7, we
model this by encoding the machine step using singleton types.

3. Interpret machine steps in definitional equivalence.

Definitional equivalence is key to deciding type equivalence, but after expressions
change into machine steps, we must interpret machine steps instead of just
normalizing expressions. For example, in CPS we record the machine step y := e÷

with the particular encoding y = e÷ id . The reason for this encoding, and for the
equivalence rule Rule T-Cont, reproduced below, is to interpret machine steps by
turning CPS’d computations back into expressions that we can simply normalize.

Γ ⊢ e A (λx :B. e′)≡ (λx : e′.) (e B id)

Rule T-Cont allows rewriting any CPS’d expression into an expression represen-
tation of a machine step, so we can normalize machine steps the way we normalize
expressions in the source language. A CPS’d expression applied to the halt con-
tinuation simply runs to a value, giving us an interpretation of machine steps as
expressions. In ANF, the lemma Lemma 4.2.5 corresponds to the interpretation
of machine steps. It tells us we can interpret the sequences of definitions given by
an ANF term as the original expression. In closure conversion, the η-equivalence
rule for closures gives us an interpretation of machine steps. Creating a closure
is a machine step, and we interpret them as expressions by simply inlining the
environment.

In each of the above steps, we have to consider two things: whether the encoding or
interpretation requires additional axioms, or whether they reinterpret existing types.
The reason that CPS and parametric closure conversion are problematic is that their
encodings requires parametricity and impredicativity in order to model the machine
objects and interpret machine steps. This would not be a big problem if the new axioms
were somehow isolated from user code that could rely on conflicting axioms. The CPS
translation also makes the mistake of reusing (and thus, reinterpreting) an existing type:
the function type. This means that the new axioms are now required of pre-existing

196 conclusions

Coq

ANF IL Front end

Closure Conversion IL

Hoisted IL

Back end Allocation IL

Dependent Assembly

−−−−−−−−−−−−−−−−−−−−−−−

Figure 8.2: Future Type-Preserving Compiler

types, i.e., the function type is reinterpreted. This is a problem when we’re trying
to keep the translation as broadly applicable as possible. By contrast, the ANF and
abstract closure conversion do not introduce new axioms, and the encodings in those
translations do not reinterpret existing types. ANF does not introduce any new types
at all, instead encoding machine steps in syntax. Abstract closure conversion introduces
a new code type, and ensures that the dependent function type maintains its previous
interpretation.

8.3 Future Work
This section is dedicated
to Amal and Stephanie. In this dissertation, I have only described translations in the front-end of the compiler—

half of the compiler necessary to reach the dependently typed assembly language
described in Chapter 1. I have also ignored many related practical issues, such as
computational relevance, code size of assembly with type and proof annotations, or
linking with untyped and/or effectful code. In this section, I explain how the lessons
just described will help us finish the compiler. I then speculate about related practical
issues.

8.3.1 To Dependently Typed Assembly

Recall that the standard model type preserving compiler, Figure 3.1 from Chapter 3, has
five passes. Following this model, we want to eventually build the compiler described by
Figure 8.2. This figure replaces CPS from the model with ANF, following the lessons
discussed earlier in this chapter. We still need three more translations: hoisting, alloca-

8.3 future work 197

tion, and code generation. How do we get from here to there? The pattern described in
the previous section informs us how to begin designing these three translations.

hoisting

Typographical Note. In this section, ECCCC is the source language and ECCCC/H ,
a target language that I conjecture will be a syntactically restricted version of ECCCC

but whose formal definition I leave for future work, is the target language.

Hoisting will be a trivially type-preserving translation, and can be phrased as an
intra-language transformation in ECCCC (the closure conversion IL). It will require
no new features and can be encoded using let and definitions. This is because, unlike
ANF, CPS, and closure conversion, hoisting does not model a new semantic object; it is
a syntactic change to accommodate a later pass that will introduce a new object (the
heap).

In this translation, we will lift all function definitions to be defined at the top-level.
The next translation, explicit allocation, can then easily move functions from top-level
definitions to heap-allocated code (labeled blocks). In general, hoisting is easy since
closure conversion has already closed all functions, so they can be freely moved into a
different scope.

Dependent types introduce a minor complication: functions defined earlier can appear
in the types of closures defined later. For instance, suppose we have a source function
f : Code (n : A′

1, x : A1).B1 and a closure g : Πx : A2.B2, where f is defined before
g. Due to dependency, f (as a literal value, or by name) could appear in the type of
g, such as g : Πx : ((⟨⟨f, n′⟩⟩) e′).B′

2 (where n′ is the environment for f) if f is a type
constructor, or g : Πx : (IsCorrect f).B′

2 if g requires a correctness proof for f before
executing. This means when deciding type equivalence after hoisting, we will need to
inline the definition of f into types. This is not a major complication; we can model
top-level definitions using dependent let and definitions. Since definitions can be inlined
during type equivalence, type equivalence should be preserved easily.

The syntax of programs after translation will look like the following,

let f0 = λ (n : A0′,x0 : A0). e0
...
fn = λ (n : An′,xn : An). en

in e

where there are no function literals in any of A0′, ...,An′,A0, ...,An or e. The hoisting
translation must propagate function bindings out to the top-level, similar to how the
ANF translation propagates intermediate computations out.

explicit allocation

Typographical Note. In this section, ECCCC/H is the source language and ECCH , a
target language that I conjecture will be like ECCCC but with a model of the heap and

198 conclusions

explicit allocation and dereference but whose formal definition I leave for future work, is
the target language.

Explicit allocation will be the primary challenge in the rest of the compiler. Like the
previous passes, explicit allocation introduces a new semantic object, the heap, and new
machine steps, allocation and dereference. Modeling these will require keeping track of
the definitions of heap-allocated values during type checking; prior work only required
the types of heap-allocated values during type checking (Morrisett et al., 1999). We
may also require some new mechanism to prevent cycles in the heap.

The main problem for a dependent-type-preserving explicit-allocation pass is that
the heap is necessarily unordered, which can admit cycles and thus inconsistency. A
computation may jump to a function allocated early in the heap, but require a reference
to a pair defined later in the heap. For example, suppose we have the following term.

Γ; (l1 := (λ (n : &A′,x : A). e), l2 := null : A′) ⊢ set l2 = eenv; (deref l1) l2 e′ : B

This term is calling the function at location l1. That function expects a reference
(&) to its environment of type A′, and its usual argument of type A. To call the
function, we first set the environment in location l2, then dereference and call l1 with
the environment l2 and some argument e′ of type A. This is a dependent function, so
we need to compute the type B by instantiating the type of e with values from the new
value of l2, after machine step set l2.

We must allow this to model the heap correctly, but we must also prevent cycles in
the heap to maintain logical consistency. It is well-known that introducing a model
of the heap like the above into a terminating typed language can enable encoding
nontermination (Landin’s Knot). Since our dependently typed programs can represent
proofs, this would result in inconsistency.

Prior work uses linear types to solve a similar problem, but it’s unclear if this approach
will scale to dependent types. Ahmed et al. (2007) allow cycles in the heap but rely
on linear capabilities to still guarantee termination. Unfortunately, linear types do not
integrate well with dependent types, since a dependent type requires references to a
term during type checking, and references during run time. Both the type system and
the run-time term will require a reference to the same object, but linear typing will
restrict us to only one alias: we can either use the term, or type check it. Recent work
does integrate the linear and dependent types (McBride, 2016), by essentially allowing
a type-level reference to a linear object but disallowing that reference from being used
at run time. By making aliases linear-dependent in this way, we may be able to both
restrict cycles and allow typing a dependent heap. Another recent approach integrates
dependent types with graded modal types, a variant of linear types in which objects are
restricted to a specific number of uses (Orchard and Liepelt, 2017)1. This could allow
exactly two references, or an unbounded number of type-level references and exactly
one run-time reference.

1 Dependent types are listed as future work in that citation, but a prototype language now exists
https://granule-project.github.io/index.html.

https://granule-project.github.io/index.html

8.3 future work 199

This pass will also be made more complex by recursive functions. We will have to
allow some cycles, but only the “well-behaved” ones. This may require an auxiliary
judgment, like Coq’s guard condition for termination checking, to check that all cycles
in the heap are well-defined recursive functions.

code generation I conjecture that code generation will be an easy, but tedious,
translation. This translation is responsible for making explicit the details such as word
sizes, literal values, register values, and which instructions work over which kinds of
values. The register file is the only new machine object, but I conjecture that modeling it
will be less complex than modeling the heap. The most difficult part will be interpreting
assembly code as expressions. We may need to build on recent work on interoperability
between functional languages and assembly code (Patterson et al., 2017) However, as
the pattern that leads us to this path already forces us to represent individual machine
steps in the syntax and typing derivations, it might be simple to translate machine
steps into assembly code by this stage.

8.3.2 Practical Considerations

This dissertation has established a theory for type-preserving compilation, but ignored
the practice. I have, however, had practical concerns in mind during this dissertation.
The following are some considerations ignored earlier in this dissertation, but I believe
will be important to make the mythical compiler describing in Chapter 1 a reality.

computational relevance All the translations presented in this dissertation act
as if every expression is computationally relevant, but this is an over-approximation.
Many of the expressions, terms and types, will be irrelevant at run time. Compiling
them into a representation that is effective for a machine to execute is, therefore, a bit
silly. For these irrelevant expressions, it would be better to adopt a representation that
is small and efficient for type checking, but not necessarily for executing.

There’s two good reasons for ignoring computational relevance for now. First, it
simplifies designing the prototype dependent-type-preserving compiler. While it’s true
that some expressions are computationally irrelevant, we still need to figure out how to
compile the ones that are relevant. We should do that first, and not prematurely optimize
the compiler before we have a fully worked out theory. Second, we don’t yet have a good
theory for computational relevance in dependent types that we can simply take, off the
shelf, and apply to an arbitrary dependently typed (intermediate) language. Research
on computational relevance has already produced one Ph.D. dissertation (Mishra-Linger,
2008), without solving the problem for inductive types and dependent pattern matching,
and ongoing work is still developing theories for simple core calculi (Tejîsĉák and Brady,
2015; Nuyts and Devriese, 2018). The state of practice in Coq is to distinguish between
base universes, and use a mysterious static analysis at higher universes.

200 conclusions

To really address computational relevance, we need a core language with explicit
relevance annotations and an elaboration from Coq to the core language. (A complete
redesign of computational relevance in existing languages seems unlikely, but I’ll keep
hoping.) Once we have such a core language with explicit relevance annotations, then we
should be able to redesign the type-preserving compilers presented so far (and developed
in the future) to selectively compile only relevant expressions. We could also design
optimization passes to optimize the irrelevant expressions for type checking.

A selective translation could introduce problems in the interpretation of machine
steps, however. For example, if we have two different kinds of functions, irrelevant and
relevant, will we ever need to cast from one to another? This seems possible if we decide
equivalence by normalization. If not, then it seems likely that we will duplicate code
from one level into the other (as already happens in Coq with Set vs Prop), which
will exacerbate the code size problem discussed next. However, in some ways, the
interpretation of machine steps already casts one kind of computation into another. For
example, in CPS, we cast a CPS’d computation into a function application that can be
interpreted as an expression. So maybe interpreting irrelevant expressions will not be
any more difficult.

However, maybe we do want to compile even irrelevant computations. If we decide
equivalence by normalization, we might be able to more efficiently normalize terms
by jumping to the assembly code that computes their value, rather than by running
an interpreter. This would result in efficient type checking by using normalization by
evaluation in assembly. It is unclear whether this is possible, and I don’t see how to
integrate η-equivalence.

reducing code size If we are planning to ship compiled code paired with its speci-
fication and proofs, code size may become an engineering constraint. My translations
have completely ignored this problem, in favor of as many annotations as I need to
prove type preservation and decidability. For example, the CPS translation increases
annotations by “a lot”. Each term becomes annotated with the type from its derivation,
which is copied into at least two places: the continuation, and the machine step. This
would be unacceptable in practice. So how do we keep specifications and proofs small?

Past work has developed small proof witnesses for dependently typed languages, in
particular, Twelf (Sarkar et al., 2005), and we will likely need to adapt this kind of
work to the compiler ILs. It’s unclear how this work scales to full-spectrum dependently
typed languages such as Coq.

One important consideration is whether decreasing the size of proofs will increase the
trusted code base, for example by making the proof checker more complex, or increase
the type checking time. In many high-assurance scenarios, we might want the proof
checker itself to be small. On the other hand, maybe not: we might be able to prove the
more complex proof checker correct using a smaller, more easily audited, proof checker.
Past work has considered how to balance proof size against proof checker size in the
context of PCC and LF (Appel et al., 2003).

8.3 future work 201

Another aspect to this problem is link time efficiency. Given that we want to run
type checking at link time to rule out linking errors, we want proof checking to be fast
so linking can be fast. Usually there is a space/time trade off, so I would expect that
decreasing the size of proofs and specifications will increase the time to check proofs.
This could increase link time, which might be undesirable. On the other hand, linking
should happen rarely compared to running, so maybe it won’t matter.

preserving meaning of specifications One problem I alluded to in Chapter 1
is that we can only stop trusting the compiler if we still trust the specification. This This section dedicated to

Greg.is no problem if we have a specification like IsCorrect f, but what about when the
specification is λk. IsCorrect (λx. f÷ (λy.y x k))? Compiling specifications, or at least
compiling the computations in specifications, makes trusting those specifications much
more difficult. One of the fundamental assumptions of type preservation is that we trust
the type translation. However, when the type translation is also the compiler, because
terms are types, doesn’t that mean we must either trust the compiler or prove it correct?
If so, type preservation alone isn’t enough to rule out miscompilation errors, and we
must at least prove compiler correctness as well.

We need something somewhat more than type preservation to help preserve the
meaning of, or at least our trust in, specifications. At first, I thought it was enough to
prove logical consistency of the target. Surely if we were to badly mangle specifications
in translation, and prove type preservation, we would inadvertently be inconsistent? I’m
no longer sure of that. Greg Morrisett suggested to me that we want some kind of logical
implication: reading the types as logical formulas, we want to say the translated type
implies the original type. This seem intuitively right, but I’m unsure how to formalize
that intuition. Either of these approaches, however, still requires trust in some proof
about the compiler, which is unsatisfying to achieving fully certifying compilation or
proof-carrying code.

A more satisfying approach would be to maintain readability of specifications, so
the target specification still reads as IsCorrect f÷. A solution to the computational
relevance problem might help by letting us avoid translating irrelevant specifications.
However, I’m not sure that this solves the problem in general. Even irrelevant speci-
fications will refer to relevant computations, and it may be difficult to trust that f÷

is the same as the f we expected to be correct, unless we prove compiler correctness.
Although I do prove compiler correctness in this dissertation, and it even falls out of
the recipe from Chapter 3, I would like to avoid it in favor of a fully certifying compiler
using type preservation.

gradual dependently typed assembly In Chapter 1, I described a mythical
compiler able to rule out linking errors when linking with x86 assembly, but all formal
definitions of linking in this dissertation rely on type checking, and x86 is not dependently
typed. How will we ever interoperate with real assembly? It’s not realistic to expect all
code to be ported to a dependently typed language and compiled with our compiler,
nor to expect all x86 code to be ported to a new dependently typed assembly language

202 conclusions

(even if it would rule out a lot of errors. Instead, we need some way allow existing
code—either x86 assembly or code generated from non-dependently typed languages—to
safely interoperate with the dependently typed assembly language generated from our
type preserving compiler.

The working conjecture on how to get safe interoperability between a typed and
untyped assembly language is gradual typing (Ahmed, 2015). The idea is that we
will define a gradual type system between typed assembly and assembly. At the
boundary between typed and untyped code, the types will become contracts—dynamic
checks—ensuring safe interoperability. Work on gradual typing suggests this will incur
a performance penalty (Takikawa et al., 2016), but static contract verification looks
promising and could reduce contract costs to near zero (Tobin-Hochstadt and van Horn,
2012).

To apply gradual typing to a dependent-type preserving compiler, we would need to
extend gradual typing to dependent types and to assembly language. There are several
instances for gradual typing for forms of dependent types, such as gradual refinement
types (Lehmann and Tanter, 2017), and gradual liquid types (Vazou et al., 2018). These
seem promising, but probably require nontrivial extensions to support a dependently
typed language such as Coq. There is recent work on dynamically typed assembly
that should prove a promising starting point for extension to gradual dependently
typed assembly (Hernandez, 2018). There is also work on gradual call-by-push-value
(CBPV) (New et al., 2019), which could prove a useful starting point since CBPV has
been shown to correspond to a low-level SSA IR (Garbuzov et al., 2018).

8.4 Conclusion

In this dissertation, I developed a theory of dependent-type-preservation, showing that
type-preservation is a viable way to elimination miscompilation and linking errors from
dependently typed languages. I describe the core features of dependency, and essence
of type preservation, and a recipe for proving type preservation for dependently typed
language. I presented four translations: two I believe will scale to practice as they are,
while two will need more work to scale to languages such as Coq. I summarized the
lessons of these translations, explain how to apply those lessons to remaining translations
required to finish a prototype dependent-type-preserving compiler, and described some
practical issues that will need to be solved to develop the mythical full-spectrum
type-preserving compiler from Coq to gradually dependently-typed assembly.

