
Compilation as Multi-Language Semantics
William J. Bowman

University of British Columbia
Vancouver, BC, CA

wjb@williamjbowman.com

ACM Reference Format:
William J. Bowman. 2021. Compilation as Multi-Language Seman-
tics. In Workshop on Principles of Secure Compilation. ACM, New
York, NY, USA, 3 pages.

1 Extended Abstract
Modeling interoperability between programs in different lan-
guages is a key problem when modeling compositional and
secure compilation. Multi-language semantics provide a syn-
tacticmethod formodeling language interopability (Matthews
2007), and has proven useful in compiler correctness and se-
cure compilation (Ahmed 2015; Ahmed and Blume 2011; New
et al. 2016; Patterson and Ahmed 2017; Perconti and Ahmed
2014).

Unfortunately, existing models of compilation using multi-
language semantics duplicate effort. Two variants of each
compiler pass are defined: a syntactic translation on open
terms, and a run-time translation of closed terms at multi-
language boundaries (Ahmed and Blume 2011; New et al.
2016). One must then prove that both definitions coincide.
We introduce a novel work-in-progress approach to uni-

formly model both variants as a single reduction system on
open terms in a multi-language semantics. This simultane-
ously defines the compiler and the interoperability semantics.
It also has interesting semantic consequences: different re-
duction strategies model different compilation strategies, and
standard theorems about reduction imply standard compiler
correctness theorems. For example, we get a model of ahead-
of-time (AOT) compilation by normalizing cross-language
redexes; the normal form with respect to these redexes is a
target language term. We model just-in-time (JIT) compila-
tion as nondeterministic evaluation in the multi-language: a
term can either step in the source, or translate then step in
the target. We prove that confluence of multi-language reduc-
tion implies compiler correctness and part of full abstraction;
and that subject reduction implies type-preservation of the
compiler.

An example instance: Reduction to A-normal form
Our approach generalizes from high-level to low-level

transformations of a wide array of language features. To
demonstrate this, we have developed a 5-passmodel compiler
from a Scheme-like language to an x86-64-like language.

Workshop on Principles of Secure Compilation (PriSC), January 17-22, 2021,
Online
2021.

A.v ::= .. | (AS S.e)
A.n ::= .. | (AS S.e)
A.e ::= .. | (AS S.e)

S.e ::= .. | (SA A.e)
e ::= S.e | A.e

Fig. 1. 𝜆sa Syntax (excerpts)

Here, we model one interesting compiler pass: reduction
to A-normal form (ANF). This pass is a good example and
stress test. The A-reductions are tricky to define because
they reorder a term with respect to its context, while the
other passes locally transform a term in an arbitrary context.
The source is a standard dynamically typed functional

imperative language, modeled on Scheme. It has a call-by-
value heap-based small-step semantics, (H S.e1) →

λs
 (H S.e2),

where H represents the heap and S.e is represents a source
expression.1 We omit the syntax and reduction rules for
brevity.

The target language is essentially the same, but the syntax
is restricted to A-normal form: all computations A.n require
values A.v as operands; expressions A.e cannot be nested and
only explicitly compose and sequence intermediate compu-
tations A.n. The reduction relation, (H A.e1) →

λa
 (H A.e2), does

not require a control stack.
To develop a multi-language semantics, we embed syntac-

tic terms from each language into a single syntax, defined
in Figure 1. We extend each meta-variable with boundary
terms (SA A.e) (“Source on the outside, ANF on the inside”)
and (AS S.e) (“ANF on the outside, Source on the inside”).

The translation to ANF can be viewed as a reduction sys-
tem in the multi-language. We define the A-reductions in
Figure 2. These rules are essentially standard (Flanagan et
al. 1993), but we modify them to make boundary transitions
explicit. The A-reductions have the form S.e →ᵃ S.e, reducing
source expressions in the multi-language. Each A-reduction
rewrites a source expression in a source evaluation context,
transforming the control stack into a data stack. For exam-
ple, the A-lift rule lifts a trivial computation, let-binding it
and providing the let-bound name (a value) in evaluation
position, explicitly sequencing the computation A.n with
the evaluation context S.E. The side-conditions syntactically
encode termination conditions, preventing A-reductions of
target redexes and in empty evaluation contexts.

