
Macro-embedding Compiler Intermediate Languages in
Racket
WILLIAM J. BOWMAN, University of British Columbia, Canada

We present the design and implementation of a macro-embedding of a family of compiler intermediate
languages, from a Scheme-like language to x86-64, into Racket. This embedding is used as part of a testing
framework for a compilers course to derive interpreters for all the intermediate languages. The embedding
implements features including safe, functional abstractions as well as unsafe assembly features, and the
interactions between the two at various intermediate stages.

This paper aims to demonstrate language-oriented techniques and abstractions for implementing (1) a large
family of languages and (2) interoperability between low- and high-level languages. The primary strength of
this approach is the high degree of code reuse and interoperability compared to implementing each interpreter
separately. The design emphasizes modularity and compositionality of an open set of language features by
local macro expansion into a single host language, rather than implementing a language pre-defined by a
closed set of features. This enables reuse from both the host language (Racket) and between intermediate
languages, and enables interoperability between high- and low-level features, simplifying development of the
intermediate language semantics. It also facilitates extending or redefining individual language features in
intermediate languages, and exposing multiple interfaces to the embedded languages.

1 INTRODUCTION
Recently, we faced an engineering challenge: we wanted to design and implement interpreters for a
family of 126 languages. These languages share considerable structure and features sets, and many
are nearly idententical; changes to one language are not independent of any other. Some are high
level, functional, safe languages, while some are low level, unsafe and equivalent to a subset of
x86-64 assembly (x64). Most are somewhere in between—intermediate languages in which safe,
high-level features interoperable with unsafe, low-level features. The language definitions may
change as the specification evolves, so code maintence is a primary concern.

Our users could use these interpreters to test an optimizing nanopass compiler (Ghuloum 2006;
Keep and Dybvig 2013) from a small Scheme-like language to x64. At the time, the users relied on
a combination of fragile syntactic tests and end-to-end tests of the entire compiler. But syntactic
tests would often yield false test failure when the compiler produced an equivalent but synctically
different program, and end-to-end tests failed to support debugging since a test failure could not
be attributed to a particular compiler pass. Interpreters that provide the ground truth value of a
program for each compiler pass would enable resiliant tests and better debugging. The users should
not need to know anything about the interpreters other than their interface: they take a (possibly
valid) program, and produce its value or an error. They would also need debugging output and
metrics such as reasonable error messages and the ability to distinguish whether the provided
program was invalid or the test failed because the value produced was unexpected.

Our context is the University of British Columbia’s undergraduate compilers course (CPSC 411).1
Our users are the students and the course staff, who use the interpreters to test the compilers
and provide feedback. The nanopass structure of the compiler means the compiler includes many
passes, up to about 30 by the end of the course, and each pass has separate intermediate languages
specifying the source and target of the pass. Students develop the compiler incremenetally in 10
milestones, with new languages and changes to existing languages each milestone.
1For additional context, the course material is publically available online at https://github.com/cpsc411/, with the most
recent spring 2022 iteration deployed at https://www.students.cs.ubc.ca/~cs-411/2021w2/.

Author’s address: William J. Bowman, Computer Science, University of British Columbia, Vancouver, British Columbia,
Canada, wjb@williamjbowman.com.

HTTPS://ORCID.ORG/0000-0002-6402-4840
https://github.com/cpsc411/
https://www.students.cs.ubc.ca/~cs-411/2021w2/
https://orcid.org/0000-0002-6402-4840

2 William J. Bowman

Our first question is an engineering question: how should we implement these interpreters? The
constraits described above prevent us from doing the obvious thing: writing each interpreter as a
function that folds over the syntax of the language and computes the value of the input program.
Language-oriented programming (Felleisen et al. 2018; Felleisen et al. 2015; Tobin-Hochstadt et al.
2011) could provide a suitable design for answering our first question, if the existing abstractions
apply to low-level languages as well as high-level languages. But this yields a second question:
(how) can we implement a family of compiler intermediate languages, from low- to high-level
languages, as a macro-embedding using language-oriented programming? This paper answers this
latter question, demonstrating how to embed such low-level abstractions using language-oriented
programming, particularly in Racket, so that we can easily develop and maintain our family of
interpreters.

Before considering our case study, let’s consider the small example language below.

p F (begin effect effect ...)
effect F (set! reg word64) | (set! reg1 (binop reg1 word32))
reg F rax | ... | r12 | r13 | r14 | r15

word32 F int32 | reg
word64 F word32 | int64
binop F + | - | *

The language is a simple subset of x64 with an s-expression syntax, described by the grammar
above. A program begins with begin and is followed by a non-empty list of effects. Each effect
can modify a register, either setting it to a value or to the result of a binary operation. We assume
every program ends with rax set to the result.
We could implement a whole-program environment-passing interpreter as below.