L I S T O F F I G U R E S

Figure 1.1 Transforming a Verified Coq Program into an Unverified Executable 30
Figure 1.2 Verified Compilation of a Verified Coq Program into an Unveri-

fied Executable . 33
Figure 1.3 Verified Separate Compilation of Verified Coq Programs into an

Unverified Executable . 33
Figure 1.4 Verified Compositional Compilation into an Unverified Executable 34
Figure 1.5 Verified Compilation into a Verified Executable 35
Figure 1.6 Compilers in this Dissertation 38
Figure 2.1 ECCD Syntax . 49
Figure 2.2 ECCD Reduction . 51
Figure 2.3 ECCD Conversion (excerpts) . 51
Figure 2.4 ECCD Equivalence . 53
Figure 2.5 ECCD Subtyping . 53
Figure 2.6 ECCD Typing (excerpts) . 54
Figure 2.7 Source and Target Observations 55
Figure 2.8 ECCD Components and Programs 55
Figure 2.9 ECCD Evaluation . 56
Figure 2.10 ECCD Closing Substitutions and Linking 56
Figure 3.1 Model Type-Preserving Compiler 60
Figure 4.1 ECCA Syntax . 77
Figure 4.2 ECCA Composition of Configurations 78
Figure 4.3 ECCA Evaluation . 79
Figure 4.4 ECCA Continuation Typing . 80
Figure 4.5 ECCA Continuation Exports . 83
Figure 4.6 ANF Translation from ECCD to ECCA 84
Figure 5.1 ECCCC Syntax . 107
Figure 5.2 ECCCC Reduction (excerpts) 108
Figure 5.3 ECCCC Equivalence . 108
Figure 5.4 ECCCC Subtyping . 109
Figure 5.5 ECCCC Typing (excerpts) . 109
Figure 5.6 Model of ECCCC in ECCD (excerpts) 110
Figure 5.7 Abstract Closure Conversion from ECCD to ECCCC (excerpts) 117
Figure 5.8 Dependent Free Variable Sequences 118
Figure 5.9 ECCCC ANF (excerpts) . 126
Figure 6.1 CoCD Syntax . 135
Figure 6.2 CoCD Reduction . 136
Figure 6.3 CoCD Equivalence . 137

203

204 list of figures

Figure 6.4 CoCD Typing . 138
Figure 6.5 CoCD Explicit Syntax . 139
Figure 6.6 CoCk: CoCD with CPS Extensions (excerpts) 140
Figure 6.7 Extensional CoC Equivalence 141
Figure 6.8 Model of CoCk in Extensional CoC 142
Figure 6.9 CPSn of Universes . 146
Figure 6.10 CPSn of Kinds . 146
Figure 6.11 CPSn of Types (excerpts) . 147
Figure 6.12 CPSn of Terms (excerpts) . 149
Figure 6.13 CPSn of Environments . 150
Figure 6.14 CoCk Components and Programs 160
Figure 6.15 CoCk Evaluation . 160
Figure 6.16 CPSv of Kinds . 161
Figure 6.17 CPSv of Types (excerpts) . 162
Figure 6.18 CPSv of Terms (1/2) . 163
Figure 6.19 CPSv of Terms (2/2) . 164
Figure 6.20 CPSv of Environments . 165
Figure 7.1 CoCCC Syntax (excerpts) . 180
Figure 7.2 CoCCC Typing (excerpts) . 181
Figure 7.3 CoCCC Reduction (excerpts) . 182
Figure 7.4 CoCCC Equivalence (excerpts) 183
Figure 7.5 Parametric Closure Conversion from CoCD to CoCCC (excerpts) 184
Figure 8.1 Viability of Translations . 192
Figure 8.2 Future Type-Preserving Compiler 196
Figure A.1 ECCD Syntax . 217
Figure A.2 ECCD Reduction . 217
Figure A.3 ECCD Conversion . 218
Figure A.4 ECCD Equivalence . 218
Figure A.5 ECCD Subtyping . 219
Figure A.6 ECCD Typing . 220
Figure A.7 ECCD Observations . 220
Figure A.8 ECCD Components and Programs 221
Figure A.9 ECCD Evaluation . 221
Figure A.10 ECCD Closing Substitutions and Linking 221
Figure B.1 ECCA Syntax . 223
Figure B.2 ECCA Reduction . 224
Figure B.3 ECCA Conversion . 224
Figure B.4 ECCA Equivalence . 225
Figure B.5 ECCA Subtyping . 225
Figure B.6 ECCA Typing . 226
Figure B.7 ECCA Composition of Configurations 227
Figure B.8 ECCA Continuation Typing . 227
Figure B.9 ECCA Continuation Exports . 227

list of figures 205

Figure B.10 ECCA Components and Programs 227
Figure B.11 ECCA Observations . 228
Figure B.12 ECCA Evaluation . 228
Figure B.13 ECCA Closing Substitutions and Linking 228
Figure C.1 Observation Relation between ECCD and ECCA 229
Figure C.2 ANF Translation from ECCD to ECCA 229
Figure D.1 ECCCC Syntax . 231
Figure D.2 ECCCC Syntactic Sugar . 231
Figure D.3 ECCCC Reduction . 232
Figure D.4 ECCCC Conversion . 233
Figure D.5 ECCCC Equivalence . 234
Figure D.6 ECCCC Subtyping . 234
Figure D.7 ECCCC Typing (1/2) . 235
Figure D.8 ECCCC Typing (2/2) . 236
Figure D.9 ECCCC Well-formed Environments 236
Figure D.10 ECCCC Observations . 236
Figure D.11 ECCCC Components and Programs 236
Figure D.12 ECCCC Evaluation . 236
Figure D.13 ECCCC Closing Substitutions and Linking 237
Figure D.14 Model of ECCCC in ECCD . 237
Figure D.15 ECCCC ANF . 238
Figure D.16 ECCCC Composition of Configurations 238
Figure D.17 ECCCC ANF Machine Evaluation 239
Figure E.1 Observation Relation between ECCD and ECCCC 241
Figure E.2 Dependent Free Variable Sequences 241
Figure E.3 Closure Conversion Syntactic Sugar 241
Figure E.4 Abstract Closure Conversion from ECCD to ECCCC (1/2) . . . 242
Figure E.5 Abstract Closure Conversion from ECCD to ECCCC (2/2) . . . 243
Figure F.1 CoCD Syntax . 245
Figure F.2 CoCD Explicit Syntax . 245
Figure F.3 CoCD Reduction . 246
Figure F.4 CoCD Conversion . 247
Figure F.5 CoCD Equivalence . 248
Figure F.6 CoCD Typing . 248
Figure F.7 CoCD Well-Formed Environments 249
Figure F.8 CoCD Observations . 249
Figure F.9 CoCD Components and Programs 249
Figure F.10 CoCD Evaluation . 249
Figure F.11 CoCD Closing Substitutions and Linking 249
Figure G.1 CoCk Syntax . 251
Figure G.2 CoCk Reduction . 251
Figure G.3 CoCk Equivalence . 252
Figure G.4 CoCk Conversion . 253

206 list of figures

Figure G.5 CoCk Typing . 254
Figure G.6 CoCk Well-formed Environments 255
Figure G.7 CoCk Observations . 255
Figure G.8 CoCk Components and Programs 255
Figure G.9 CoCk Evaluation . 255
Figure G.10 CoCk Closing Substitutions and Linking 255
Figure G.11 Extensional CoC Equivalence 256
Figure G.12 Model of CoCk in Extensional CoC 256
Figure H.1 Observation Relation between CoCD and CoCk 259
Figure H.2 CPSn of Universes . 259
Figure H.3 CPSn of Kinds . 259
Figure H.4 CPSn of Types (1/2) . 260
Figure H.5 CPSn of Types (1/2) . 261
Figure H.6 CPSn of Terms (1/2) . 262
Figure H.7 CPSn of Terms (2/2) . 263
Figure H.8 CPSn of Environments . 263
Figure I.1 Observation Relation between CoCD and CoCk 265
Figure I.2 CPSv of Universes . 265
Figure I.3 CPSv of Kinds . 265
Figure I.4 CPSv of Types . 266
Figure I.5 CPSv of Terms (1/2) . 267
Figure I.6 CPSv of Terms (2/2) . 268
Figure I.7 CPSv of Environments . 269
Figure J.1 CoCCC Syntax . 271
Figure J.2 CoCCC Syntactic Sugar . 271
Figure J.3 CoCCC Reduction . 272
Figure J.4 CoCCC Conversion . 273
Figure J.5 CoCCC Equivalence . 274
Figure J.6 CoCCC Typing (1/2) . 274
Figure J.7 CoCCC Typing (2/2) . 275
Figure J.8 CoCCC Well-formed Environments 275
Figure J.9 CoCCC Observations . 275
Figure J.10 CoCCC Components and Programs 276
Figure J.11 CoCCC Evaluation . 276
Figure J.12 CoCCC Closing Substitutions and Linking 276
Figure K.1 Observation Relation between CoCD and CoCCC 279
Figure K.2 Dependent Free Variable Sequences 279
Figure K.3 Parametric Closure Conversion from CoCD to CoCCC (1/2) . . 280
Figure K.4 Parametric Closure Conversion from CoCD to CoCCC (2/2) . . 281

B I B L I O G R A P H Y

D. Adams. The Restaurant at the End of the Universe. 1980. ISBN 9780330262132.
URL https://www.worldcat.org/oclc/154399749.

D. Ahman. Fibred Computational Effects. PhD thesis, University of Edinburgh, Oct.
2017. URL http://arxiv.org/abs/1710.02594.

A. Ahmed. Verified compilers for a multi-language world. In Summit oN Advances in Pro-
gramming Languages (SNAPL), volume 32, 2015. doi:10.4230/LIPIcs.SNAPL.2015.15.

A. Ahmed and M. Blume. Typed closure conversion preserves observational equiva-
lence. In International Conference on Functional Programming (ICFP), Sept. 2008.
doi:10.1145/1411204.1411227.

A. Ahmed and M. Blume. An equivalence-preserving CPS translation via multi-language
semantics. In International Conference on Functional Programming (ICFP), Sept.
2011. doi:10.1145/2034773.2034830.

A. Ahmed, M. Fluet, and G. Morrisett. L3: A linear language with locations. Fundamenta
Informaticae, 77(4), Dec. 2007. doi:10.1007/11417170_22.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986. ISBN 0-201-10088-6. URL http://www.worldcat.org/oclc/

12285707.

T. Altenkirch, N. A. Danielsson, A. Löh, and N. Oury. ΠΣ: Dependent types without
the sugar. In International Conference on Functional and Logic Programming, Apr.
2010. doi:10.1007/978-3-642-12251-4_5.

A. Anand, A. W. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pollack, O. S. Bélanger,
M. Sozeau, and M. Weaver. CertiCoq: A verified compiler for Coq. In International
Workshop on Coq for Programming Languages (CoqPL), Jan. 2017. URL http:

//www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf.

A. W. Appel, N. Michael, A. Stump, and R. Virga. A trustworthy
proof checker. Journal of Automated Reasoning, 31(3–4):231–260, 2003.
doi:10.1023/B:JARS.0000021013.61329.58.

B. Barras, P. Corbineau, B. Grégoire, H. Herbelin, and J. L. Sacchini. A new elimination
rule for the calculus of inductive constructions. In International Conference on Types
for Proofs and Programs (TYPES), Mar. 2008. doi:10.1007/978-3-642-02444-3_3.

207

https://www.worldcat.org/oclc/154399749
http://arxiv.org/abs/1710.02594
https://doi.org/10.4230/LIPIcs.SNAPL.2015.15
https://doi.org/10.1145/1411204.1411227
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1007/11417170_22
http://www.worldcat.org/oclc/12285707
http://www.worldcat.org/oclc/12285707
https://doi.org/10.1007/978-3-642-12251-4_5
http://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
http://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://doi.org/10.1023/B:JARS.0000021013.61329.58
https://doi.org/10.1007/978-3-642-02444-3_3

208 bibliography

G. Barthe and T. Uustalu. CPS translating inductive and coinductive types. In
Workshop on Partial Evaluation and Semantics-based Program Manipulation (PEPM),
Jan. 2002. doi:10.1145/509799.503043.

G. Barthe, J. Hatcliff, and M. H. B. Sørensen. CPS translations and applications:
The cube and beyond. Higher-Order and Symbolic Computation, 12(2), Sept. 1999.
doi:10.1023/a:1010000206149.

G. Barthe, J. Hatcliff, and M. H. Sørensen. Weak normalization implies strong normal-
ization in a class of non-dependent pure type systems. Theoretical Computer Science,
269(1-2), Oct. 2001. doi:10.1016/s0304-3975(01)00012-3.

J. Bernardy, P. Jansson, and R. Paterson. Proofs for free: Parametricity for de-
pendent types. Journal of Functional Programming (JFP), 22(02), Mar. 2012.
doi:10.1017/S0956796812000056.

S. Boulier, P. Pédrot, and N. Tabareau. The next 700 syntactical models of
type theory. In Conference on Certified Programs and Proofs (CPP), Jan. 2017.
doi:10.1145/3018610.3018620.

P. Boutillier. A relaxation of Coq’s guard condition. In Journées Francophones des
langages applicatifs (JFLA), Feb. 2012. URL https://hal.archives-ouvertes.fr/

hal-00651780.

W. J. Bowman and A. Ahmed. Typed closure conversion for the calculus of constructions.
In International Conference on Programming Language Design and Implementation
(PLDI), June 2018. doi:10.1145/3192366.3192372.

W. J. Bowman, Y. Cong, N. Rioux, and A. Ahmed. Type-preserving CPS translation
of Σ and Π types is not not possible. Proceedings of the ACM on Programming
Languages (PACMPL), 2(POPL), Jan. 2018. doi:10.1145/3158110.

L. Cardelli. A polymorphic λ-calculus with type:type. Technical Report 10, Digital
Equipment Corporation. Systems Research Center., 1986. URL http://www.hpl.hp.

com/techreports/Compaq-DEC/SRC-RR-10.pdf.

C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs in a
dependently typed language. In Symposium on Principles of Programming Languages
(POPL), Jan. 2014. doi:10.1145/2535838.2535883.

J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation of end-to-end verifica-
tion of security enforcement. In International Conference on Programming Language
Design and Implementation (PLDI), June 2010. doi:10.1145/1806596.1806643.

J. Cockx, D. Devriese, and F. Piessens. Unifiers as equivalences: Proof-relevant
unification of dependently typed data. In International Conference on Functional
Programming (ICFP), Sept. 2016. doi:10.1145/2951913.2951917.

https://doi.org/10.1145/509799.503043
https://doi.org/10.1023/a:1010000206149
https://doi.org/10.1016/s0304-3975(01)00012-3
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1145/3018610.3018620
https://hal.archives-ouvertes.fr/hal-00651780
https://hal.archives-ouvertes.fr/hal-00651780
https://doi.org/10.1145/3192366.3192372
https://doi.org/10.1145/3158110
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-10.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-10.pdf
https://doi.org/10.1145/2535838.2535883
https://doi.org/10.1145/1806596.1806643
https://doi.org/10.1145/2951913.2951917

bibliography 209

Y. Cong and K. Asai. Handling delimited continuations with dependent types. Pro-
ceedings of the ACM on Programming Languages (PACMPL), 2(ICFP), Sept. 2018a.
doi:10.1145/3236764.

Y. Cong and K. Asai. Shifting and resetting in the calculus of constructions. In
International Symposium on Trends in Functional Programming (TFP), Apr. 2018b.
URL https://sites.google.com/site/youyoucong212/tfp2018.

T. Coquand. An analysis of Girard’s paradox. In Symposium on Logic in Computer
Science (LICS), July 1986. URL https://hal.inria.fr/inria-00076023.

T. Coquand. Metamathematical investigations of a calculus of constructions. Technical
Report RR-1088, INRIA, Sept. 1989. URL https://hal.inria.fr/inria-00075471.

T. Coquand and G. Huet. The calculus of constructions. Information and Computation,
76(2-3), Feb. 1988. doi:10.1016/0890-5401(88)90005-3.

P. Curien and H. Herbelin. The duality of computation. In International Conference on
Functional Programming (ICFP), Sept. 2000. doi:10.1145/357766.351262.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. In International Conference on Programming Language Design and
Implementation (PLDI), June 1993. doi:10.1145/155090.155113.

D. Garbuzov, W. Mansky, C. Rizkallah, and S. Zdancewic. Structural operational
semantics for control flow graph machines. CoRR, abs/1805.05400, 2018. URL
http://arxiv.org/abs/1805.05400.

J. H. Geuvers. Logics and Type Systems. PhD thesis, University of Nijmegen, 1993.
URL http://www.ru.nl/publish/pages/682191/geuvers_jh.pdf.

J. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972. URL https://www.

worldcat.org/oclc/493768392.

J. Girard. A new constructive logic: classical logic. Mathematical Structures in Computer
Science, 1(3), Nov. 1991. doi:10.1017/S0960129500001328.

J. Gross, A. Chlipala, and D. I. Spivak. Experience implementing a performant category-
theory library in Coq. In International Conference on Interactive Theorem Proving
(ITP), July 2014. doi:10.1007/978-3-319-08970-6_18.

R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Symposium on Principles of Programming Languages (POPL), Jan. 1994.
doi:10.1145/174675.176927.

H. Herbelin. On the degeneracy of Σ-types in presence of computational classical
logic. In International Conference on Typed Lambda Calculi and Applications, 2005.
doi:10.1007/11417170_16.

https://doi.org/10.1145/3236764
https://sites.google.com/site/youyoucong212/tfp2018
https://hal.inria.fr/inria-00076023
https://hal.inria.fr/inria-00075471
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1145/357766.351262
https://doi.org/10.1145/155090.155113
http://arxiv.org/abs/1805.05400
http://www.ru.nl/publish/pages/682191/geuvers_jh.pdf
https://www.worldcat.org/oclc/493768392
https://www.worldcat.org/oclc/493768392
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1007/978-3-319-08970-6_18
https://doi.org/10.1145/174675.176927
https://doi.org/10.1007/11417170_16

210 bibliography

H. Herbelin. On a few open problems of the calculus of inductive constructions and
on their practical consequences, Sept. 2009. URL pauillac.inria.fr/~herbelin/

talks/cic.pdf. Updated 2010.

H. Herbelin. A constructive proof of dependent choice, compatible with classical logic. In
Symposium on Logic in Computer Science (LICS), June 2012. doi:10.1109/lics.2012.47.

I. Hernandez. Strong-dism: A first attempt to a dynamically typed assembly lan-
guage (d-tal). Master’s thesis, University of South Florida, 2018. URL https:

//scholarcommons.usf.edu/etd/7033.

L. Jia, J. Zhao, V. Sjöberg, and S. Weirich. Dependent types and program equiva-
lence. In Symposium on Principles of Programming Languages (POPL), Jan. 2010.
doi:10.1145/1706299.1706333.