1We use a prefix followed by a dot (.) to distinguish terms in each language—
the prefix S for source terms and the prefix A for ANF terms.

https://orcid.org/0000-0002-6402-4840

Workshop on Principles of Secure Compilation (PriSC), January 17-22, 2021, Online William J. Bowman

A.e →ᵃ (SA A.e) [A-normal]

S.E[(let ([A.x S.e] .) S.e2)] [A-merge-l]

→ᵃ (SA (let ([A.x (AS S.e)] .) (AS S.E[S.e2])))

S.E[(begin S.er . S.e)] [A-merge-b]

→ᵃ (SA (begin (AS S.er) . (AS S.E[S.e])))

S.E[(if A.v S.e1 S.e2)] [A-join]

→ᵃ (SA (letrec ([j (λ (x) S.E[x])])
(if A.v (AS (j S.e1)) (AS (j S.e2)))))

 where S.E ∈ A.Cn, j, x fresh

S.E[A.n] [A-lif]

→ᵃ (SA (let ([x A.n]) (AS S.E[x])))
 where S.E ∈ A.Cn, A.n ∈ A.v, x fresh

Fig. 2. The A-reductions (excerpts)

C[(AS (SA e))]→ˢᵗC[e]

C[(SA (AS e))]→ˢᵗC[e]

Fig. 3. 𝜆sa Boundary Reductions

T ::= C[(AS A.Cm)]
e1 →ᵃ e

T[e1] ˢ→ᵃ T[e]

e1 →ˢᵗ e

e1 ˢ→ᵃ e

Fig. 4. 𝜆sa Translation Reductions

We supplement the multi-language A-reductions with the
standard boundary cancellation reductions, given in Figure 3.
These apply under any multi-language context C.

In Figure 4 we define the translation reductions. These
extend the A-reductions to apply under any translation con-
text T. The construction of the translation context for ANF is
a little unusual, but the intuition is simple: a translation con-
text identifies a pure source expression under any context,
including under a target/source boundary. The context A.Cm
corresponds to an ANF context that can have any expression
in the hole. In one step, the translation reductions can per-
form either one A-reduction or one boundary cancellation.

From the translation reductions, we derive AOT compila-
tion as normalization with respect to translation reductions.

Definition 1 (ANF Compilation by Normalization).

(AS S.e) ˢ→ᵃ* A.e A.e ˢ→ᵃ

S.e ⇓ᵃⁿᶠ A.e
Finally, we define themulti-language semantics in Figure 5.

This defines all possible transitions in the multi-language.
A term can either take a step in the source language, or
a translation step, or a step in the target language. Multi-
language reduction is indexed by a heap, H, which is used
by the source and target reductions but not the translation
reductions.

(H1 S.e1) →
λs

 (H2 S.e2)

(H1 S.e1) ⇒
λsa

 (H2 S.e2)

(H1 S.e1) →
λs

 (H2 S.e2)

(H1 (AS S.e1)) ⇒
λsa

 (H2 (AS S.e2))

(H1 A.e1) →
λa

 (H2 A.e2)

(H1 A.e1) ⇒
λsa

 (H2 A.e2)

(H1 A.e1) →
λa

 (H2 A.e2)

(H1 (SA A.e1)) ⇒
λsa

 (H2 (SA A.e2))

A.e1 ˢ→ᵃ A.e2

(H1 A.e1) ⇒
λsa

 (H1 A.e2)

Fig. 5. 𝜆sa Multi-language Reduction

Note that terms already in the heap are not translated,
which corresponds to an assumption that the language mem-
ory models are identical. We could lift this restriction by
adding multi-language boundaries to heap values and ex-
tending translation reductions to apply in the heap.

Themulti-language reduction allows reducing in the source,
modeling interpretation, or translating then reducing in the
target, modeling JIT compilation before continuing execu-
tion. This does not model speculative optimization; equip-
ping the multi-language with assumption instructions as
done by Flückiger et al. (2018) might support modeling this.
Standard meta-theoretic properites of reduction impliy

standard compiler correctness results.
Subject reduction of the multi-language semantics implies

type-preservation of the compiler. This is simple for our
present compiler, since the type system is simple, but the
theorems applies for more complex type systems.

Theorem 1 (Subject Reduction implies Type Preservation).
If (Γ ⊢ e1 : τ and e1 ˢ→ᵃ* e2 implies Γ ⊢ e2 : τ) then
(S.Γ ⊢ S.e : S.τ and S.e ⇓ᵃⁿᶠ A.e implies∃A.Γ,A.τ.A.Γ ⊢ A.e : A.τ).

