
Typed Closure Conversion  

for the  

Calculus of Constructions
William J. Bowman, Amal Ahmed

 

Calculus of Constructions

Typed Closure Conversion  

for the

Core calculus on which Coq is built

Dependent types
And high-assurance software

Dependent types

High-assurance software using dependent types

- CompCert

- CertiKOS

- Vellvm

- RustBelt

- CertiCrypt  

…

Verified in Coq!

Story of a verified program

Coq

e

Coq OCaml

e e+ …

asm

e+…+

Story of a verified program

Coq ✓ OCaml ?

e e+ …

asm ?…?

e+…+

Compilation 

can undo

verification

Story of a verified program

Compiler correctness!

A correct compilation story

Coq ✓ OCaml ✓

e e+ …

asm ✓

e+…+

✓ ✓

Verify that the program we run is the program we verified

Compiler correctness 

is not the whole story

Correctness is the  

“whole program” story

No one* writes whole

programs

* Okay, well, not most people.

Story of a verified component

OCaml X

e : A e+ e’

Li
nk

Coq ✓ OCaml ?
Unverified  

component

OCaml X

e : A e+ e’

Li
nk

Coq ✓ OCaml ?

Compilation  

can undo

verification

Linking

can undo

verification

Story of a verified component

e : A e+ e’ e++ e’+ e’’

asm X ?

Li
nk

Coq ✓ OCaml XOCaml ? asm ? asm X

Li
nk

Story of a verified component

e : A e+ e’ e++ e’+ e’’

asm X ?

Li
nk

Coq ✓ OCaml XOCaml ? asm ? asm X

Compilation  

can undo

verification

Linking

can undo

verification

Li
nk

Story of a verified component

> coqc verified.v  

> link verified.ml unverified.ml  

> ocaml verified.ml
[1] 43185 segmentation fault (core dumped)
ocaml verified.ml

> coqc verified.v  

> link verified.ml unverified.ml  

> ocaml verified.ml
[1] 43185 segmentation fault (core dumped)
ocaml verified.ml

Be careful?

Coq

e : A e+ : A+ e’ : A’ e’’ : A’’

Dep. Type ASM

…

Be careful?No! 

Be well-typed!

Verified  

type-preserving

compilers Type checking
linkers

Li
nk

Li
nk

 

Calculus of Constructions

Typed Closure Conversion  

A standard compiler pass for functional languages

for the

A type-preserving compiler

Continuation-Passing Style (CPS)

Closure Conversion

Allocation

Code generation

Morrisett, Walker, Crary, Glew 1998

A type-preserving compiler
Theorem. (Type Preservation) 

 If

 then  

 

e

translates to

: A

e+ : A+

…

A type-preserving compiler

Design typed intermediate language  

Prove soundness, decidability, etc

A dependent-type-preserving compiler

Design typed intermediate language  

Prove soundness, decidability, etc

• Move from functional, compositional  

to global, stateful, instruction based
• Which axioms can we use 

(e.g parametricity, impredicativity)

Impossibility result

Brief history of preserving dependent types

1999 2002 2018

Continuation-Passing Style (CPS)

Un-impossibility result

Impossibility result

Brief history of preserving dependent types

1999 2002 2018

Continuation-Passing Style (CPS)

Un-impossibility result

Key insights:
- Past work doesn’t scale in the obvious way

for dependent type theory

Type-Preserving Closure Conversion

Closure Conversion

Key problem:
- Which axioms does past work rely on, and

can we use them?

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

Γ ⊢ f : A→ BGoal: Translate

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

Γ ⊢ f : A→ BGoal: Translate

Takes 1 argument, of type A

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

Γ ⊢ f : A→ BGoal: Translate

Takes 1 argument, of type A

returns result of type B

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

Γ ⊢ f : A→ BGoal: Translate

And can refer to

lexical variables

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

Γ ⊢ f : A→ BGoal: Translate

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(A+ → B

+) ·To:

Pair of data and a

code pointer.  
(object)

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

Γ ⊢ f : A→ BGoal: Translate

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(A+ → B

+) ·To:

) · ⊢ f+ : Γ+ → A
+
→ B

+Where:

Code pointers are closed
except formal arguments
(can be heap allocated).

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

How do we implement a typed closure?

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(A+ → B

+) ·

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

How do we implement a typed closure?