J. Kang, Y. Kim, C. Hur, D. Dreyer, and V. Vafeiadis. Lightweight verification
of separate compilation. In Symposium on Principles of Programming Languages
(POPL), Jan. 2016. doi:10.1145/2837614.2837642.

C. Keller and M. Lasson. Parametricity in an impredicative sort. In International
Workshop on Computer Science Logic (CSL), Sept. 2012. URL https://hal.inria.

fr/hal-00730913.

A. Kennedy. Compiling with continuations, continued. In International Conference on
Functional Programming (ICFP), Sept. 2007. doi:10.1145/1291220.1291179.

A. Kovács. Closure conversion for dependent type theory with type-passing polymor-
phism. In International Workshop on Types for Proofs and Programs (TYPES), 2018.
URL https://github.com/AndrasKovacs/misc-stuff/blob/master/MemControl/

types2018/abstract-types-2018-cconv.pdf.

R. Krebbers, A. Timany, and L. Birkedal. Interactive proofs in higher-order concurrent
separation logic. In Symposium on Principles of Programming Languages (POPL),
Jan. 2017. doi:10.1145/3093333.3009855.

N. R. Krishnaswami and D. Dreyer. Internalizing relational parametricity in the
extensional calculus of constructions. In International Workshop on Computer Science
Logic (CSL), Sept. 2013. doi:10.4230/LIPIcs.CSL.2013.432.

R. Kumar, M. Myreen, M. Norrish, and S. Owens. CakeML: A verified implementation
of ML. In Symposium on Principles of Programming Languages (POPL), Jan. 2014.
doi:10.1145/2535838.2535841.

N. Lehmann and E. Tanter. Gradual refinement types. In Symposium on Principles of
Programming Languages (POPL), Jan. 2017. doi:10.1145/3093333.3009856.

X. Leroy. Unboxed objects and polymorphic typing. In Symposium on Principles of
Programming Languages (POPL), Jan. 1992. doi:10.1145/143165.143205.

pauillac.inria.fr/~herbelin/talks/cic.pdf
pauillac.inria.fr/~herbelin/talks/cic.pdf
https://doi.org/10.1109/lics.2012.47
https://scholarcommons.usf.edu/etd/7033
https://scholarcommons.usf.edu/etd/7033
https://doi.org/10.1145/1706299.1706333
https://doi.org/10.1145/2837614.2837642
https://hal.inria.fr/hal-00730913
https://hal.inria.fr/hal-00730913
https://doi.org/10.1145/1291220.1291179
https://github.com/AndrasKovacs/misc-stuff/blob/master/MemControl/types2018/abstract-types-2018-cconv.pdf
https://github.com/AndrasKovacs/misc-stuff/blob/master/MemControl/types2018/abstract-types-2018-cconv.pdf
https://doi.org/10.1145/3093333.3009855
https://doi.org/10.4230/LIPIcs.CSL.2013.432
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3093333.3009856
https://doi.org/10.1145/143165.143205

bibliography 211

X. Leroy. An overview of types in compilation. In Workshop on Types in Compilation
(TIC), volume 1743, pages 1–8, Mar. 1998. doi:10.1007/BFb0055509.

X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43
(4), Nov. 2009. doi:10.1007/s10817-009-9155-4.

M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems.
PhD thesis, Carnegie Mellon University, May 1997. URL http://reports-archive.

adm.cs.cmu.edu/anon/1997/CMU-CS-97-122.pdf.

Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh,
July 1990. URL http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-118/.

P. Martin-Löf. A theory of types. Revised Oct. 1971. Privately circulated manuscript,
Feb. 1971.

L. Maurer, P. Downen, Z. M. Ariola, and S. Peyton Jones. Compiling without con-
tinuations. In International Conference on Programming Language Design and
Implementation (PLDI), June 2017. doi:10.1145/3062341.3062380.

C. McBride. Outrageous but meaningful coincidences: Dependent type-safe syn-
tax and evaluation. In Workshop on Generic Programming (WGP), Sept. 2010.
doi:10.1145/1863495.1863497.

C. McBride. I got plenty o’ nuttin’. In A List of Successes That Can Change the World
- Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Mar. 2016.
doi:10.1007/978-3-319-30936-1_12.

Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In Symposium on
Principles of Programming Languages (POPL), Jan. 1996. doi:10.1145/237721.237791.

É. Miquey. A classical sequent calculus with dependent types. In European Symposium
on Programming (ESOP), Apr. 2017. doi:10.1007/978-3-662-54434-1_29.

É. Miquey. A sequent calculus with dependent types for classical arithmetic. In Sympo-
sium on Logic in Computer Science (LICS), July 2018. doi:10.1145/3209108.3209199.

R. N. Mishra-Linger. Irrelevance, Polymorphism, and Erasure in Type Theory. PhD
thesis, Portland State University, Nov. 2008. doi:10.15760/etd.2669.

G. Morrisett and R. Harper. Typed closure conversion for recursively-defined functions.
Electronic Notes in Theoretical Computer Science, 10, June 1998. doi:10.1016/s1571-
0661(05)80702-9.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly
Language. ACM Transactions on Programming Languages and Systems (TOPLAS),
21(3), May 1999. doi:10.1145/319301.319345.

https://doi.org/10.1007/BFb0055509
https://doi.org/10.1007/s10817-009-9155-4
http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-122.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-122.pdf
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-118/
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/1863495.1863497
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/237721.237791
https://doi.org/10.1007/978-3-662-54434-1_29
https://doi.org/10.1145/3209108.3209199
https://doi.org/10.15760/etd.2669
https://doi.org/10.1016/s1571-0661(05)80702-9
https://doi.org/10.1016/s1571-0661(05)80702-9
https://doi.org/10.1145/319301.319345

212 bibliography

A. Nanevski and G. Morrisett. Dependent type theory of stateful higher-order
functions. Technical Report TR-24-05, Harvard Univeristy, Dec. 2005. URL
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506436. Update Jan. 2006.

A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in hoare
type theory. In International Conference on Functional Programming (ICFP), Sept.
2006. doi:10.1145/1159803.1159812.

A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: Depen-
dent types for imperative programs. In International Conference on Functional
Programming (ICFP), Sept. 2008. doi:10.1145/1411204.1411237.

G. C. Necula. Proof-carrying code. In Symposium on Principles of Programming
Languages (POPL), Jan. 1997. doi:10.1145/263699.263712.

G. C. Necula and P. Lee. The design and implementation of a certifying compiler.
In International Conference on Programming Language Design and Implementation
(PLDI), May 1998. doi:10.1145/277652.277752.

G. Neis, C. Hur, J. Kaiser, C. McLaughlin, D. Dreyer, and V. Vafeiadis. Pil-
sner: A compositionally verified compiler for a higher-order imperative lan-
guage. In International Conference on Functional Programming (ICFP), Sept. 2015.
doi:10.1145/2784731.2784764.

M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract compilation via universal
embedding. In International Conference on Functional Programming (ICFP), Sept.
2016. doi:10.1145/2951913.2951941.

M. S. New, D. R. Licata, and A. Ahmed. Gradual type theory. Proceedings of the ACM
on Programming Languages (PACMPL), 3(POPL), Jan. 2019. doi:10.1145/3290328.

A. Nuyts and D. Devriese. Degrees of relatedness: A unified framework for para-
metricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in
dependent type theory. In Symposium on Logic in Computer Science (LICS), July
2018. doi:10.1145/3209108.3209119.

A. Nuyts, A. Vezzosi, and D. Devriese. Parametric quantifiers for dependent type theory.
Proceedings of the ACM on Programming Languages (PACMPL), 1(ICFP), Aug. 2017.
doi:10.1145/3110276.

D. Orchard and V. Liepelt. Gram: A linear functional language with graded
modal types. In Trends in Linear Logic and Applications (TLLA), Sept.
2017. URL http://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_

unprotected/TLLA_Orchard.pdf.

D. Patterson, J. Perconti, C. Dimoulas, and A. Ahmed. FunTAL: Reasonably mixing a
functional language with assembly. In International Conference on Programming Lan-
guage Design and Implementation (PLDI), June 2017. doi:10.1145/3062341.3062347.

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506436
https://doi.org/10.1145/1159803.1159812
https://doi.org/10.1145/1411204.1411237
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/277652.277752
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/3290328
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3110276
http://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/TLLA_Orchard.pdf
http://www.cs.ox.ac.uk/conferences/fscd2017/preproceedings_unprotected/TLLA_Orchard.pdf
https://doi.org/10.1145/3062341.3062347

bibliography 213

P. Pédrot. A parametric CPS to sprinkle CIC with classical reasoning. In Workshop
on Syntax and Semantics of Low-Level Languages, June 2017. URL http://www.cs.

bham.ac.uk/~zeilbern/lola2017/abstracts/LOLA_2017_paper_5.pdf.

P. Pédrot and N. Tabareau. An effectful way to eliminate addiction to de-
pendence. In Symposium on Logic in Computer Science (LICS), Jan. 2017.
doi:10.1109/lics.2017.8005113.

J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-language semantics.
In European Symposium on Programming (ESOP), Apr. 2014. doi:10.1007/978-3-642-
54833-8_8.

S. L. Peyton Jones. Compiling Haskell by program transformation: A report from the
trenches. In European Symposium on Programming (ESOP), June 1996. doi:10.1007/3-
540-61055-3_27.

G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1(2), Dec. 1975. doi:10.1016/0304-3975(75)90017-1.

A. Sabry and M. Felleisen. Reasoning about programs in continuation-Passing style. In
LISP and Functional Programming (LFP), 1992. doi:10.1145/141478.141563.

A. Sabry and P. Wadler. A reflection on call-by-value. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 19(6), Nov. 1997.
doi:10.1145/267959.269968.

S. Sarkar, B. Pientka, and K. Crary. Small proof witnesses for LF. In International
Conference Logic Programming (ICLP), Oct. 2005. doi:10.1007/11562931_29.

P. Severi and E. Poll. Pure type systems with definitions. In International Symposium
Logical Foundations of Computer Science (LFCS), July 1994. doi:10.1007/3-540-
58140-5_30.

Z. Shao, C. League, and S. Monnier. Implementing typed intermediate languages.
In International Conference on Functional Programming (ICFP), Sept. 1998.
doi:10.1145/289423.289460.

Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type system for certified binaries.
ACM Transactions on Programming Languages and Systems (TOPLAS), 27(1), Jan.
2005. doi:10.1145/1053468.1053469.

M. Sozeau and N. Tabareau. Universe polymorphism in Coq. In International Conference
on Interactive Theorem Proving (ITP), July 2014. doi:10.1007/978-3-319-08970-6_32.

G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional Com-
pCert. In Symposium on Principles of Programming Languages (POPL), Jan. 2015.
doi:10.1145/2676726.2676985.

http://www.cs.bham.ac.uk/~zeilbern/lola2017/abstracts/LOLA_2017_paper_5.pdf
http://www.cs.bham.ac.uk/~zeilbern/lola2017/abstracts/LOLA_2017_paper_5.pdf
https://doi.org/10.1109/lics.2017.8005113
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/3-540-61055-3_27
https://doi.org/10.1007/3-540-61055-3_27
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/141478.141563
https://doi.org/10.1145/267959.269968
https://doi.org/10.1007/11562931_29
https://doi.org/10.1007/3-540-58140-5_30
https://doi.org/10.1007/3-540-58140-5_30
https://doi.org/10.1145/289423.289460
https://doi.org/10.1145/1053468.1053469
https://doi.org/10.1007/978-3-319-08970-6_32
https://doi.org/10.1145/2676726.2676985

214 bibliography

T. Streicher. Independence results for calculi of dependent types. In Category Theory
and Computer Science, Sept. 1989. doi:10.1007/BFb0018350.

N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang. Secure distributed
programming with value-dependent types. Journal of Functional Programming (JFP),
23(4), July 2013. doi:10.1017/S0956796813000142.

A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, and M. Felleisen. Is
sound gradual typing dead? In Symposium on Principles of Programming Languages
(POPL), 2016. doi:10.1145/2837614.2837630.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-
directed optimizing compiler for ML. In International Conference on Programming
Language Design and Implementation (PLDI), May 1996. doi:10.1145/231379.231414.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-
directed, optimizing compiler for ML. ACM SIGPLAN Notices, 20 Years of the
ACM/SIGPLAN Conference on Programming Language Design and Implementation
(1979-1999): A Selection, 39(4), Apr. 2004. doi:10.1145/989393.989449.

M. Tejîsĉák and E. Brady. Practical erasure in dependently typed languages. Ac-
cessed Nov. 2018, Feb. 2015. URL https://eb.host.cs.st-andrews.ac.uk/drafts/

dtp-erasure-draft.pdf.

The Coq Development Team. The Coq proof assistant reference manual, Oct.
2017. URL https://web.archive.org/web/20170109225110/https://coq.inria.

fr/doc/Reference-Manual006.html.

H. Thielecke. From control effects to typed continuation passing. In Symposium on
Principles of Programming Languages (POPL), 2003. doi:10.1145/640128.604144.

K. Thompson. Reflections on trusting trust. Communications of the ACM, 27(8), Aug.
1984. doi:10.1145/358198.358210.

A. Timany and B. Jacobs. Category theory in Coq 8.5. CoRR, May 2015. URL
https://arxiv.org/abs/1505.06430.

S. Tobin-Hochstadt and D. van Horn. Higher-order symbolic execution via contracts. In
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Oct. 2012. doi:10.1145/2384616.2384655.

M. Vákár. In Search of Effectful Dependent Types. PhD thesis, Oxford University, 2017.
URL http://arxiv.org/abs/1706.07997.

N. Vazou, É. Tanter, and D. van Horn. Gradual liquid type inference. Proceed-
ings of the ACM on Programming Languages (PACMPL), 2(OOPSLA), Nov. 2018.
doi:10.1145/3276502.

https://doi.org/10.1007/BFb0018350
https://doi.org/10.1017/S0956796813000142
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/231379.231414
https://doi.org/10.1145/989393.989449
https://eb.host.cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf
https://eb.host.cs.st-andrews.ac.uk/drafts/dtp-erasure-draft.pdf
https://web.archive.org/web/20170109225110/https://coq.inria.fr/doc/Reference-Manual006.html
https://web.archive.org/web/20170109225110/https://coq.inria.fr/doc/Reference-Manual006.html
https://doi.org/10.1145/640128.604144
https://doi.org/10.1145/358198.358210
https://arxiv.org/abs/1505.06430
https://doi.org/10.1145/2384616.2384655
http://arxiv.org/abs/1706.07997
https://doi.org/10.1145/3276502

bibliography 215

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework:
The propositional fragment. In International Workshop on Types for Proofs and
Programs (TYPES), 2003. doi:10.1007/978-3-540-24849-1_23.

S. Weirich, A. Voizard, P. H. A. de Amorim, and R. A. Eisenberg. A specification for
dependent types in Haskell. Proceedings of the ACM on Programming Languages
(PACMPL), 1(ICFP), Aug. 2017. doi:10.1145/3110275.

H. Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon Uni-
versity, 1998. URL https://www.cs.bu.edu/~hwxi/academic/papers/DML-thesis.

pdf.

H. Xi and R. Harper. A dependently typed assembly language. In International Con-
ference on Functional Programming (ICFP), Sept. 2001. doi:10.1145/507635.507657.

X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in
C compilers. In International Conference on Programming Language Design and
Implementation (PLDI), June 2011. doi:10.1145/1993498.1993532.

https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1145/3110275
https://www.cs.bu.edu/~hwxi/academic/papers/DML-thesis.pdf
https://www.cs.bu.edu/~hwxi/academic/papers/DML-thesis.pdf
https://doi.org/10.1145/507635.507657
https://doi.org/10.1145/1993498.1993532

A R E F E R E N C E F O R E C CD

This appendix contains the complete definitions of the semantics of ECCD, in particular,
its type system and evaluation semantics. All ECCD figures from Chapter 2 are
reproduced and completed with elided parts here, and elided figures are presented here.

Note that the observations depend on the particular pair languages and translation;
Here, I give only ECCD observations. In each target language, I will define the
target language observation, and each translation gives the cross-language relation for
observations.