We derive compiler correctness from confluence.

Conjecture 1 (Confluence). If (H e) ⇒
λsa

* (H1 e1) and
(H e) ⇒

λsa
* (H2 e2) then (H1 e1) ⇒

λsa
* (H3 e3) and (H2 e2) ⇒

λsa
* (H3 e3)

Note the multi-language semantics can reduce open terms,
so confluence implies correctness of both the AOT and the
JIT compiler. As an example, whole-program correctness is
a trivial corollary of confluence.

Corollary 2 (Whole-Program Correctness).
If (() S.e) →

λs
* (H S.v) and S.e ⇓ᵃⁿᶠ A.e then (() A.e) →

λa
* (H A.v) such

that A.v is equal to S.v.

Multi-language semantics provide a strong attacker model
through contextual equivalence. A context C models an at-
tacker that can provide either source or target code or data
as input and observe the result. Contextual equivalence is
extended to relate reduction configurations, not just terms,
to enable the definition to apply to the JIT model.

Compilation as Multi-Language Semantics Workshop on Principles of Secure Compilation (PriSC), January 17-22, 2021, Online

Definition 2 (Contextual Equivalence). (H1 e1) ≈ (H2 e2) if
for all multi-language contexts C, (H1 C[e1]) and (H2 C[e2]) co-
terminate in ⇒

λsa
.

We define secure compilation of both the AOT and JIT
models as full abstraction: contextual equivalence is pre-
served and reflected through multi-language reduction.
Theorem 3 (Full Abstraction (multi-language)). Suppose
(H1 e1) ⇒

λsa
 (H1′ e1′) and (H2 e2) ⇒

λsa
 (H2′ e2′).

Then (H1 e1) ≈ (H2 e2) if and only if (H1′ e1′) ≈ (H2′ e2′).

The normally easy part of full abstraction, within the
multi-language, is now a direct consequence of confluence,
since both compilation and contextual equivalence are de-
fined by multi-language reduction. The hard part, showing
anymulti-language context (attacker) is emulated by a source
context, remains.

Bibliography
Amal Ahmed. Verified Compilers for a Multi-language World. In

Proc. Summit oN Advances in Programming Languages (SNAPL),
2015. doi:10.4230/LIPIcs.SNAPL.2015.15

Amal Ahmed and Matthias Blume. An Equivalence-Preserving
CPSTranslation via Multi-Language Semantics. In Proc. Inter-
national Conference on Functional Programming (ICFP), 2011.
doi:10.1145/2034773.2034830

Cormac Flanagan, Amr Sabry, Bruce F. Duba, andMatthias Felleisen.
The Essence of Compiling with Continuations. In Proc. Interna-
tional Conference on Programming Language Design and Imple-
mentation (PLDI), 1993. doi:10.1145/155090.155113

Olivier Flückiger, Gabriel Scherer, Ming-Ho Yee, Aviral Goel, Amal
Ahmed, and Jan Vitek. Correctness of speculative optimiza-
tions with dynamic deoptimization. Proceedings of the ACMon
Programming Languages (PACMPL) 2(POPL), pp. 1–28, 2018.
doi:10.1145/3158137

Robert Bruce Matthews Jacob And Findler. Operational Se-
mantics for Multi-language Programs. In Proc. Sympo-
sium on Principles of Programming Languages (POPL), 2007.
doi:10.1145/1190216.1190220

Max S. New, William J. Bowman, and Amal Ahmed. Fully Ab-
stract Compilation via Universal Embedding. In Proc. Inter-
national Conference on Functional Programming (ICFP), 2016.
doi:10.1145/2951913.2951941

Daniel Patterson and Amal Ahmed. Linking Types for Multi-
Language Software: Have Your Cake and Eat It Too. In Proc.
Summit oN Advances in Programming Languages (SNAPL), 2017.
doi:10.4230/LIPIcs.SNAPL.2017.12

James T. Perconti and Amal Ahmed. Verifying an Open Compiler
Using Multi-language Semantics. In Proc. European Symposium
on Programming (ESOP), 2014. doi:10.1007/978-3-642-54833-8_8

https://doi.org/10.4230/LIPIcs.SNAPL.2015.15
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/3158137
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
https://doi.org/10.1007/978-3-642-54833-8_8

	1 Extended Abstract
	Bibliography