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(A+ → B

+) ·

1. Not as pairs:

apply c x
def
= (snd c) (fst c) x

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Pair (Γ+, Γ+ → A

+
→ B

+)

1. Not as pairs:

apply c x
def
= (snd c) (fst c) x

How do we implement a typed closure?

z : Nat ⊢ f : Nat → Nat

⊢ f
′
: Nat → Nat

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Pair (Γ+, Γ+ → A

+
→ B

+)

✓Equal

1. Not as pairs:

apply c x
def
= (snd c) (fst c) x

How do we implement a typed closure?

z : Nat ⊢ f : Nat → Nat

⊢ f
′
: Nat → Nat

✓

X

Equal

Not equal

⊢ ⟨(), f ′+⟩ : Pair ((), () → Nat → Nat)

⊢ ⟨z, f
+
⟩ : Pair ((z : Nat), (z : Nat) → Nat → Nat)

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Pair (Γ+, Γ+ → A

+
→ B

+)

1. Not as pairs:

apply c x
def
= (snd c) (fst c) x

How do we implement a typed closure?

X Not Secureextract_hidden_data c
def
= fst c

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Pair (Γ+, Γ+ → A

+
→ B

+)

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

How do we implement a typed closure?

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(A+ → B

+) ·

1. Not as pairs:

apply c x
def
= (snd c) (fst c) x

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Pair (Γ+, Γ+ → A

+
→ B

+)

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

How do we implement a typed closure?

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(A+ → B

+) ·

1. Not as pairs:

apply c x
def
= (snd c) (fst c) x

2. As existential pairs:

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : ∃α .(α , (α → A

+
→ B

+))

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Pair (Γ+, Γ+ → A

+
→ B

+)

apply c x
def
= unpack⟨α , p⟩in (snd c) (fst c) x

How do we implement a typed closure?

z : Nat ⊢ f : Nat → Nat

⊢ f
′
: Nat → Nat

✓Equal

2. As existential pairs:

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : ∃α .(α , (α → A

+
→ B

+))

⊢ ⟨(), f ′+⟩ : ∃α .(α ,α → Nat → Nat)

⊢ ⟨z, f
+
⟩ : ∃α .(α ,α → Nat → Nat)

✓Equal

apply c x
def
= unpack⟨α , p⟩in (snd c) (fst c) x

How do we implement a typed closure?

2. As existential pairs:

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : ∃α .(α , (α → A

+
→ B

+))

apply c x
def
= unpack⟨α , p⟩in (snd c) (fst c) x

Not definable

extract_hidden_data c
def
= fst c

✓Secure

X

Type-Preserving Closure Conversion
The standard (non-dependent) type-preserving translation

How do we implement a typed closure?

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(A+ → B

+) ·

As existential pairs:

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : ∃α .(α , (α → A

+
→ B

+))

apply c x
def
= unpack⟨α , p⟩in (snd c) (fst c) x

Dependent-Type-Preserving Closure Conversion

Goal: Translate Γ ⊢ f : Π x : A.B

Takes 1 argument, x, of

type A.

Dependent-Type-Preserving Closure Conversion

Goal: Translate Γ ⊢ f : Π x : A.B

Returns result of type B.

Dependent-Type-Preserving Closure Conversion

Goal: Translate Γ ⊢ f : Π x : A.B

Refer to lexical variables

Dependent-Type-Preserving Closure Conversion

Goal: Translate Γ ⊢ f : Π x : A.B

And so can types:

types can depend on terms

Dependent-Type-Preserving Closure Conversion

Goal: Translate Γ ⊢ f : Π x : A.B

Dependent-Type-Preserving Closure Conversion

Goal: Translate Γ ⊢ f : Π x : A.B

div : Π x : Nat.Π y : Nat.Π p : y ! 0. Int

The term-level inequality function

The term-level 0

Dependent-Type-Preserving Closure Conversion

Goal: Translate Γ ⊢ f : Π x : A.B

Dependent-Type-Preserving Closure Conversion

Goal: Translate

To:

Where:

Code pointers are closed  
(can be heap allocated)

Γ ⊢ f : Π x : A.B

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(x : A

+
→ B

+)

· ⊢ f
+
: ΠΓ

+
.Π x : A

+
.B
+

How do we implement a dependently typed closure?

Hint: not as pairs

Dependent-Type-Preserving Closure Conversion

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(x : A

+
→ B

+)

How do we implement a dependently typed closure?

Hint: not as pairs

Dependent-Type-Preserving Closure Conversion

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(x : A

+
→ B

+)

Hint: existential pairs don’t work either

Digression on the

nature of existence

On existence

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

Key problem:
- Which axioms does past work rely on, and

can we use them?

On existence

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

If A is a Type,  

under the assumption that α is a Type

Then “there exists an α such that A holds of α”

is a Type.

On existence

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

If A is a Type,  

under the assumption that α is a Type

Then “there exists an α such that A holds of α”

is a Type.