Universes U ::= Prop | Type i

Expressions e,A,B ::= x | U | Πx : A.B | λ x : A. e | e e | Σx : A.B
| ⟨e1, e2⟩ asΣ x : A.B | fst e | snd e | bool | true | false
| if e then e1 else e2 | let x= e in e

Environments Γ ::= · | Γ, x : A | Γ, x = e

Figure A.1: ECCD Syntax

Γ ⊢ e▷ e′

Γ ⊢ (λ x : A. e1) e2 ▷β e1[e2/x]

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ if true then e1 else e2 ▷ι1 e1

Γ ⊢ if false then e1 else e2 ▷ι1 e2

Γ ⊢ x ▷δ e where x = e ∈ Γ

Γ ⊢ let x= e in e′ ▷ζ e[e′/x]

Figure A.2: ECCD Reduction

217

218 reference for eccD

Γ ⊢ e▷∗ e
Red-Refl

Γ ⊢ e▷ e1 Γ ⊢ e1 ▷
∗ e′

Γ ⊢ e▷∗ e′
Red-Trans

Γ ⊢ A▷∗ A′ Γ, x : A′ ⊢ e▷∗ e′

Γ ⊢ Πx : A. e▷∗ Πx : A′. e′
Red-Cong-Pi

Γ ⊢ A▷∗ A′ Γ, x : A′ ⊢ e▷∗ e′

Γ ⊢ λ x : A. e▷∗ λ x : A′. e′
Red-Cong-Lam

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ e1 e2 ▷
∗ e′1 e′2

Red-Cong-App

Γ ⊢ A▷∗ A′ Γ, x : A′ ⊢ e▷∗ e′

Γ ⊢ Σx : A. e▷∗ Σx : A′. e′
Red-Cong-Sig

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2 Γ ⊢ A▷∗ A′

Γ ⊢ ⟨e1, e2⟩ as A▷∗ ⟨e′1, e′2⟩ as A′ Red-Cong-Pair

Γ ⊢ e▷∗ e′

Γ ⊢ fst e▷∗ fst e′
Red-Cong-Fst

Γ ⊢ e▷∗ e′

Γ ⊢ snd e▷∗ snd e′
Red-Cong-Snd

Γ ⊢ e▷∗ e′ Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ if e then e1 else e2 ▷
∗ if e′ then e′1 else e

′
2

Red-Cong-If

Γ ⊢ e1 ▷
∗ e′1 Γ, x = e′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 in e2 ▷
∗ let x= e′1 in e

′
2

Red-Cong-Let

Figure A.3: ECCD Conversion

Γ ⊢ e≡ e′

Γ ⊢ e1 ▷
∗ e Γ ⊢ e2 ▷

∗ e

Γ ⊢ e1 ≡ e2
≡

Γ ⊢ e1 ▷
∗ λ x : A. e Γ ⊢ e2 ▷

∗ e′2 Γ, x : A ⊢ e≡ e′2 x

Γ ⊢ e1 ≡ e2
≡-η1

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ λ x : A. e Γ, x : A ⊢ e′1 x≡ e

Γ ⊢ e1 ≡ e2
≡-η2

Figure A.4: ECCD Equivalence

reference for eccD 219

Γ ⊢ A⪯ B

Γ ⊢ A≡ B

Γ ⊢ A⪯ B
⪯-≡

Γ ⊢ A⪯ A′ Γ ⊢ A′ ⪯ B

Γ ⊢ A⪯ B
⪯-Trans

Γ ⊢ Prop ⪯ Type 0
⪯-Prop

Γ ⊢ Type i ⪯ Type i+1
⪯-Cum

Γ ⊢ A1 ≡ A2 Γ, x1 : A2 ⊢ B1 ⪯ B2[x1/x2]

Γ ⊢ Πx1 : A1.B1 ⪯ Πx2 : A2.B2
⪯-Pi

Γ ⊢ A1 ⪯ A2 Γ, x1 : A2 ⊢ B1 ⪯ B2[x1/x2]

Γ ⊢ Σx1 : A1.B1 ⪯ Σx2 : A2.B2
⪯-Sig

Figure A.5: ECCD Subtyping

220 reference for eccD

Γ ⊢ e : A

x : A ∈ Γ

Γ ⊢ x : A
Var

⊢ Γ

Γ ⊢ Prop : Type 0
Prop

⊢ Γ

Γ ⊢ Type i : Type i+1
Type

Γ ⊢ A : Type i Γ, x : A ⊢ B : Prop

Γ ⊢ Πx : A.B : Prop
Pi-Prop

Γ ⊢ A : Type i Γ, x : A ⊢ B : Type i

Γ ⊢ Πx : A.B : Type i
Pi-Type

Γ, x : A ⊢ e : B

Γ ⊢ λ x : A. e : Πx : A.B
Lam

Γ ⊢ e : Πx : A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
App

Γ ⊢ A : Type i Γ, x : A ⊢ B : Type i

Γ ⊢ Σx : A.B : Type i
Sig

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩ as (Σx : A.B) : Σx : A.B
Pair

Γ ⊢ e : Σx : A.B

Γ ⊢ fst e : A
Fst

Γ ⊢ e : Σx : A.B

Γ ⊢ snd e : B[fst e/x]
Snd

⊢ Γ

Γ ⊢ bool : Prop
Bool

⊢ Γ

Γ ⊢ true : bool
True

⊢ Γ

Γ ⊢ false : bool
False

Γ, y : bool ⊢ B : U Γ ⊢ e : bool Γ ⊢ e1 : B[true/y] Γ ⊢ e2 : B[false/y]

Γ ⊢ if e then e1 else e2 : B[e/y]
If

Γ ⊢ e : A Γ, x : A, x = e ⊢ e′ : B

Γ ⊢ let x= e in e′ : B[e/x]
Let

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A⪯ B

Γ ⊢ e : B
Conv

⊢ Γ

⊢ ·
W-Empty

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
W-Assum

⊢ Γ Γ ⊢ e : A

⊢ Γ, x = e
W-Def

Figure A.6: ECCD Typing

ECCD Observations v ::= true | false

Figure A.7: ECCD Observations

reference for eccD 221

Γ ⊢ e

Γ ⊢ e : bool

Γ ⊢ e

⊢ e

· ⊢ e

⊢ e

Figure A.8: ECCD Components and Programs

eval(e) = v

eval(e) = v if ⊢ e and · ⊢ e▷∗ v

Figure A.9: ECCD Evaluation

Closing Substitutions γ
def
= · | γ[x 7→ e]

Γ ⊢ γ

· ⊢ ·
Γ ⊢ γ · ⊢ e : A

Γ, x : A ⊢ γ[x 7→ e]

Γ ⊢ γ Γ ⊢ e : A

Γ, x = e ⊢ γ[x 7→ γ(e)]

γ(e) = e

·(e) = e γ[x 7→ e′](e) = γ(e[x/e′])

Figure A.10: ECCD Closing Substitutions and Linking

B R E F E R E N C E F O R E C CA

This appendix contains the complete definitions for ECCA. All ECCA figures from
Chapter 4 are reproduced and completed with elided parts here, and elided figures are
presented here.

Recall that ECCA is a syntactic restriction of ECCD that supports a machine
evaluation semantics. The primary difference between the figure here and in Chapter 4
is the syntax is extended with non-ANF expressions to formally describe type checking
in ECCA. Recall that the type system for ECCA is the same as ECCD, so the figures
related to the type system are identical to those in Appendix A.

Typographical Note. In this appendix, I typeset ECCA in a bold, red, serif font.

Universes U ::= Prop | Type i

Values V ::= x | U | Πx :M.M | λx :M.M | Σx :M.M
| ⟨V,V⟩asM

Computations N ::= V | V V | fstV | sndV

Configurations M ::= N | let x=NinM

Continuations K ::= [·] | let x= [·] inM

Expressions e,A,B ::= x | U | Πx :A.B | λx :A. e | e e | Σx :A.B
| ⟨e1, e2⟩asΣx :A.B | fst e | snde | bool | true
| false | if e then e1 else e2 | let x= e in e

Environments Γ ::= · | Γ,x : A | Γ,x = e

Figure B.1: ECCA Syntax

223

224 reference for eccA

Γ ⊢ e▷ e′

Γ ⊢ (λx :A. e1) e2 ▷β e1[e2/x]

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ if true thene1 else e2 ▷ι1 e1

Γ ⊢ if false thene1 else e2 ▷ι1 e2

Γ ⊢ x ▷δ e where x = e ∈ Γ

Γ ⊢ let x= e in e′ ▷ζ e[e′/x]

Figure B.2: ECCA Reduction

Γ ⊢ e▷∗ e
Red-Refl

Γ ⊢ e▷ e1 Γ ⊢ e1 ▷
∗ e′

Γ ⊢ e▷∗ e′
Red-Trans

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ Πx :A. e▷∗ Πx :A′. e′
Red-Cong-Pi

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ λx :A. e▷∗ λx :A′. e′
Red-Cong-Lam

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ e1 e2 ▷
∗ e′1 e′2

Red-Cong-App

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ Σx :A. e▷∗ Σx :A′. e′
Red-Cong-Sig

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2 Γ ⊢ A▷∗ A′

Γ ⊢ ⟨e1, e2⟩asA▷∗ ⟨e′1, e′2⟩asA′ Red-Cong-Pair

Γ ⊢ e▷∗ e′

Γ ⊢ fst e▷∗ fst e′
Red-Cong-Fst

Γ ⊢ e▷∗ e′

Γ ⊢ snde▷∗ snde′
Red-Cong-Snd

Γ ⊢ e▷∗ e′ Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ if e then e1 else e2 ▷
∗ if e′ thene′1 else e

′
2

Red-Cong-If

Γ ⊢ e1 ▷
∗ e′1 Γ,x = e′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 in e2 ▷
∗ let x= e′1 in e′2

Red-Cong-Let

Figure B.3: ECCA Conversion

reference for eccA 225

Γ ⊢ e≡ e′

Γ ⊢ e1 ▷
∗ e Γ ⊢ e2 ▷

∗ e

Γ ⊢ e1 ≡ e2
≡

Γ ⊢ e1 ▷
∗ λx :A. e Γ ⊢ e2 ▷

∗ e′2 Γ,x : A ⊢ e≡ e′2 x

Γ ⊢ e1 ≡ e2
≡-η1

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ λx :A. e Γ,x : A ⊢ e′1 x≡ e

Γ ⊢ e1 ≡ e2
≡-η2

Figure B.4: ECCA Equivalence

Γ ⊢ A⪯B

Γ ⊢ A≡B

Γ ⊢ A⪯B
⪯-≡

Γ ⊢ A⪯A′ Γ ⊢ A′ ⪯B

Γ ⊢ A⪯B
⪯-Trans

Γ ⊢ Prop ⪯Type 0
⪯-Prop

Γ ⊢ Type i ⪯Type i+1
⪯-Cum

Γ ⊢ A1 ≡A2 Γ,x1 : A2 ⊢ B1 ⪯B2[x1/x2]

Γ ⊢ Πx1 :A1.B1 ⪯Πx2 :A2.B2
⪯-Pi

Γ ⊢ A1 ⪯A2 Γ,x1 : A2 ⊢ B1 ⪯B2[x1/x2]

Γ ⊢ Σx1 :A1.B1 ⪯Σx2 :A2.B2
⪯-Sig

Figure B.5: ECCA Subtyping

226 reference for eccA

Γ ⊢ e : A

x : A ∈ Γ

Γ ⊢ x : A
Var

⊢ Γ

Γ ⊢ Prop : Type 0
Prop

⊢ Γ

Γ ⊢ Type i : Type i+1
Type

Γ ⊢ A : Type i Γ,x : A ⊢ B : Prop

Γ ⊢ Πx :A.B : Prop
Pi-Prop

Γ ⊢ A : Type i Γ,x : A ⊢ B : Type i

Γ ⊢ Πx :A.B : Type i
Pi-Type

Γ,x : A ⊢ e : B

Γ ⊢ λx :A. e : Πx :A.B
Lam

Γ ⊢ e : Πx :A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
App

Γ ⊢ A : Type i Γ,x : A ⊢ B : Type i

Γ ⊢ Σx :A.B : Type i
Sig

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩as (Σx :A.B) : Σx :A.B
Pair

Γ ⊢ e : Σx :A.B

Γ ⊢ fst e : A
Fst

Γ ⊢ e : Σx :A.B

Γ ⊢ snde : B[fst e/x]
Snd

⊢ Γ

Γ ⊢ bool : Prop
Bool

⊢ Γ

Γ ⊢ true : bool
True

⊢ Γ

Γ ⊢ false : bool
False

Γ,y : bool ⊢ B : U
Γ ⊢ e : bool Γ ⊢ e1 : B[true/y] Γ ⊢ e2 : B[false/y]

Γ ⊢ if e then e1 else e2 : B[e/y]
If

Γ ⊢ e : A Γ,x : A,x = e ⊢ e′ : B

Γ ⊢ let x= e in e′ : B[e/x]
Let

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A⪯B

Γ ⊢ e : B
Conv

⊢ Γ

⊢ ·
W-Empty

⊢ Γ Γ ⊢ A : U

⊢ Γ,x : A
W-Assum

⊢ Γ Γ ⊢ e : A

⊢ Γ,x = e
W-Def

Figure B.6: ECCA Typing

reference for eccA 227

K⟨⟨M⟩⟩ = M

K⟨⟨N⟩⟩ def
= K[N]

K⟨⟨let x=N′ inM⟩⟩ def
= let x=N′ inK⟨⟨M⟩⟩

K⟨⟨K⟩⟩ = K

K⟨⟨[·]⟩⟩ def
= K

K⟨⟨let x= [·] inM⟩⟩ def
= let x= [·] inK⟨⟨M⟩⟩

M[M′//x] = M

M[M′//x]
def
= (let x= [·] inM)⟨⟨M′⟩⟩

Figure B.7: ECCA Composition of Configurations

Γ ⊢ K : (N : MA) ⇒ MB

Γ ⊢ [·] : (N : MA) ⇒ MA

K-Empty

Γ ⊢ N : MA Γ,y = N ⊢ M : MB

Γ ⊢ let y = [·] inM : (N : MA) ⇒ MB

K-Bind

Figure B.8: ECCA Continuation Typing

defs(M) = Γ

defs(M) = x1 = N1, . . . ,xn = Nn whereM = let x1=N1 in . . . let xn=Nn inNn+1

hole(M) = N

hole(M) = Nn+1 whereM = let x1 =N1 in . . . let xn =Nn inNn+1

Figure B.9: ECCA Continuation Exports

Γ ⊢ M

Γ ⊢ M : bool

Γ ⊢ M

⊢ M

· ⊢ M

⊢ M

Figure B.10: ECCA Components and Programs

228 reference for eccA

ECCA Observations v ::= true | false

Figure B.11: ECCA Observations

M 7→ M′

K[(λx :A.M) V] 7→β K⟨⟨M[V/x]⟩⟩
K[fst ⟨V1,V2⟩] 7→π1 K[V1]

K[snd ⟨V1,V2⟩] 7→π2 K[V2]

let x=V inM 7→ζ M[V/x]

⊢ M 7→∗ M′

⊢ M 7→∗ M
RedA-Refl

M 7→ M1 ⊢ M1 7→∗ M′

⊢ M 7→∗ M′ RedA-Trans

eval(M) = V

eval(M) = V if ⊢ M and M 7→∗ V and V ̸7→ V′

Figure B.12: ECCA Evaluation

Closing Substitutions γ
def
= · | γ[x 7→ M]

Γ ⊢ γ

· ⊢ ·
Γ ⊢ γ · ⊢ M : A

Γ,x : A ⊢ γ[x 7→ M]

Γ ⊢ γ Γ ⊢ M : A

Γ,x = M ⊢ γ[x 7→ γ(M)]

γ(M) = M

·(M) = M γ[x 7→ M′](M) = γ(M[x//M′])

Figure B.13: ECCA Closing Substitutions and Linking

C R E F E R E N C E F O R A N F T R A N S L AT I O N

This appendix contains the complete definitions for the ANF translation from Chapter 4.
All figures related to the ANF translation are reproduced and completed with elided
parts here, and elided figures are presented here.

Typographical Note. In this appendix, I typeset the source language, ECCD, in a
blue, non-bold, sans-serif font, and the target language, ECCA, in a bold, red, serif
font.

v ≈ v

true ≈ true false ≈ false

Figure C.1: Observation Relation between ECCD and ECCA

JeKK = M

JeK def
= JeK [·]

JxKK def
= K[x]

JProp KK def
= K[Prop]

JType iKK
def
= K[Type i]

JΠx : A.BKK def
= K[Πx : JAK. JBK]

Jλ x : A. eKK def
= K[λx : JAK. JeK]

Je1 e2KK
def
= Je1K let x1 = [·] in (Je2K let x2 = [·] inK[x1 x2])

JΣx : A.BKK def
= K[Σx : JAK. JBK]

J⟨e1, e2⟩ as AKK def
= Je1K let x1 = [·] in Je2K (let x2 = [·] inK[(⟨x1,x2⟩as JAK)])

Jfst eKK def
= JeK let x= [·] inK[fst x]

Jsnd eKK def
= JeK let x= [·] inK[sndx]

Jlet x= e in e′KK def
= JeK let x= [·] in Je′KK

Figure C.2: ANF Translation from ECCD to ECCA

229

D R E F E R E N C E F O R E C CC C

This appendix contains the complete definitions for ECCCC . All ECCCC figures from
Chapter 5 are reproduced and completed with elided parts here, and elided figures are
presented here. In particular, additional figures regarding the ANF variant of ECCCC

are included here.

Typographical Note. In this appendix, I typeset ECCCC in a bold, red, serif font,
and typeset the model language ECCD in a blue, non-bold, sans-serif font.