On existence

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

If A is a Type,  

under the assumption that α is a Type

Then “there exists an α such that A holds of α”

is a Type.

On existence

Properties:

1. Existence is impredicative  
(formed by quantifying over Types including itself)

2. Existence is computationally relevant 
(terms of this type can be used when running a program)

3. Existence is parametric in α  

(terms cannot make inspect α at run-time)

4. Existence can be used in large elimination 
(we can compute types from term of existential types)

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

On existence

Properties:

1. Existence is impredicative  
(formed by quantifying over Types including itself)

2. Existence is computationally relevant 
(terms of this type can be used when running a program)

3. Existence is parametric in α  

(terms cannot make inspect α at run-time)

4. Existence can be used in large elimination 
(we can compute types from term of existential types)

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

On existence

Properties:

1. Existence is impredicative  
(formed by quantifying over Types including itself)

2. Existence is computationally relevant 
(terms of this type can be used when running a program)

3. Existence is parametric in α  

(terms cannot make inspect α at run-time)

4. Existence can be used in large elimination 
(we can compute types from term of existential types)

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

On existence

Properties:

1. Existence is impredicative  
(formed by quantifying over Types including itself)

2. Existence is computationally relevant 
(terms of this type can be used when running a program)

3. Existence is parametric in α  

(terms cannot make inspect α at run-time)

4. Existence can be used in large elimination 
(we can compute types from term of existential types)

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

On existence

Properties:

1. Existence is impredicative  
(formed by quantifying over Types including itself)

2. Existence is computationally relevant 
(terms of this type can be used when running a program)

3. Existence is parametric in α  

(terms cannot make inspect α at run-time)

4. Existence can be used in large elimination 
(we can compute types from term of existential types)

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

Existence is incompatible with reality

We could add this axiom, in theory, but in reality:

1. Some type theories do not admit impredicativity 
(Agda, Coq for computational Types (by default))

2. Some type theories do not admit parametricity 
(Agda, Coq by default)

3. These properties are incompatible with set theory:

1. impredicativity + large elimination + excluded middle  

implies False
2. impredicativity + relevance + excluded middle  

implies False

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

Existence is incompatible with reality

We could add this axiom, in theory, but in reality:

1. Some type theories do not admit impredicativity 
(Agda, Coq for computational Types (by default))

2. Some type theories do not admit parametricity 
(Agda, Coq by default)

3. These properties are incompatible with set theory:

1. impredicativity + large elimination + excluded middle  

implies False
2. impredicativity + relevance + excluded middle  

implies False

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

Existence is incompatible with reality

We could add this axiom, in theory, but in reality:

1. Some type theories do not admit impredicativity 
(Agda, Coq for computational Types (by default))

2. Some type theories do not admit parametricity 
(Agda, Coq by default)

3. Incompatible with set theory:

1. impredicativity + large elimination + excluded middle  

implies False
2. impredicativity + relevance + excluded middle  

implies False

Γ,α : Type ⊢ A : Type

Γ ⊢ ∃α : Type.A : Type

Existence is incompatible with reality

We could add this axiom, in theory, but in reality:

How do we implement a dependently typed closure?

1. not as pairs

2. not as existential pairs

Dependent-Type-Preserving Closure Conversion

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(x : A

+
→ B

+)

How do we implement a dependently typed closure?

1. not as pairs

2. not as existential pairs

3. as …. closures

Dependent-Type-Preserving Closure Conversion

Γ
+
⊢ ⟨Γ

+
, f
+
⟩ : Closure(x : A

+
→ B

+)

Pros:
• Works

Cons:
• Require proof of consistency
• Unclear how past work (optimizations?) applies

Closure Axioms

Closure Axioms

Well-typed code pointer

·,n : A
′
, x : A ⊢ e : B

Γ ⊢ λn : A
′
, x : A. e : Code (n : A

′
, x : A).B

[Code]

Closure Axioms

Well-typed code pointer

·,n : A
′
, x : A ⊢ e : B

Γ ⊢ λn : A
′
, x : A. e : Code (n : A

′
, x : A).B

[Code]

A code pointer,  

pointing to e,  

which expects two arguments, n and x

Closure Axioms

Well-typed code pointer

·,n : A
′
, x : A ⊢ e : B

Γ ⊢ λn : A
′
, x : A. e : Code (n : A

′
, x : A).B

[Code]

Has a dependent code type

(A can depend on n,

 B can depend on n and x)

Closure Axioms

Well-typed code pointer

·,n : A
′
, x : A ⊢ e : B

Γ ⊢ λn : A
′
, x : A. e : Code (n : A

′
, x : A).B

[Code]

When e is a well-typed block of code

with references only to declared arguments n and x.

Closure Axioms

Well-typed code pointer

·,n : A
′
, x : A ⊢ e : B

Γ ⊢ λn : A
′
, x : A. e : Code (n : A

′
, x : A).B

[Code]

When e is a well-typed block of code

with references only to declared arguments n and x.

Closure Axioms
Well-typed closure

Γ ⊢ e : Code (n : A
′
, x : A).B Γ ⊢ e

′
: A

′

Γ ⊢ ⟨⟨e, e
′
⟩⟩ : Π x : A[e′/n].B[e′/n]

[Clo]

A closure has

code pointer e,  

data e’

Closure Axioms
Well-typed closure

Γ ⊢ e : Code (n : A
′
, x : A).B Γ ⊢ e

′
: A

′

Γ ⊢ ⟨⟨e, e
′
⟩⟩ : Π x : A[e′/n].B[e′/n]

[Clo]

With the data e’ substituted for n in the types 

(dependent closure type)

Closure Axioms

Well-typed code pointer

·,n : A
′
, x : A ⊢ e : B

Γ ⊢ λn : A
′
, x : A. e : Code (n : A

′
, x : A).B

[Code]

Well-typed closure

Γ ⊢ e : Code (n : A
′
, x : A).B Γ ⊢ e

′
: A

′

Γ ⊢ ⟨⟨e, e
′
⟩⟩ : Π x : A[e′/n].B[e′/n]

[Clo]

Well-typed code pointer

·,n : A
′
, x : A ⊢ e : B

Γ ⊢ λn : A
′
, x : A. e : Code (n : A

′
, x : A).B

[Code]

Well-typed closure

Γ ⊢ e : Code (n : A
′
, x : A).B Γ ⊢ e

′
: A

′

Γ ⊢ ⟨⟨e, e
′
⟩⟩ : Π x : A[e′/n].B[e′/n]

[Clo]

Closure Axioms

We show

1. Logical Consistency 

Orthogonal to impredicativity, relevance, parametricity,

large elimination, and set theory

2. Type safety  

IR programs type and memory safe; validate compiler

output and enforce safe linking via type checking

Closure Conversion

(Π x : A.B)+
def
= Π x : A

+
.B
+

(λ x : A. e)+
def
= ⟨⟨(λ (n : Σ (xi : A

+

i
. . .), x : let ⟨xi . . .⟩ = n inA

+).

let ⟨xi . . .⟩ = n in e), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . are the free variables of e and A

Pair code pointer with free variables,
as explicit data 

(standard)

Closure Conversion

(Π x : A.B)+
def
= Π x : A

+
.B
+

(λ x : A. e)+
def
= ⟨⟨(λ (n : Σ (xi : A

+

i
. . .), x : let ⟨xi . . .⟩ = n inA

+).

let ⟨xi . . .⟩ = n in e), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . are the free variables of e and A

Bind free variables in term by
projecting from data argument

(standard)

Closure Conversion

(Π x : A.B)+
def
= Π x : A

+
.B
+

(λ x : A. e)+
def
= ⟨⟨(λ (n : Σ (xi : A

+

i
. . .), x : let ⟨xi . . .⟩ = n inA

+).

let ⟨xi . . .⟩ = n in e), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . are the free variables of e and A

Bind free variables in type annotation
(dependency)

Closure Conversion

(Π x : A.B)+
def
= Π x : A

+
.B
+

(λ x : A. e)+
def
= ⟨⟨(λ (n : Σ (xi : A

+

i
. . .), x : let ⟨xi . . .⟩ = n inA

+).

let ⟨xi . . .⟩ = n in e), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . are the free variables of e and A

Bind each xi in the type annotation for xi+1

(dependency)

Theorem. (Type Preservation) 

 If

 then  

 

e

translates to

: A

e+ : A+

Type Preservation

Theorem. (Correctness of Separate Compilation) 

 If

 then

e γ v

e+ γ+ v’ v+≡

Type Preservation

Future Work

Closure Conversion

Allocation

Code generation

✓

✓

Future Work

✓

✓

Scaling source feature set:
• recursion (optimizing)
• universe hierarchy

Future Work

✓

✓
Foundational challenges: 

linear + dependent types

Typed Closure Conversion of the  

Calculus of Constructions

https://williamjbowman.com/#cccc

Dependently typed closures require

abandoning past work on type preservation

(existential types) to be practical.

✓

✓

✓

✓
✓

Li
nk

https://williamjbowman.com/#cccc