Universes U ::= Prop | Type i

Expressions e,A,B ::= x | U | Code (x′ : A′,x : A).B | λ (x′ : A′,x : A). e
| Πx :A.B | ⟨⟨e, e′⟩⟩ | e e′ | Σx :A.B
| ⟨e1, e2⟩asΣx :A.B | fst e | snde | bool | true
| false | if e then e1 else e2 | let x= e in e | 1 | ⟨⟩

Figure D.1: ECCCC Syntax

⟨e1, e2⟩ = ⟨e1, e2⟩asΣx :A.B
where e1 : A and e2 : B are inferred from context

⟨ei...⟩ = ⟨e0, ⟨e1, ...⟨en, ⟨⟩⟩⟩⟩
Σ (xi : Ai...) = Σx0 :A0.Σx1 :A1. ...Σxn :An.1

let ⟨xi...⟩= e in e′ = let x0 = fst e in
let x1 = fst snde in ...
let xn = fst snd ...snde in e′

Figure D.2: ECCCC Syntactic Sugar

231

232 reference for eccCC

Γ ⊢ e▷ e′

Γ ⊢ ⟨⟨λx′ : A′,x : A. e1, e
′⟩⟩ e ▷β e1[e

′/x′][e/x]

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ if true thene1 else e2 ▷ι1 e1

Γ ⊢ if false thene1 else e2 ▷ι2 e2

Γ ⊢ x ▷δ e where x = e ∈ Γ

Γ ⊢ let x= e in e1 ▷ζ e1[e/x]

Figure D.3: ECCCC Reduction

reference for eccCC 233

Γ ⊢ e▷∗ e
Red-Refl

Γ ⊢ e▷ e1 Γ ⊢ e1 ▷
∗ e′

Γ ⊢ e▷∗ e′
Red-Trans

Γ ⊢ A1 ▷
∗ A′

1

Γ,n : A′
1 ⊢ A2 ▷

∗ A′
2 Γ,n : A′

1,x : A′
2 ⊢ B▷∗ B′

Γ ⊢ Code (n : A1,x : A2).B▷
∗ Code (n : A′

1,x : A′
2).B

′ Red-Cong-T-Code

Γ ⊢ A1 ▷
∗ A′

1

Γ,n : A′
1 ⊢ A2 ▷

∗ A′
2 Γ,n : A′

1,x : A′
2 ⊢ e▷∗ e′

Γ ⊢ λ (n : A1,x : A2). e▷
∗ λ (n : A′

1,x : A′
2). e

′ Red-Cong-Code

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ Πx :A. e▷∗ Πx :A′. e′
Red-Cong-Pi

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ ⟨⟨e1, e2⟩⟩▷∗ ⟨⟨e′1, e′2⟩⟩
Red-Cong-Clo

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ e1 e2 ▷
∗ e′1 e′2

Red-Cong-App

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ Σx :A. e▷∗ Σx :A′. e′
Red-Cong-Sig

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2 Γ ⊢ A▷∗ A′

Γ ⊢ ⟨e1, e2⟩asA▷∗ ⟨e′1, e′2⟩asA′ Red-Cong-Pair

Γ ⊢ e▷∗ e′

Γ ⊢ fst e▷∗ fst e′
Red-Cong-Fst

Γ ⊢ e▷∗ e′

Γ ⊢ snde▷∗ snde′
Red-Cong-Snd

Γ ⊢ e▷∗ e′ Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ if e then e1 else e2 ▷
∗ if e′ thene′1 else e

′
2

Red-Cong-If

Γ ⊢ e1 ▷
∗ e′1 Γ,x = e′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 in e2 ▷
∗ let x= e′1 in e′2

Red-Cong-Let

Figure D.4: ECCCC Conversion

234 reference for eccCC

Γ ⊢ e1 ▷
∗ e Γ ⊢ e2 ▷

∗ e

Γ ⊢ e1 ≡ e2
≡

Γ ⊢ e1 ▷
∗ ⟨⟨λ (x′ : A′,x : A). e′1, e

′⟩⟩
Γ ⊢ e2 ▷

∗ e′2 Γ,x : A ⊢ e1[e
′/x′]≡ e′2 x

Γ ⊢ e1 ≡ e2
≡-Clo1

Γ ⊢ e2 ▷
∗ ⟨⟨λ (x′ : A′,x : A). e′2, e

′⟩⟩
Γ ⊢ e1 ▷

∗ e′1 Γ,x : A ⊢ e′1 x≡ e′2[e
′/x′]

Γ ⊢ e1 ≡ e2
≡-Clo2

Figure D.5: ECCCC Equivalence

Γ ⊢ A⪯B

Γ ⊢ A≡B

Γ ⊢ A⪯B
⪯-≡

Γ ⊢ A⪯A′ Γ ⊢ A′ ⪯B

Γ ⊢ A⪯B
⪯-Trans

Γ ⊢ Prop ⪯Type 0
⪯-Prop

Γ ⊢ Type i ⪯Type i+1
⪯-Cum

Γ ⊢ A1 ≡A2

Γ,n1 : A1 ⊢ A′
1 ≡A′

2 Γ,n1 : A1,x1 : A
′
1 ⊢ B1 ⪯B2[n1/n2][x1/x2]

Γ ⊢ Code (n1 : A1,x1 : A
′
1).B1 ⪯Code (n2 : A2,x2 : A

′
2).B2

⪯-Code

Γ ⊢ A1 ≡A2 Γ,x1 : A1 ⊢ B1 ⪯B2[x1/x2]

Γ ⊢ Πx1 :A1.B1 ⪯Πx2 :A2.B2
⪯-Pi

Γ ⊢ A1 ⪯A2 Γ,x1 : A2 ⊢ B1 ⪯B2[x1/x2]

Γ ⊢ Σx1 :A1.B1 ⪯Σx2 :A2.B2
⪯-Sig

Figure D.6: ECCCC Subtyping

reference for eccCC 235

Γ ⊢ e : t

x : A ∈ Γ ⊢ Γ

Γ ⊢ x : A
Var

⊢ Γ

Γ ⊢ Prop : Type 1
Prop

⊢ Γ

Γ ⊢ Type i : Type i+1
Type

Γ ⊢ A : U Γ,x : A ⊢ B : Prop

Γ ⊢ Πx :A.B : Prop
Pi-Prop

Γ ⊢ A : Type i Γ,x : A ⊢ B : Type i

Γ ⊢ Πx :A.B : Type i
Pi-Type

Γ ⊢ e : Πx :A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
App

Γ ⊢ A : Type i Γ,x : A ⊢ B : Type i

Γ ⊢ Σx :A.B : Type i
Sig

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩asΣx :A.B : Σx :A.B
Pair

Γ ⊢ e : Σx :A.B

Γ ⊢ fst e : A
Fst

Γ ⊢ e : Σx :A.B

Γ ⊢ snde : B[fst e/x]
Snd

⊢ Γ

Γ ⊢ bool : Prop
Bool

⊢ Γ

Γ ⊢ true : bool
True

⊢ Γ

Γ ⊢ false : bool
False

Γ,y : bool ⊢ B : U Γ ⊢ e1 : B[true/y] Γ ⊢ e2 : B[false/y]

Γ ⊢ if e then e1 else e2 : B[e/y]
If

Γ ⊢ e : A Γ,x : A,x = e ⊢ e′ : B

Γ ⊢ let x= e in e′ : B[e/x]
Let

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A⪯B

Γ ⊢ e : B
Conv

Figure D.7: ECCCC Typing (1/2)

236 reference for eccCC

Γ,x′ : A′,x : A ⊢ B : Prop

Γ ⊢ Code (x′ : A′,x : A).B : Prop
T-Code-Prop

Γ,x′ : A′,x : A ⊢ B : Type i

Γ ⊢ Code (x : A,x′ : A′).B : Type i
T-Code-Type

·,x′ : A′,x : A ⊢ e : B

Γ ⊢ λ (x′ : A′,x : A). e : Code (x′ : A′,x : A).B
Code

Γ ⊢ e : Code (x′ : A′,x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Πx :A[e′/x′].B[e′/x′]
Clo

⊢ Γ

Γ ⊢ 1 : Prop
T-Unit

⊢ Γ

Γ ⊢ ⟨⟩ : 1
Unit

Figure D.8: ECCCC Typing (2/2)

⊢ Γ

⊢ ·
W-Empty

⊢ Γ Γ ⊢ A : U

⊢ Γ,x : A
W-Assum

⊢ Γ Γ ⊢ e : A

⊢ Γ,x = e
W-Def

Figure D.9: ECCCC Well-formed Environments

ECCCC Observations v ::= true | false

Figure D.10: ECCCC Observations

Γ ⊢ e

Γ ⊢ e : bool

Γ ⊢ e

⊢ e

· ⊢ e

⊢ e

Figure D.11: ECCCC Components and Programs

eval(e) = v

eval(e) = v if ⊢ e and e ▷∗ v

Figure D.12: ECCCC Evaluation

reference for eccCC 237

Closing Substitutions γ
def
= · | γ[x 7→ e]

Γ ⊢ γ

· ⊢ ·
Γ ⊢ γ · ⊢ e : A

Γ,x : A ⊢ γ[x 7→ e]

Γ ⊢ γ Γ ⊢ e : A

Γ,x = e ⊢ γ[x 7→ γ(e)]

γ(e) = e

·(e) = e γ[x 7→ e′](e) = γ(e[x/e′])

Figure D.13: ECCCC Closing Substitutions and Linking

JeK◦ = e where Γ ⊢ e : A

JProp K◦ def
= Prop

JType iK◦
def
= Type i

JxK◦ def
= x

J1K◦ def
= Πα : Prop .Πx : α. α

J⟨⟩K◦ def
= λα : Prop . λ x : α. x

Jlet x= e in e′K◦ def
= let x= JeK◦ in Je′K◦

JΠx :A.BK◦ def
= Πx : JAK◦. JBK◦

J⟨⟨e, e′⟩⟩K◦ def
= JeK◦ Je′K◦

JCode (x′ : A′,x : A).BK◦ def
= Πx′ : JA′K◦.Πx : JAK◦. JBK◦

Jλ (x′ : A′,x : A). eK◦ def
= λ x′ : JA′K◦. λ x : JAK◦. JeK◦

Je e′K◦ def
= JeK◦ Je′K◦

JboolK◦ def
= bool

JtrueK◦ def
= true

JfalseK◦ def
= false

Jif e then e1 else e2K◦
def
= if JeK◦ then Je1K◦ else Je2K◦

JΣx :A.BK◦ def
= Σx : JAK◦. JBK◦

J⟨e1, e2⟩asΣx :A.BK◦ def
= ⟨Je1K◦ , Je2K◦⟩ asΣ x : JAK◦. JBK◦

Jfst eK◦ def
= fst JeK◦

JsndeK◦ def
= snd JeK◦

Figure D.14: Model of ECCCC in ECCD

238 reference for eccCC

Note that the following ANF definitions for ECCCC exclude dependent condition-
als, since the ANF translation for dependent conditionals presented in Chapter 4 is
incomplete.

Values V ::= x | U | Code (n : M,x : M).M | ⟨⟨V,V⟩⟩
| Πx :M.M | λ (n : M,x : M).M | Σx :M.M
| ⟨V,V⟩asM

Computations N ::= V | V V | fstV | sndV

Configurations M ::= N | let x=NinM

Continuations K ::= [·] | let x= [·] inM

Figure D.15: ECCCC ANF

K⟨⟨M⟩⟩ = M

K⟨⟨N⟩⟩ def
= K[N]

K⟨⟨let x=N′ inM⟩⟩ def
= let x=N′ inK⟨⟨M⟩⟩

K⟨⟨K⟩⟩ = K

K⟨⟨[·]⟩⟩ def
= K

K⟨⟨let x= [·] inM⟩⟩ def
= let x= [·] inK⟨⟨M⟩⟩

M[M′//x] = M

M[M′//x]
def
= (let x= [·] inM)⟨⟨M′⟩⟩

Figure D.16: ECCCC Composition of Configurations

reference for eccCC 239

M 7→ M′

K[⟨⟨(λ (n : M′
A,x : MA).M),V′⟩⟩ V] 7→β K⟨⟨M[V′/n][V/x]⟩⟩

K[fst ⟨V1,V2⟩] 7→π1 K[V1]

K[snd ⟨V1,V2⟩] 7→π2 K[V2]

let x=V inM 7→ζ M[V/x]

⊢ M 7→∗ M′

⊢ M 7→∗ M
RedA-Refl

M 7→ M1 ⊢ M1 7→∗ M′

⊢ M 7→∗ M′ RedA-Trans

eval(M) = V

eval(M) = V if ⊢ M and M 7→∗ V and V ̸7→ V′

Figure D.17: ECCCC ANF Machine Evaluation

E R E F E R E N C E F O R A B S T R A C T C LO S U R E
C O N V E R S I O N

This appendix contains the complete definitions for the abstract closure conversion
translation from Chapter 5. All figures related to the translation are reproduced and
completed with elided parts here, and elided figures are presented here.

Typographical Note. In this appendix, I typeset the source language, ECCD, in a
blue, non-bold, sans-serif font, and the target language, ECCCC , in a bold, red, serif
font.

v ≈ v

true ≈ true false ≈ false

Figure E.1: Observation Relation between ECCD and ECCCC

FV(e,B, Γ)
def
= Γ0, . . . , Γn, (x0 : A0, . . . , xn : An)

where x0, . . . , xn = fv(e,B)
Γ ⊢ x0 : A0

...
Γ ⊢ xn : An

Γ0 = FV(A0,_, Γ)
...

Γn = FV(An,_, Γ)

Figure E.2: Dependent Free Variable Sequences

JeK = e

JeK = e where Γ ⊢ e : A and Γ ⊢ e : A⇝ e

JΓK = Γ

JΓK = Γ where ⊢ Γ and ⊢ Γ⇝ Γ

Figure E.3: Closure Conversion Syntactic Sugar

241

242 reference for abstract closure conversion

Γ ⊢ e : t⇝ e where Γ ⊢ e : t

Γ ⊢ A : U⇝A Γ, x : A ⊢ B : Prop ⇝B

Γ ⊢ Πx : A.B : Prop ⇝Πx :A.B
CC-Pi-Prop

Γ ⊢ A : U⇝A Γ, x : A ⊢ B : Type i⇝B

Γ ⊢ Πx : A.B : Type i⇝Πx :A.B
CC-Pi-Type

Γ, x : A ⊢ e : B⇝ e Γ ⊢ A : U⇝A Γ, x : A ⊢ B : U⇝B
xi : Ai . . . = FV(λ x : A. e,Πx : A.B, Γ) Γ ⊢ Ai : U⇝Ai . . .

Γ ⊢ λ x : A. e : Πx : A.B⇝ ⟨⟨(λ (n : Σ (xi : Ai . . .),x : let ⟨xi . . .⟩= n inA).
let ⟨xi . . .⟩= n in e),

⟨xi . . .⟩asΣ (xi : Ai . . .)⟩⟩

CC-Lam

Γ ⊢ e1 : Πx : A.B⇝ e1 Γ ⊢ e2 : A⇝ e2

Γ ⊢ e1 e2 : B[e2/x]⇝ e1 e2
CC-App

Figure E.4: Abstract Closure Conversion from ECCD to ECCCC (1/2)

reference for abstract closure conversion 243

Γ ⊢ e : t⇝ e where Γ ⊢ e : t

Γ ⊢ x : A⇝ x
CC-Var

Γ ⊢ Prop : Type 1⇝Prop
CC-Prop

Γ ⊢ Type i : Type i+1⇝Type i+1
CC-Type

Γ ⊢ A : Type i⇝A Γ, x : A ⊢ B : Type i⇝B

Γ ⊢ Σx : A.B : Type i⇝Σx :A.B
CC-Sig

Γ ⊢ e1 : A⇝ e1
Γ ⊢ e2 : B[e1/x]⇝ e2 Γ ⊢ A : Type i⇝A Γ, x : A ⊢ B : Type i⇝B

Γ ⊢ ⟨e1, e2⟩ asΣ x : A.B : Σx : A.B⇝ ⟨e1, e2⟩asΣx :A.B
CC-Pair

Γ ⊢ e : Σx : A.B⇝ e

Γ ⊢ fst e : A⇝ fst e
CC-Fst

Γ ⊢ e : Σx : A.B⇝ e

Γ ⊢ snd e : B[fst e/x]⇝ snde
CC-Snd

Γ ⊢ true : bool⇝ true
CC-True

Γ ⊢ false : bool⇝ false
CC-False

Γ ⊢ e : bool⇝ e Γ ⊢ e1 : B[true/y]⇝ e1 Γ ⊢ e2 : B[false/y]⇝ e2

Γ ⊢ if e then e1 else e2 : B[e/y]⇝ if e then e1 else e2
CC-If

Γ ⊢ e : A⇝ e Γ, x : A ⊢ e′ : B⇝ e′

Γ ⊢ let x= e in e′ : B[e/x]⇝ let x= e in e′
CC-Let

Γ ⊢ e : A⇝ e

Γ ⊢ e : B⇝ e
CC-Conv

⊢ Γ⇝ Γ where ⊢ Γ

⊢ ·⇝ ·
CC-Empty

⊢ Γ⇝ Γ Γ ⊢ A : U⇝A

⊢ Γ, x : A⇝ Γ,x : A
CC-Assum

⊢ Γ⇝ Γ Γ ⊢ e : A⇝ e

⊢ Γ, x = e⇝ Γ,x = e
CC-Def

Figure E.5: Abstract Closure Conversion from ECCD to ECCCC (2/2)

F R E F E R E N C E F O R C O CD

This appendix contains the complete definitions for CoCD. All CoCD figures from
Chapter 6 are reproduced and completed with elided parts here, and elided figures
are presented here. These figures contained extensions with definitions required to
fully formalize the compiler correctness results, including booleans with non-dependent
elimination.

Typographical Note. In this appendix, I typeset CoCD in a blue, non-bold, sans-serif
font.

Universes U ::= ⋆ | □

Expressions t, e,A,B ::= x | ⋆ | Πx : A. e | λ x : A. e | e e | Σx : A.B
| ⟨e1, e2⟩ asΣ x : A.B | fst e | snd e | bool | true | false
| if e then e1 else e2 | let x= e : A in e

Environments Γ ::= · | Γ, x : A | Γ, x = e : A

Figure F.1: CoCD Syntax

Kinds K ::= ⋆ | Πα : K.K | Πx : A.K

Types A,B ::= α | Πx : A.B | Πα : K.B | λ x : A.B | λα : K.B | A e
| A B | Σx : A.B | bool | letα= A : K inB
| let x= e : A inB

Terms e ::= x | λ x : A. e | λα : K. e | e e | e A | ⟨e1, e2⟩ asΣ x : A.B
| fst e | snd e | true | false | if e then e1 else e2
| let x= e : A in e | letα= A : K in e

Environments Γ ::= · | Γ, x : A | Γ, x = e : A, | Γ, α : K | Γ, α = A : K

Figure F.2: CoCD Explicit Syntax

245

246 reference for cocD

Γ ⊢ e▷ e′

Γ ⊢ (λ x : A. e1) e2 ▷β e1[e2/x]

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ if true then e1 else e2 ▷ι1 e1

Γ ⊢ if false then e1 else e2 ▷ι1 e2

Γ ⊢ x ▷δ e where x = e : A ∈ Γ

Γ ⊢ let x= e2 : A in e1 ▷ζ e1[e2/x]

Figure F.3: CoCD Reduction

reference for cocD 247

Γ ⊢ e▷∗ e′

Γ ⊢ e▷∗ e
Red-Refl

Γ ⊢ e▷ e1 Γ ⊢ e1 ▷
∗ e′

Γ ⊢ e▷∗ e′
Red-Trans

Γ ⊢ A▷∗ A′ Γ, x : A′ ⊢ e▷∗ e′

Γ ⊢ λ x : A. e▷∗ λ x : A′. e′
Red-Cong-Lam

Γ ⊢ A▷∗ A′ Γ, x : A′ ⊢ e▷∗ e′

Γ ⊢ Πx : A. e▷∗ Πx : A′. e′
Red-Cong-Pi

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ e1 e2 ▷
∗ e′1 e′2

Red-Cong-App

Γ ⊢ A▷∗ A′ Γ, x : A′ ⊢ e▷∗ e′

Γ ⊢ Σx : A. e▷∗ Σx : A′. e′
Red-Cong-Sig

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2 Γ ⊢ A▷∗ A′

Γ ⊢ ⟨e1, e2⟩ as A▷∗ ⟨e′1, e′2⟩ as A′ Red-Cong-Pair

Γ ⊢ e▷∗ e′

Γ ⊢ fst e▷∗ fst e′
Red-Cong-Fst

Γ ⊢ e▷∗ e′

Γ ⊢ snd e▷∗ snd e′
Red-Cong-Snd

Γ ⊢ e▷∗ e′ Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ if e then e1 else e2 ▷
∗ if e′ then e′1 else e

′
2

Red-Cong-If

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ A▷∗ A′ Γ, x = e′ : A′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 : A in e2 ▷
∗ let x= e′1 : A

′ in e′2
Red-Cong-Let

Figure F.4: CoCD Conversion

248 reference for cocD

Γ ⊢ e≡ e′

Γ ⊢ e▷∗ e1 Γ ⊢ e′ ▷∗ e1

Γ ⊢ e≡ e′
≡

Γ ⊢ e▷∗ λ x : A. e1 Γ ⊢ e′ ▷∗ e2 Γ, x : A ⊢ e1 ≡ e2 x

Γ ⊢ e≡ e′
≡-η1

Γ ⊢ e▷∗ e1 Γ ⊢ e′ ▷∗ λ x : A. e2 Γ, x : A ⊢ e1 x≡ e2

Γ ⊢ e≡ e′
≡-η2

Figure F.5: CoCD Equivalence

Γ ⊢ e : A

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
Var

⊢ Γ

Γ ⊢ ⋆ : □
*

Γ, x : A ⊢ B : ⋆

Γ ⊢ Πx : A.B : ⋆
Pi-*

Γ, x : A ⊢ B : □

Γ ⊢ Πx : A.B : □
Pi-□

Γ, x : A ⊢ e : B Γ ⊢ Πx : A.B : U

Γ ⊢ λ x : A. e : Πx : A.B
Lam

Γ ⊢ e : Πx : A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
App

Γ ⊢ A : ⋆ Γ, x : A ⊢ B : ⋆

Γ ⊢ Σx : A.B : ⋆
Sig

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩ asΣ x : A.B : Σx : A.B
Pair

Γ ⊢ e : Σx : A.B

Γ ⊢ fst e : A
Fst

Γ ⊢ e : Σx : A.B

Γ ⊢ snd e : B[fst e/x]
Snd

⊢ Γ

Γ ⊢ bool : ⋆
Bool

⊢ Γ

Γ ⊢ true : bool
True

⊢ Γ

Γ ⊢ false : bool
False

Γ ⊢ e : bool Γ ⊢ e1 : B Γ ⊢ e2 : B

Γ ⊢ if e then e1 else e2 : B
If

Γ ⊢ e′ : A Γ, x = e′ : A ⊢ e : B

Γ ⊢ let x= e′ : A in e : B[e′/x]
Let

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A≡ B

Γ ⊢ e : B
Conv

Figure F.6: CoCD Typing

reference for cocD 249

⊢ Γ

⊢ ·
W-Empty

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
W-Assum

⊢ Γ Γ ⊢ e : A Γ ⊢ A : U

⊢ Γ, x = e : A
W-Def

Figure F.7: CoCD Well-Formed Environments

CoCD Observations v ::= true | false

Figure F.8: CoCD Observations

Γ ⊢ e

Γ ⊢ e : bool

Γ ⊢ e

⊢ e

· ⊢ e

⊢ e

Figure F.9: CoCD Components and Programs

eval(e) = v

eval(e) = v if ⊢ e and · ⊢ e▷∗ v

Figure F.10: CoCD Evaluation

Closing Substitutions γ
def
= · | γ[x 7→ e]

Γ ⊢ γ

· ⊢ ·
Γ ⊢ γ · ⊢ e : A

Γ, x : A ⊢ γ[x 7→ e]

Γ ⊢ γ Γ ⊢ e : A

Γ, x = e : A ⊢ γ[x 7→ γ(e)]

γ(e) = e

·(e) = e γ[x 7→ e′](e) = γ(e[x/e′])

Figure F.11: CoCD Closing Substitutions and Linking

G R E F E R E N C E F O R C O C k

This appendix contains the complete definitions for CoCk. All CoCk figures from
Chapter 6 are reproduced and completed with elided parts here, and elided figures are
presented here.

Typographical Note. In this appendix, I typeset CoCk in a bold, red, serif font.

Universes U ::= ⋆ | □

Expressions e,A,B ::= x | ⋆ | Πx :A. e | λx :A. e | e e | e @ A e
| Σx :A.B | ⟨e1, e2⟩asΣx :A.B | fst e | snde
| bool | true | false | if e then e1 else e2
| let x= e :Aine

Environments Γ ::= · | Γ,x : A | Γ,x = e : A

Figure G.1: CoCk Syntax

Γ ⊢ e▷ e′

Γ ⊢ (λx :A. e1) e2 ▷β e1[e2/x]

Γ ⊢ λα : ⋆. e1 @ A e2 ▷@ (e1[A/α]) e2

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ if true thene1 else e2 ▷ι1 e1

Γ ⊢ if false thene1 else e2 ▷ι1 e2

Γ ⊢ x ▷δ e where x = e ∈ Γ

Γ ⊢ let x= e2 :Aine1 ▷ζ e1[e2/x]

Figure G.2: CoCk Reduction

251

252 reference for cock

Γ ⊢ e≡ e′

Γ ⊢ e▷∗ e1 Γ ⊢ e′ ▷∗ e1

Γ ⊢ e≡ e′
≡

Γ ⊢ e▷∗ λx :A. e1 Γ ⊢ e′ ▷∗ e2 Γ,x : A ⊢ e1 ≡ e2 x

Γ ⊢ e≡ e′
≡-η1

Γ ⊢ e▷∗ e1 Γ ⊢ e′ ▷∗ λx :A. e2 Γ,x : A ⊢ e1 x≡ e2

Γ ⊢ e≡ e′
≡-η2

Γ ⊢ (e1 @ A (λx :B. e2))≡ (λx :B. e2) (e1 B id)
≡-Cont

Γ ⊢ e′ ≡ e

Γ ⊢ e≡ e′
≡-Sym

Γ ⊢ e≡ e1 Γ ⊢ e1 ≡ e′

Γ ⊢ e≡ e′
≡-Trans

Figure G.3: CoCk Equivalence

reference for cock 253

Γ ⊢ e≡ e′

Γ ⊢ e▷∗ e
Red-Refl

Γ ⊢ e▷ e1 Γ ⊢ e1 ▷
∗ e′

Γ ⊢ e▷∗ e′
Red-Trans

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ Πx :A. e▷∗ Πx :A′. e′
Red-Cong-Pi

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ λx :A. e▷∗ λx :A′. e′
Red-Cong-Lam

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ e1 e2 ▷
∗ e′1 e′2

Red-Cong-App

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ A▷∗ A′ Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ e1 @ A e2 ▷
∗ e′1 @ A′ e′2

Red-Cong-Cont

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ Σx :A. e▷∗ Σx :A′. e′
Red-Cong-Sig

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2 Γ ⊢ A▷∗ A′

Γ ⊢ ⟨e1, e2⟩asA▷∗ ⟨e′1, e′2⟩asA′ Red-Cong-Pair

Γ ⊢ e▷∗ e′

Γ ⊢ fst e▷∗ fst e′
Red-Cong-Fst

Γ ⊢ e▷∗ e′

Γ ⊢ snde▷∗ snde′
Red-Cong-Snd

Γ ⊢ e▷∗ e′ Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ if e then e1 else e2 ▷
∗ if e′ thene′1 else e

′
2

Red-Cong-If

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ A▷∗ A′ Γ,x = e′ : A′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 :Aine2 ▷
∗ let x= e′1 :A

′ in e′2
Red-Cong-Let

Figure G.4: CoCk Conversion

254 reference for cock

Γ ⊢ e : A

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
Var

⊢ Γ

Γ ⊢ ⋆ : □
*

Γ,x : A ⊢ B : ⋆

Γ ⊢ Πx :A.B : ⋆
Pi-*

Γ,x : A ⊢ B : □

Γ ⊢ Πx :A.B : □
Pi-□

Γ,x : A ⊢ e : B Γ ⊢ Πx :A.B : U

Γ ⊢ λx :A. e : Πx :A.B
Lam

Γ ⊢ e : Πx :A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
App

Γ ⊢ e : Πα : ⋆. (B→α)→α Γ ⊢ A : ⋆ Γ,x = e B id ⊢ e′ : A

Γ ⊢ e @ A (λx :B. e′) : A
T-Cont

Γ ⊢ A : ⋆ Γ,x : A ⊢ B : ⋆

Γ ⊢ Σx :A.B : ⋆
Sig

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩asΣx :A.B : Σx :A.B
Pair

Γ ⊢ e : Σx :A.B

Γ ⊢ fst e : A
Fst

Γ ⊢ e : Σx :A.B

Γ ⊢ snde : B[fst e/x]
Snd

⊢ Γ

Γ ⊢ bool : ⋆
Bool

⊢ Γ

Γ ⊢ true : bool
True

⊢ Γ

Γ ⊢ false : bool
False

Γ ⊢ e : bool Γ ⊢ e1 : B Γ ⊢ e2 : B

Γ ⊢ if e then e1 else e2 : B
If

Γ ⊢ e : A Γ,x = e : A ⊢ e′ : B

Γ ⊢ let x= e :Aine′ : B[e/x]
Let

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A≡B

Γ ⊢ e : B
Conv

Figure G.5: CoCk Typing

reference for cock 255

⊢ Γ

⊢ ·
W-Empty

⊢ Γ Γ ⊢ A : U

⊢ Γ,x : A
W-Assum

⊢ Γ Γ ⊢ e : A Γ ⊢ A : U

⊢ Γ,x = e : A
W-Def

Figure G.6: CoCk Well-formed Environments

CoCk Observations v ::= true | false

Figure G.7: CoCk Observations

Γ ⊢ e

Γ ⊢ e : Πα :Prop . (bool→α)→α

Γ ⊢ e

⊢ e

· ⊢ e

⊢ e

Figure G.8: CoCk Components and Programs

eval(e) = v

eval(e) = v if ⊢ e and · ⊢ e @ bool id▷∗ v

Figure G.9: CoCk Evaluation

Closing Substitutions γ
def
= · | γ[x 7→ e]

Γ ⊢ γ

· ⊢ ·
Γ ⊢ γ · ⊢ e : A

Γ,x : A ⊢ γ[x 7→ e]

Γ ⊢ γ Γ ⊢ e : A

Γ,x = e : A ⊢ γ[x 7→ γ(e)]

γ(e) = e

·(e) = e γ[x 7→ e′](e) = γ(e[x/e′])

Figure G.10: CoCk Closing Substitutions and Linking

256 reference for cock

Γ ⊢ e1 ≡ e2

All other rules identical to CoCD

Γ ⊢ p : e1 = e2

Γ ⊢ e1 ≡ e2
≡-Ext

Figure G.11: Extensional CoC Equivalence

Γ ⊢ e : A⇝◦ e

All other rules are homomorphic

Γ ⊢ e : _⇝◦ e
Γ ⊢ B : _⇝◦ B Γ ⊢ A : _⇝◦ A Γ,x = e B id ⊢ e′ : A⇝◦ e

′

Γ ⊢ e @ A (λx :B. e′) : A⇝◦ let x= e B id :B in e′
Un-Cont

Figure G.12: Model of CoCk in Extensional CoC

reference for cock 257

Declare ML Module "paramcoq".

Variable A : Prop.

Variable B : Prop.

Variable R_b : B -> B -> Prop.

Realizer A as A_r arity 2 := (fun a1 a2 => a1 = a2).

Realizer B as B_r arity 2 := R_b.

Definition cpsT := forall (α:Prop), (B -> α) -> α.

Parametricity cpsT.

Definition id := fun (x : B) => x.

Definition kT := (B -> A).

Parametricity kT.

(* Note that by the fundamental property, the premises are trivially

satisfied, but the translation really wants an honest-to-goodness

term and not a variable. *)

Theorem Cont_Shuffle : forall e k, (cpsT_R e e) -> (kT_R k k) ->

((e A k) = (k (e B id))).

Proof.

intros e k P_e P_k.

unfold cpsT_R in P_e.

(* The only clever part: instantiate the relation between types

A and B to be that a is related to (k b) in the A relation*)

set (P := (P_e A B (fun (a:A) (b:B) => (A_r a (k b))) k id)).

unfold id in P at 1.

exact (P (fun b1 b2 H0 => (P_k b1 b2 H0))).

Qed.

Listing G.1: Coq proof of Lemma 6.4.2

H R E F E R E N C E F O R C P S n

This appendix contains the complete definitions for the CBN CPS translation from
CoCD to CoCk. All translation figures from Chapter 6 are reproduced and completed
with elided parts here, and elided figures are presented here.

Typographical Note. In this appendix, I typeset the source language, CoCD, in a
blue, non-bold, sans-serif font, and the target language, CoCk, in a bold, red, serif
font.

v ≈ v

true ≈ true false ≈ false

Figure H.1: Observation Relation between CoCD and CoCk

Γ ⊢ U⇝n
U U

Γ ⊢ ⋆⇝n
U ⋆

CPSn
U -Star

Γ ⊢ □⇝n
U □

CPSn
U -Box

Figure H.2: CPSn of Universes

Γ ⊢ K : U⇝n
κ κ Lemma 6.5.5 will show Γ+ ⊢ K+ : U+

Γ ⊢ ⋆ : □⇝n
κ ⋆

CPSn
κ-Ax

Γ ⊢ K : U⇝n
κ κ Γ, α : K ⊢ K′ : U′⇝n

κ κ′

Γ ⊢ Πα : K.K′ : U′⇝n
κ Πα : κ.κ′ CPSn

κ-PiK

Γ ⊢ A : K′⇝n
A÷ A Γ, x : A ⊢ K : U⇝n

κ κ

Γ ⊢ Πx : A.K : U⇝n
κ Πx :A.κ

CPSn
κ-PiA

Figure H.3: CPSn of Kinds

259

260 reference for cpsn

Γ ⊢ A : K⇝n
A A Lemma 6.5.5 will show Γ+ ⊢ A+ : K+

Γ ⊢ α : K⇝n
A α

CPSn
A-Var

Γ ⊢ A : K⇝n
A÷ A Γ, x : A ⊢ B : K′⇝n

A÷ B

Γ ⊢ Πx : A.B : K′⇝n
A Πx :A.B

CPSn
A-Pi

Γ ⊢ K : U⇝n
κ κ Γ, x : A ⊢ B : K′⇝n

A÷ B

Γ ⊢ Πα : K.B : K′⇝n
A Πα : κ.B

CPSn
A-PiK

Γ ⊢ A : K′⇝n
A÷ A Γ, x : A ⊢ B : K⇝n

A B

Γ ⊢ λ x : A.B : Πx : A.K⇝n
A λx :A.B

CPSn
A-Constr

Γ ⊢ K : U⇝n
κ κ Γ, α : K ⊢ B : K′⇝n

A B

Γ ⊢ λα : K.B : Πα : K.K′⇝n
A λα : κ.B

CPSn
A-Abs

Γ ⊢ A : Πx : B.K⇝n
A A Γ ⊢ e : B⇝n

e e

Γ ⊢ A e : K[e/x]⇝n
A A e

CPSn
A-AppConstr

Γ ⊢ A : Πα : K′.K⇝n
A A Γ ⊢ B : K′⇝n

A B

Γ ⊢ A B : K[B/α]⇝n
A A B

CPSn
A-Inst

Γ ⊢ A : ⋆⇝n
A÷ A Γ, x : A ⊢ B : ⋆⇝n

A÷ B

Γ ⊢ Σx : A.B : ⋆⇝n
A Σx :A.B

CPSn
A-Sig

Γ ⊢ bool : ⋆⇝n
A bool

CPSn
A-Bool

Γ ⊢ e : A⇝n
e e Γ ⊢ A : K⇝n

A÷ A Γ, x = e : A ⊢ B : K′⇝n
A B

Γ ⊢ let x= e : A inB : K′⇝n
A let x= e :AinB

CPSn
A-Let

· · ·

Figure H.4: CPSn of Types (1/2)

reference for cpsn 261

Γ ⊢ A : K⇝n
A A Lemma 6.5.5 will show Γ+ ⊢ A+ : K+

· · ·

Γ ⊢ A : K⇝n
A A

⊢ Γ⇝n Γ Γ ⊢ A : K⇝n
κ κ Γ, α = A : K ⊢ B : _⇝n

A B

Γ ⊢ letα= A : K inB : _⇝n
A letα=A : κ inB

CPSn
A-LetK

Γ ⊢ A : K′ Γ ⊢ K≡ K′ Γ ⊢ A : K′⇝n
A A

Γ ⊢ A : K⇝n
A A

CPSn
A-Conv

Γ ⊢ A : ⋆⇝n
A÷ A Lemma 6.5.5 will show Γ+ ⊢ A÷ : ⋆+

Γ ⊢ A : ⋆⇝n
A A

Γ ⊢ A : ⋆⇝n
A÷ Πα : ⋆. (A→α)→α

CPSn
A÷-Comp

Figure H.5: CPSn of Types (1/2)

262 reference for cpsn

Γ ⊢ e : A⇝n
e A Lemma 6.5.5 will show Γ+ ⊢ e÷ : A÷

Γ ⊢ A : K⇝n
A A

Γ ⊢ x : A⇝n
e λα : ⋆.λk :A→α.x α k

CPSn
e -Var

Γ ⊢ A : K⇝n
A÷ A Γ, x : A ⊢ B : K′⇝n

A÷ B Γ, x : A ⊢ e : B⇝n
e e

Γ ⊢ λ x : A. e : Πx : A.B⇝n
e λα : ⋆.λk : (Πx :A.B)→α.k (λx :A. e)

CPSn
e -Fun

Γ ⊢ K : _⇝n
κ κ Γ, α : K ⊢ B : _⇝n

A÷ B Γ, α : K ⊢ e : B⇝n
e e

Γ ⊢ λα : K. e : Πα : K.B⇝n
e λαans : ⋆.λk : (Πα : κ.B)→αans.

k (λα : κ. e)

CPSn
e -Abs

Γ ⊢ e : Πx : A.B⇝n
e e Γ ⊢ A : K⇝n

A÷ A÷

Γ, x : A ⊢ B : K′⇝n
A÷ B÷ Γ, x : A ⊢ B : K′⇝n

A B+ Γ ⊢ e′ : A⇝n
e e′

Γ ⊢ e e′ : B[e′/x]⇝n
e λα : ⋆.λk : (B+[e′/x])→α.

e α (λ f :Πx :A÷.B÷. (f e′) α k)

CPSn
e -App

Γ ⊢ e : Πα : K.B⇝n
e e

Γ, α : K ⊢ B : _⇝n
A÷ B÷ Γ, α : K ⊢ B : _⇝n

A B+ Γ ⊢ A : K⇝n
A A

Γ ⊢ e A : B[A/α]⇝n
e λαans : ⋆.λk : (B+[A/α])→αans.

e α (λ f :Πα : κ.B÷. (f A) αans k)

CPSn
e -Inst

Γ ⊢ true : bool⇝n
e λα : ⋆.λk : bool→α.k true

CPSn
e -True

Γ ⊢ false : bool⇝n
e λα : ⋆.λk : bool→α.k false

CPSn
e -False

Γ ⊢ e : bool⇝n
e e

Γ ⊢ B : ⋆⇝n
A B Γ ⊢ e1 : B⇝

n
e e1 Γ ⊢ e2 : B⇝

n
e e2

Γ ⊢ if e then e1 else e2 : B⇝
n
e λα : ⋆.λk :B→α.

e @ α (λx : bool. if x then (e1 @ α k)
else (e2 @ α k))

CPSn
e -If

Γ ⊢ e : A⇝n
e e Γ ⊢ A : K⇝n

A÷ A
Γ, x = e : A ⊢ B : K′⇝n

A B Γ, x = e : A ⊢ e′ : B⇝n
e e′

Γ ⊢ let x= e : A in e′ : B[e/x]⇝n
e λα : ⋆.λk :B[e/x]→α.

let x= e :Aine′ α k

CPSn
e -Let

Figure H.6: CPSn of Terms (1/2)

reference for cpsn 263

Γ ⊢ A : K⇝n
A A Γ ⊢ K : U⇝n

κ κ
Γ, α = A : K ⊢ B : K′⇝n

A B Γ, α = A : K ⊢ e : B⇝n
e e

Γ ⊢ letα= A : K in e : B[A/α]⇝n
e λαans : ⋆.λk :B[A/x]→αans.

letα=A : κ in e αans k

CPSn
e -LetK

Γ ⊢ e : B⇝n
e e

Γ ⊢ e : A⇝n
e e

CPSn
e -Conv

Γ ⊢ e1 : A⇝
n
e e1

Γ ⊢ e2 : B[e1/x]⇝
n
e e2 Γ ⊢ A : ⋆⇝n

A÷ A Γ, x : A ⊢ B : ⋆⇝n
A÷ B

Γ ⊢ ⟨e1, e2⟩ : Σx : A.B⇝n
e λα : ⋆.λk :Σx :A.B→α.

k ⟨e1, e2⟩asΣx :A.B

CPSn
e -Pair

Γ ⊢ A : ⋆⇝n
A÷ A÷

Γ, x : A ⊢ B : ⋆⇝n
A÷ B÷ Γ ⊢ A : ⋆⇝n

A A+ Γ ⊢ e : Σx : A.B⇝n
e e

Γ ⊢ fst e : A⇝n
e λα : ⋆.λk :A+ →α.

e @ α (λy :Σx :A÷.B÷. let z= fst y in z α k)

CPSn
e -Fst

Γ ⊢ A : ⋆⇝n
A÷ A÷ Γ, x : A ⊢ B : ⋆⇝n

A÷ B÷ Γ, x : A ⊢ B : ⋆⇝n
A B+

Γ ⊢ (fst e) : A⇝n
e (fst e)÷ Γ ⊢ e : Σx : A.B⇝n

e e

Γ ⊢ snd e : B[(fst e)/x]⇝n
e λα : ⋆.λk :B+[(fst e)÷/x]→α.

e @ α (λy :Σx :A÷.B÷.
let z= sndy in z α k)

CPSn
e -Snd

Figure H.7: CPSn of Terms (2/2)

⊢ Γ⇝n Γ Lemma 6.5.5 will show ⊢ Γ+

⊢ ·⇝n ·
CPSn

Γ-Empty
⊢ Γ⇝n Γ Γ ⊢ A : K⇝n

A÷ A

⊢ Γ, x : A⇝n Γ,x : A
CPSn

Γ-AssumT

⊢ Γ⇝n Γ Γ ⊢ K : U⇝n
κ κ

⊢ Γ, α : K⇝n Γ,α : κ
CPSn

Γ-AssumK

⊢ Γ⇝n Γ Γ ⊢ A : K⇝n
A÷ A Γ ⊢ e : A⇝n

e e

⊢ Γ, x = e : A⇝n Γ,x = e : A
CPSn

Γ-Def

⊢ Γ⇝n Γ Γ ⊢ A : K⇝n
A A Γ ⊢ K : U⇝n

κ κ

⊢ Γ, α = A : K⇝n Γ,α = A : κ
CPSn

Γ-DefT

Figure H.8: CPSn of Environments

I R E F E R E N C E F O R C P S v

This appendix contains the complete definitions for the CBV CPS translation from
CoCD to CoCk. All translation figures from Chapter 6 are reproduced and completed
with elided parts here, and elided figures are presented here.

Typographical Note. In this appendix, I typeset the source language, CoCD, in a
blue, non-bold, sans-serif font, and the target language, CoCk, in a bold, red, serif
font.

v ≈ v

true ≈ true false ≈ false

Figure I.1: Observation Relation between CoCD and CoCk

Γ ⊢ U⇝v
U U

Γ ⊢ ⋆⇝v
U ⋆

CPSv
U -Star

Γ ⊢ □⇝v
U □

CPSv
U -Box

Figure I.2: CPSv of Universes

Γ ⊢ K : U⇝v
κ κ Lemma 6.6.6 will show Γ+ ⊢ K+ : U+

Γ ⊢ ⋆ : □⇝v
κ ⋆

CPSv
κ-Ax

Γ ⊢ K : U⇝v
κ κ Γ, α : K ⊢ K′ : U⇝v

κ κ
′

Γ ⊢ Πα : K.K′ : U⇝v
κ Πα : κ.κ′ CPSv

κ-PiK

Γ ⊢ A : K′⇝v
A A Γ, x : A ⊢ K : U⇝v

κ κ

Γ ⊢ Πx : A.K : U⇝v
κ Πx :A.κ

CPSv
κ-PiA

Figure I.3: CPSv of Kinds

265

266 reference for cpsv

Γ ⊢ A : K⇝v
A A Lemma 6.6.6 will show Γ+ ⊢ A+ : K+

Γ ⊢ α : K⇝v
A α

CPSv
A-Var

Γ ⊢ A : K′⇝v
A A Γ, x : A ⊢ B : K⇝v

A÷ B

Γ ⊢ Πx : A.B : K⇝v
A Πx :A.B

CPSv
A-Pi

Γ ⊢ K : U′⇝v
κ κ Γ, x : A ⊢ B : U⇝v

A÷ B

Γ ⊢ Πα : K.B : U⇝v
A Πα : κ.B

CPSv
A-PiK

Γ ⊢ A : K′⇝v
A A Γ, x : A ⊢ B : K⇝v

A B

Γ ⊢ λ x : A.B : Πx : A.K⇝v
A λx :A.B

CPSv
A-Constr

Γ ⊢ K : U⇝v
κ κ Γ, α : K ⊢ B : K′⇝v

A B

Γ ⊢ λα : K.B : Πα : K.K′⇝v
A λα : κ.B

CPSv
A-Abs

Γ ⊢ A : Πx : B.K⇝v
A A

Γ, x : A ⊢ B : K′⇝v
A B Γ ⊢ e : B⇝v

e e

Γ ⊢ A e : K[e/x]⇝v
A A (e B id)

CPSv
A-AppConstr

Γ ⊢ A : Πα : K′.K⇝v
A A Γ ⊢ B : K′⇝v

A B

Γ ⊢ A B : K[B/α]⇝v
A A B

CPSv
A-Inst

Γ ⊢ A : ⋆⇝v
A A Γ, x : A ⊢ B : ⋆⇝v

A B

Γ ⊢ Σx : A.B : ⋆⇝v
A Σx :A.B

CPSv
A-Sigma

Γ ⊢ bool : ⋆⇝v
A bool

CPSv
A-Bool

Γ ⊢ e : A⇝v
e e Γ ⊢ A : K′⇝v

A A Γ, x = e : A ⊢ B : K⇝v
A B

Γ ⊢ let x= e : A inB : K⇝v
A let x= e A id :AinB

CPSv
A-Let

Γ ⊢ A : K⇝v
A A

⊢ Γ⇝v Γ Γ ⊢ A : κ′ Γ, α = A : K ⊢ B : _⇝v
e B

Γ ⊢ letα= A : K inB : _⇝v
A letα=A : κ′ inB

CPSv
A-LetK

Γ ⊢ A : K′ Γ ⊢ K≡ K′ Γ ⊢ A : K′⇝n
A A

Γ ⊢ A : K⇝n
A A

CPSv
A-Conv

Γ ⊢ A : ⋆⇝v
A÷ A Lemma 6.6.6 will show Γ+ ⊢ A÷ : ⋆+

Γ ⊢ A : ⋆⇝v
A A

Γ ⊢ A : ⋆⇝v
A÷ Πα : ⋆. (A→α)→α

CPSv
A-Comp

Figure I.4: CPSv of Types

reference for cpsv 267

Γ ⊢ e : A⇝v
e e Lemma 6.6.6 will show Γ+ ⊢ e÷ : A÷

Γ ⊢ A : K⇝v
A A

Γ ⊢ x : A⇝v
e λα : ⋆.λk :A→α.k x

CPSv
e-Var

Γ ⊢ A : K′⇝v
A A Γ, x : A ⊢ B : K⇝v

A÷ B Γ, x : A ⊢ e : B⇝v
e e

Γ ⊢ λ x : A. e : Πx : A.B⇝v
e λα : ⋆.λk : (Πx :A.B)→α.k (λx :A. e)

CPSv
e-Fun

Γ ⊢ K : _⇝v
κ κ Γ, α : K ⊢ B : _⇝v

A÷ B Γ, α : K ⊢ e : B⇝v
e e

Γ ⊢ λα : K. e : Πα : K.B⇝v
e λαans : ⋆.λk : (Πα : κ.B)→αans.

k (λα : κ. e)

CPSv
e-Abs

Γ ⊢ e : Πx : A.B⇝v
e e Γ, x : A ⊢ B : K⇝v

A÷ B÷

Γ, x : A ⊢ B : K⇝v
A B+ Γ ⊢ e′ : A⇝v

e e
′ Γ ⊢ A : K′⇝v

A A

Γ ⊢ e e′ : B[e′/x]⇝v
e λα : ⋆.λk : (B+[(e′ A id)/x])→α.

e α (λ f :Πx :A.B÷.
e′ @ α (λx :A. (f x) α k))

CPSv
e-App

Γ ⊢ e : Πα : K.B⇝v
e e Γ, α : K ⊢ B : _⇝v

A÷ B Γ ⊢ A : K⇝v
e A

Γ ⊢ e A : let x= A inB⇝v
e λαans : ⋆.λk : (B[A/α])→αans.

e α (λ f :Πα : κ.B.
(f A) αans k)

CPSv
e-Inst

Γ ⊢ true : bool⇝n
e λα : ⋆.λk : bool→α.k true

CPSn
e -True

Γ ⊢ false : bool⇝n
e λα : ⋆.λk : bool→α.k false

CPSn
e -False

Γ ⊢ e : bool⇝v
e e

Γ ⊢ B : ⋆⇝v
A B Γ ⊢ e1 : B⇝

v
e e1 Γ ⊢ e2 : B⇝

v
e e2

Γ ⊢ if e then e1 else e2 : B⇝
v
e λα : ⋆.λk :B→α.

e @ α (λx : bool. if x then (e1 @ α k)
else (e2 @ α k))

CPSn
e -If

Γ ⊢ e : A⇝v
e e

Γ ⊢ A : K′⇝v
A A Γ ⊢ B : K⇝v

A B Γ, x = e : A ⊢ e′ : B⇝v
e e

′

Γ ⊢ let x= e : A in e′ : B[e/x]⇝v
e λα : ⋆.λk :B[(e A id)/x]→α.

e @ α (λx :A. e′ α k)

CPSv
e-Let

Figure I.5: CPSv of Terms (1/2)

268 reference for cpsv

Γ ⊢ e1 : A⇝
v
e e1

Γ ⊢ e2 : B[e1/x]⇝
v
e e2 Γ ⊢ A : ⋆⇝v

A A Γ, x : A ⊢ B : ⋆⇝v
A B

Γ ⊢ ⟨e1, e2⟩ : Σx : A.B⇝v
e λα : ⋆.λk :Σx :A.B→α.

e1 @ α (λx1 :A.
e2 @ α (λx2 :B[(e1 A id)/x].

k ⟨x1,x2⟩asΣx :A.B))

CPSv
e-Pair

Γ ⊢ A : ⋆⇝v
A A Γ ⊢ e : Σx : A.B⇝v

e e

Γ ⊢ fst e : A⇝v
e λα : ⋆.λk :A+ →α.

e @ α (λy :Σx :A.B. let z= fst y ink z)

CPSv
e-Fst

Γ ⊢ A : ⋆⇝v
A A Γ, x : A ⊢ B : ⋆⇝v

A B
Γ ⊢ (fst e) : A⇝v

e (fst e)
÷ Γ ⊢ e : Σx : A.B⇝v

e e

Γ ⊢ snd e : B[fst e/x]⇝v
e λα : ⋆.λk :B[((fst e)÷ A id)/x]→α.

e @ α (λy :Σx :A.B. let z= sndy ink z)

CPSv
e-Snd

Γ ⊢ e1 : A⇝
v
e e1

Γ ⊢ e2 : B[e1/x]⇝
v
e e2 Γ ⊢ A : ⋆⇝v

A A Γ, x : A ⊢ B : ⋆⇝v
A B

Γ ⊢ ⟨e1, e2⟩ : Σx : A.B⇝v
e λα : ⋆.λk :Σx :A.B→α.

e1 @ α (λx :A.
e2 @ α (λx2 :B.k ⟨x,x2⟩))

CPSv
e-Pair-Alt

Γ ⊢ A : K⇝v
A A Γ ⊢ K : U⇝v

κ κ
Γ, α = A : K ⊢ B : K′⇝v

A B Γ, α = A : K ⊢ e : B⇝v
e e

Γ ⊢ letα= A : K in e : B[A/α]⇝v
e λαans : ⋆.λk :B[A/α]→αans.

letα=A : κ in e αans k

CPSv
e-LetK

Γ ⊢ e : B⇝v
e e

Γ ⊢ e : A⇝v
e e

CPSv
e-Conv

Figure I.6: CPSv of Terms (2/2)

reference for cpsv 269

⊢ Γ⇝v Γ Lemma 6.6.6 will show ⊢ Γ+

⊢ ·⇝v ·
CPSv

Γ-Empty
⊢ Γ⇝v Γ Γ ⊢ A : K⇝v

A A

⊢ Γ, x : A⇝v Γ,x : A
CPSv

Γ-AssumT

⊢ Γ⇝v Γ Γ ⊢ K : U⇝v
κ κ

⊢ Γ, α : K⇝v Γ,α : κ
CPSv

Γ-AssumK

⊢ Γ⇝v Γ Γ ⊢ A : K⇝v
A A Γ ⊢ e : A⇝v

e e

⊢ Γ, x = e : A⇝v Γ,x = e A id : A
CPSv

Γ-Def

⊢ Γ⇝v Γ Γ ⊢ A : K⇝v
A A Γ ⊢ K : U⇝v

κ κ

⊢ Γ, α = A : K⇝v Γ,α = A : κ
CPSv

Γ-DefT

Figure I.7: CPSv of Environments

J R E F E R E N C E F O R C O CC C

This appendix contains the complete definitions for CoCCC . All CoCCC figures from
Chapter 7 are reproduced and completed with elided parts here, and elided figures
are presented here. These figures contained extensions with definitions required to
fully formalize the compiler correctness results, including booleans with non-dependent
elimination.

Typographical Note. In this appendix, I typeset CoCCC in a bold, red, serif font.

Universes U ::= ⋆ | □

Expressions e,A,B ::= x | ⋆ | Code (n : A′,x : A).B
| e⇒Coden : A′.B | λ (n : A′,x : A). e | ef e1 e2
| Σx :A.B | ⟨e, e⟩asΣx :A.B | fst e | snde
| bool | true | false | if e then e1 else e2
| let x= e :Aine | ∃ (α : A,n : A′).B
| pack ⟨A, e′, e⟩as∃ (α : A,n : A′).B
| unpack ⟨x,x,x⟩= e in e

Environments Γ ::= · | Γ,x : A | Γ,x = e : A

Figure J.1: CoCCC Syntax

e : t
def
= Γ ⊢ e : A where Γ is obvious from context

pack ⟨ei . . .⟩
def
= pack ⟨ei . . .⟩as∃xi : ti where ei : ti[ei−1/xi−1]

⟨ei . . .⟩
def
= ⟨ei . . .⟩asΣ (xi : ti . . .) where ei : ti[ei−1/xi−1]

let x= e in e′
def
= let x= e : t in e′ where e : t

let ⟨xi . . .⟩= e in e′
def
= let x0 = π0 e in . . . let x|i| = π|i| in e′

e[⟨xi . . .⟩/e]
def
= e[xi/πi e]

Figure J.2: CoCCC Syntactic Sugar

271

272 reference for cocCC

Γ ⊢ e▷ e′

Γ ⊢ (λx′ : A′,x : A. e1) e
′ e ▷β e1[e

′/x′][e/x]

Γ ⊢ fst ⟨e1, e2⟩ ▷π1 e1

Γ ⊢ snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ if true thene1 else e2 ▷ι1 e1

Γ ⊢ if false thene1 else e2 ▷ι2 e2

Γ ⊢ x ▷δ e
where x = e : A ∈ Γ

Γ ⊢ let x= e :Aine1 ▷ζ e1[e/x]

Γ ⊢ unpack ⟨x,x′,xb⟩= pack ⟨e, e′, eb⟩ in e2 ▷∃ e2[⟨e, e′, eb⟩/⟨x,x′,xb⟩]

Figure J.3: CoCCC Reduction

reference for cocCC 273

Γ ⊢ e▷∗ e′

Γ ⊢ A1 ▷
∗ A′

1

Γ,n : A′
1 ⊢ A2 ▷

∗ A′
2 Γ,n : A′

1,x : A′
2 ⊢ B▷∗ B′

Γ ⊢ Coden : A1,x : A2.B▷
∗ Coden : A′

1,x : A′
2.B

′ Red-Cong-T-Code

Γ ⊢ e▷∗ e′ Γ ⊢ A2 ▷
∗ A′

2 Γ,x : A′
2 ⊢ B▷∗ B′

Γ ⊢ e⇒Codex : A2.B▷
∗ e′ ⇒Codex : A′

2.B
′ Red-Cong-⇒

Γ ⊢ A1 ▷
∗ A′

1

Γ,n : A′
1 ⊢ A2 ▷

∗ A′
2 Γ,n : A′

1,x : A′
2 ⊢ e▷∗ e′

Γ ⊢ λ (n : A1,x : A2). e▷
∗ λ (n : A′

1,x : A′
2). e

′ Red-Cong-Code

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ e1 e2 ▷
∗ e′1 e′2

Red-Cong-App

Γ ⊢ A▷∗ A′ Γ,x : A′ ⊢ e▷∗ e′

Γ ⊢ Σx :A. e▷∗ Σx :A′. e′
Red-Cong-Sig

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2 Γ ⊢ A▷∗ A′

Γ ⊢ ⟨e1, e2⟩asA▷∗ ⟨e′1, e′2⟩asA′ Red-Cong-Pair

Γ ⊢ e▷∗ e′

Γ ⊢ fst e▷∗ fst e′
Red-Cong-Fst

Γ ⊢ e▷∗ e′

Γ ⊢ snde▷∗ snde′
Red-Cong-Snd

Γ ⊢ e▷∗ e′ Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2

Γ ⊢ if e then e1 else e2 ▷
∗ if e′ thene′1 else e

′
2

Red-Cong-If

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ A▷∗ A′ Γ,x = e′ : A′ ⊢ e2 ▷

∗ e′2

Γ ⊢ let x= e1 :Aine2 ▷
∗ let x= e′1 :A

′ in e′2
Red-Cong-Let

Γ ⊢ A1 ▷
∗ A′

1

Γ,x : A′
1 ⊢ A2 ▷

∗ A′
2 Γ,x : A′

1,x
′ : A′

2 ⊢ B▷∗ B′

Γ ⊢ ∃ (x : A,x′ : A′).B▷∗ ∃ (x : A1,x
′ : A2).B

′ Red-Cong-Exist

Γ ⊢ A▷∗ A′ Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ e′2 Γ ⊢ e3 ▷
∗ e′3

Γ ⊢ pack ⟨e1, e2, e3⟩asA▷∗ pack ⟨e′1, e′2, e′3⟩asA′ Red-Cong-Pack

Γ ⊢ e1 ▷
∗ e′1 Γ,x : A,x′ : A′,xb : B ⊢ e2 ▷

∗ e2

Γ ⊢ unpack ⟨x,x′,xb⟩= e1 in e2 ▷
∗ unpack ⟨x,x′,xb⟩= e′1 in e′2

Red-Cong-Unpack

Figure J.4: CoCCC Conversion

274 reference for cocCC

Γ ⊢ e≡ e′

Γ ⊢ e1 ▷
∗ e Γ ⊢ e2 ▷

∗ e

Γ ⊢ e1 ≡ e2
≡

Γ ⊢ e1 ▷
∗ pack ⟨A′, e′,λ (n : A′,x : A). e′1⟩

Γ ⊢ e2 ▷
∗ e′2 Γ,x : A[e′/n] ⊢ e′1[e

′/n]≡ unpack ⟨α,n, f⟩= e′2 in f n x

Γ ⊢ e1 ≡ e2
≡-η1

Γ ⊢ e1 ▷
∗ e′1 Γ ⊢ e2 ▷

∗ pack ⟨A′, e′,λ (n : A′,x : A). e′2⟩
Γ,x : A[e′/n] ⊢ unpack ⟨α,n, f⟩= e′1 in f n x≡ e′2[e

′/n]

Γ ⊢ e1 ≡ e2
≡-η2

Figure J.5: CoCCC Equivalence

Γ ⊢ e : A

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
Var

⊢ Γ

Γ ⊢ ⋆ : □
*

Γ ⊢ A : ⋆ Γ,x : A ⊢ B : ⋆

Γ ⊢ Σx :A.B : ⋆
Sig

Γ ⊢ e1 : A Γ ⊢ e2 : B[e1/x]

Γ ⊢ ⟨e1, e2⟩asΣx :A.B : Σx :A.B
Pair

Γ ⊢ e : Σx :A.B

Γ ⊢ fst e : A
Fst

Γ ⊢ e : Σx :A.B

Γ ⊢ snde : B[fst e/x]
Snd

⊢ Γ

Γ ⊢ bool : ⋆
Bool

⊢ Γ

Γ ⊢ true : bool
True

⊢ Γ

Γ ⊢ false : bool
False

Γ ⊢ e : bool Γ ⊢ e1 : B Γ ⊢ e2 : B

Γ ⊢ if e then e1 else e2 : B
If

Γ ⊢ e : A Γ,x = e : A ⊢ e′ : B

Γ ⊢ let x= e :Aine′ : B[e/x]
Let

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A≡B

Γ ⊢ e : B
Conv

Figure J.6: CoCCC Typing (1/2)

reference for cocCC 275

Γ ⊢ e : A

Γ ⊢ B : ⋆

Γ ⊢ Code (x′ : A′,x : A).B : ⋆
Code-*

Γ ⊢ e : A′ Γ ⊢ Code (x′ : A′,x : A).B : U

Γ ⊢ e⇒Codex : A.B : U
⇒

Γ ⊢ e : Code (x′ : A′,x : A).B Γ ⊢ e′ : A′

Γ ⊢ e : e′ ⇒Code (x : A[e′/x′]).B[e′/x′]
TrFun

·,x′ : A′,x : A ⊢ e : B

Γ ⊢ λ (x′ : A′,x : A). e : Codex′ : A′,x : A.B
Code

Γ ⊢ f : e′ ⇒Codex : A.B Γ ⊢ e : A

Γ ⊢ f e′ e : B[e/x]
TrApp

Γ ⊢ A : U Γ,x : A ⊢ A′ : U′ Γ,x : A,x′ : A′ ⊢ B : ⋆

Γ ⊢ ∃ (x : A,x′ : A′).B : ⋆
Exist

Γ ⊢ ∃ (x : A,x′ : A′).B : U
Γ ⊢ e : A Γ ⊢ e′ : A′[e/x] Γ ⊢ eb : B[e/x][e′/x′]

Γ ⊢ pack ⟨e, e′, eb⟩as∃ (x : A,x′ : A′).B : ∃ (x : A,x′ : A′).B
Pack

Γ ⊢ e : ∃ (x : A,x′ : A′).B
Γ,x : A,x′ : A′,xb : B ⊢ e′ : B′ Γ ⊢ B′ : U

Γ ⊢ unpack ⟨x,x′,xb⟩= e in e′ : B′ Unpack

Figure J.7: CoCCC Typing (2/2)

⊢ Γ

⊢ ·
W-Empty

⊢ Γ Γ ⊢ A : U

⊢ Γ,x : A
W-Assum

⊢ Γ Γ ⊢ e : A Γ ⊢ A : U

⊢ Γ,x = e : A
W-Def

Figure J.8: CoCCC Well-formed Environments

CoCCC Observations v ::= true | false

Figure J.9: CoCCC Observations

276 reference for cocCC

Γ ⊢ e

Γ ⊢ e : bool

Γ ⊢ e

⊢ e

· ⊢ e

⊢ e

Figure J.10: CoCCC Components and Programs

eval(e) = v

eval(e) = v if ⊢ e and · ⊢ e▷∗ v

Figure J.11: CoCCC Evaluation

Closing Substitutions γ
def
= · | γ[x 7→ e]

Γ ⊢ γ

· ⊢ ·
Γ ⊢ γ · ⊢ e : A

Γ,x : A ⊢ γ[x 7→ e]

Γ ⊢ γ Γ ⊢ e : A

Γ,x = e : A ⊢ γ[x 7→ γ(e)]

γ(e) = e

·(e) = e γ[x 7→ e′](e) = γ(e[x/e′])

Figure J.12: CoCCC Closing Substitutions and Linking

reference for cocCC 277

Definition translucent {A} e B := forall (x : A), (x = e) -> B.

Notation "e ⇒ B" := (translucent e B) (at level 42).

Definition translucent_intro {A B} {e' : A}

(e : forall (x : A), B x) : e' ⇒ B e'

:= fun x w => match w with eq_refl => e x end.

Notation "e :T: A" := (translucent_intro e : A) (at level 99).

Definition translucent_elim {A B} {e' : A} (e : e' ⇒ B) : B

:= e e' eq_refl.

Notation "e @ m" := (@translucent_elim _ _ m e) (at level 99).

Inductive sigS {A:Type} (P:A -> Type) : Prop :=

existS : forall x:A, P x -> sigS P.

Notation "'∃' x : A , P" := (sigS (A:=A) (fun x => P))

(at level 0, x at level 99) : type_scope.

Definition Closure A B : Prop :=

∃ α : Type , ∃ env : α , (env ⇒ (A -> B)).

Listing J.1: Model of CoCCC in Coq

K R E F E R E N C E F O R PA R A M E T R I C
C LO S U R E C O N V E R S I O N

This appendix contains the complete definitions for the parametric closure conversion
from CoCD to CoCCC . All translation figures from Chapter 7 are reproduced and
completed with elided parts here, and elided figures are presented here.

Typographical Note. In this appendix, I typeset the source language, CoCD, in a
blue, non-bold, sans-serif font, and the target language, CoCCC , in a bold, red, serif
font.

v ≈ v

true ≈ true false ≈ false

Figure K.1: Observation Relation between CoCD and CoCCC

FV(e,B, Γ)
def
= Γ0, . . . , Γn, (x0 : A0, . . . , xn : An)

where x0, . . . , xn = fv(e,B)
Γ ⊢ x0 : A0

...
Γ ⊢ xn : An

Γ0 = FV(A0,_, Γ)
...

Γn = FV(An,_, Γ)

Figure K.2: Dependent Free Variable Sequences

279

280 reference for parametric closure conversion

Γ ⊢ e : A⇝ e

Γ ⊢ A : U⇝A Γ, x : A ⊢ B : ⋆⇝B

Γ ⊢ Πx : A.B : U′⇝ ∃ (α : ⋆,n : α).n⇒Codex : A.B
CC-Pi

Γ, x : t ⊢ e : t′⇝ e Γ ⊢ t : U⇝ t Γ, x : t ⊢ t′ : U⇝ t′

xi : Ai · · · = FV(λ x : A. e,Πx : A.B, Γ) Γ ⊢ Ai : U⇝Ai . . .

Γ ⊢ λ x : t. e : Πx : t. t′⇝ pack ⟨Σ (xi : Ai . . .), ⟨xi . . .⟩,
λ (n : Σ (xi : Ai . . .),

x : let ⟨xi . . .⟩= n in t
).

let ⟨xi . . .⟩= n in e⟩

CC-Lam

Γ ⊢ e1 : _⇝ e1 Γ ⊢ e2 : _⇝ e2

Γ ⊢ e1 e2 : t⇝ unpack ⟨α,n, f⟩= e1 in f n e2
CC-App

Figure K.3: Parametric Closure Conversion from CoCD to CoCCC (1/2)

reference for parametric closure conversion 281

Γ ⊢ e : A⇝ e

Γ ⊢ x : A⇝ x
CC-Var

Γ ⊢ ⋆ : □⇝ ⋆
CC-*

Γ ⊢ A : Type i⇝A Γ, x : A ⊢ B : Type i⇝B

Γ ⊢ Σx : A.B : Type i⇝Σx :A.B
CC-Sig

Γ ⊢ e1 : A⇝ e1
Γ ⊢ e2 : B[e1/x]⇝ e2 Γ ⊢ A : Type i⇝A Γ, x : A ⊢ B : Type i⇝B

Γ ⊢ ⟨e1, e2⟩ asΣ x : A.B : Σx : A.B⇝ ⟨e1, e2⟩asΣx :A.B
CC-Pair

Γ ⊢ e : Σx : A.B⇝ e

Γ ⊢ fst e : A⇝ fst e
CC-Fst

Γ ⊢ e : Σx : A.B⇝ e

Γ ⊢ snd e : B[fst e/x]⇝ snde
CC-Snd

Γ ⊢ bool : ⋆⇝ bool
CC-Bool

Γ ⊢ true : bool⇝ true
CC-True

Γ ⊢ false : bool⇝ false
CC-False

Γ ⊢ e : bool⇝ e Γ ⊢ e1 : B⇝ e1 Γ ⊢ e2 : B⇝ e2

Γ ⊢ if e then e1 else e2 : B⇝ if e then e1 else e2
CC-If

Γ ⊢ e : A⇝ e Γ, x : A ⊢ e′ : B⇝ e′

Γ ⊢ let x= e in e′ : B[e/x]⇝ let x= e in e′
CC-Let

Γ ⊢ e : A⇝ e

Γ ⊢ e : B⇝ e
CC-Conv

⊢ Γ⇝ Γ where ⊢ Γ

⊢ ·⇝ ·
CC-Empty

⊢ Γ⇝ Γ Γ ⊢ A : U⇝A

⊢ Γ, x : A⇝ Γ,x : A
CC-Assum

⊢ Γ⇝ Γ Γ ⊢ e : A⇝ e Γ ⊢ A : U⇝A

⊢ Γ, x = e : A⇝ Γ,x = e : A
CC-Def

Figure K.4: Parametric Closure Conversion from CoCD to CoCCC (2/2)

	Compiling with Dependent Types
	Thesis Approval
	Dedication
	Abstract
	Acknowledgments
	Support
	Typographical Conventions
	A Poem
	Contents
	1 Executing a Verified Program
	1.1 Program Verification and Dependent Types
	1.1.1 The Virtues of Dependent Types

	1.2 Executing a Dependently Typed Program
	1.3 Preserving the Verified-ness of a Program
	1.4 Thesis
	1.5 Contributions of this Dissertation

	2 Essence of Dependent Types
	2.1 Essential Features of Dependency
	2.1.1 Higher Universes
	2.1.2 Dependent Functions
	2.1.3 Dependent Pairs
	2.1.4 Dependent Conditional
	2.1.5 What about Inductive Types

	2.2 A Representative Source Calculus
	2.2.1 Type System
	2.2.2 Evaluation and Compilation

	3 Type-Preserving Compilation
	3.1 A Brief History
	3.2 A Model Type-Preserving Compiler
	3.3 The Difficulty of Preserving Dependency
	3.4 Proving Type Preservation for Dependent Types
	3.4.1 The Key Lemmas for Type Preservation
	3.4.2 The Problem with Typed Equivalence
	3.4.3 Type Preservation and Compiler Correctness

	3.5 Type Preservation as Syntactic Modeling

	4 A-normal Form
	4.1 Main Ideas
	4.2 ANF Intermediate Language
	4.2.1 The Essence of Dependent Continuation Typing
	4.2.2 Meta-theory

	4.3 ANF Translation
	4.3.1 Type Preservation
	4.3.2 Compiler Correctness

	4.4 Related and Future Work
	4.4.1 Comparison to CPS
	4.4.2 Branching and Join Points
	4.4.3 Dependent Pattern Matching and Commutative Cuts
	4.4.4 Dependent Call-by-Push-Value and Monadic Form

	5 Abstract Closure Conversion
	5.1 Main Ideas
	5.1.1 Why the well-known solution doesn't work
	5.1.2 Abstract Closure Conversion

	5.2 Closure-Converted Intermediate Language
	5.2.1 Meta-theory

	5.3 Closure Conversion
	5.3.1 Type Preservation
	5.3.2 Compiler Correctness
	5.3.3 ANF Preservation

	6 Continuation-Passing Style
	6.1 On CPS
	6.2 Main Ideas
	6.3 The Calculus of Constructions with Definitions
	6.4 CPS Intermediate Language
	6.4.1 Meta-theory

	6.5 Call-by-Name CPS Translation
	6.5.1 Type Preservation
	6.5.2 Compiler Correctness

	6.6 Call-by-Value CPS Translation
	6.6.1 Type Preservation
	6.6.2 Compiler Correctness

	6.7 Related and Future Work

	7 Parametric Closure Conversion
	7.1 Main Ideas
	7.2 Parametric Closure Conversion IL
	7.2.1 Meta-theory

	7.3 Parametric Closure Conversion Translation
	7.3.1 Type Preservation
	7.3.2 Compiler Correctness

	8 Conclusions
	8.1 Viability of the Individual Translations
	8.2 Lessons for Dependent-Type Preservation
	8.3 Future Work
	8.3.1 To Dependently Typed Assembly
	8.3.2 Practical Considerations

	8.4 Conclusion

	List of Figures
	Bibliography
	A Reference for ECCD
	B Reference for ECCA
	C Reference for ANF Translation
	D Reference for ECCCC
	E Reference for Abstract Closure Conversion
	F Reference for CoCD
	G Reference for CoCk
	H Reference for CPSn
	I Reference for CPSv
	J Reference for CoCCC
	K Reference for Parametric Closure Conversion