> (define (interp-x64-v1 p)
(define (interp-binop op)
(match op
['+ +]
['- -]
['* *]))

(define (interp-opand opand env)
(match opand
[(? integer?) opand]
[(? symbol?) (dict-ref env opand)]))

(define (interp-effect effect env)
(match effect
[`(set! ,reg (,binop ,reg ,opand))
(dict-set env reg ((interp-binop binop)

(interp-opand reg env)
(interp-opand opand env)))]

[`(set! ,reg ,opand)
(dict-set env reg (interp-opand opand env))]))

(match p

Macro-embedding Compiler Intermediate Languages in Racket 3

[`(begin ,list-of-effect ...)
(interp-opand 'rax (for/fold ([env empty])

([effect list-of-effect])
(interp-effect effect env)))])) #lang racket

This interpreter is a fold over the list of effects, which ends by dereferencing the value of
the register 'rax from the final environment. Initially, the environment is empty. Each effect is
interpretered by updating the environment, which maps registers to values.

> (interp-x64-v1 '(begin (set! rax 15)))
15 #lang racket

The interpreter is straightforward to implement, once, for a single small language. But we need
a different approach to scale to developing and maintaining hundreds of interpreters. Many of the
intermediate languages include registers, assignment statements to registers, integer operands,
etc—we do not want to copy/paste, but must design for sharing the implementation of features
between interpreters.

The key change we make to our design is to macro-embed each language feature into a common
host language, rather than implementing each language separately. We then derive an interpreter
for any given language using the host language’s eval, with the set of languages features imported.

For the above example language, we could start by implementing the set! feature as follows.

> (define env (make-hash))
> (define-syntax (set! stx)

(syntax-parse stx
[(set! reg (binop _ opand))
#`(dict-set! env 'reg (binop (interp-opand 'reg)

(interp-opand opand)))]
[(set! reg opand)
#`(dict-set! env 'reg (interp-opand opand))])) #lang racket

In this example, we define as a macro the set! language feature, without the rest of the language.
We first define the environment as a mutable hash table at run time in the host language. Since the
syntax of the program is traversed implicitly in the macro expander, we cannot pass additional
arguments during the syntax traversal, so we use a mutable environment. The macro set!, defined
using define-syntax, is implicitly called during compile time by the macro expander whenever it
encounters the defined identifier set!. Each macro transforms syntax into new syntax at compile
time, so we require slightly different abstractions to work over syntax objects rather than over
quoted lists. The macro’s definition receives as input a single syntax object, representing the entire
syntax of the call to the macro, including its own name. We use syntax-parse (Culpepper 2012;
Culpepper and Felleisen 2010) for pattern matching over syntax objects, and use quasisyntax
(written #`) to construct syntax objects. We destructure the input syntax expecting set! in operator
position (which is unused in the definition), a register on the left-hand side, and either a binary
operation or an operand on the right-hand side. The syntax template constructed with #` can refer
to bound syntax pattern variables, whose bound names are automatically replaced by their value
in the template without the need to unquote.

The definition of set! is essentially similar to the earlier interpreter, implementing assignment
as an update to the environment. The key difference is that we generate a run-time expression that
updates the environment, rather than immediately executing the update to the environment. We
must explicitly transform the register operand from a raw piece of syntax into a symbol by quoting

4 William J. Bowman

it in the generated syntax. But we do not need to explicitly transform binary operations such as +,
since they are already defined and have sufficiently similar semantics in the host language.

The implementation relies on interp-opand, defined below, to expand operands.

> (define-syntax (interp-opand stx)
(syntax-parse stx
[(_ reg:id)
#`(dict-ref env 'reg)]
[(_ int:integer)
#`int])) #lang racket

interp-opand has two cases: the pattern reg:id matches a raw identifier and binds the syntax
pattern variable reg, while the pattern int:integermatches an integer literal and binds the syntax
pattern variable int. Identifiers are assumed to be registers and expand to dereference from the
environment. The register is quoted, transforming the raw identifier into a symbol. Integers expand
to themselves since the object language and the host language share integer literal syntax. Following
a common convention, we use _ to bind the irrelevant name of the operator (interp-opand) in the
patterns.

To get a full interpreter from this feature, we need to combine it with the other features (begin, +,
etc), and provide an entry point that provides the value interpretation of programs by dereferencing
'rax from the environment as the final operation. We can reuse the host language begin and
binary operations, as their semantics are close enough, and add the following entry point.

> (define-syntax (interp-x64-v2 stx)
(syntax-parse stx
[(_ stx)
#`(begin stx (dict-ref env 'rax))]))

> (interp-x64-v2
(begin
(set! rax 15)))

15 #lang racket

Our entry point, interp-x64-v2, is a macro that uses the host language begin to sequentially
execute the original syntax and then dereference the symbol 'rax from the environment. The
macro expander proceeds outside-in, so it will expand all the macros in stx after expanding a
call to interp-x64-v2. Unlike when we used the procedure interp-x64-v1, we do not need to
explicitly quote the input program (begin (set! rax 15)) since the expander syntax-quotes the
syntax of the call automatically before passing that syntax object to the macro.

This is the basic idea behind language-oriented design (Felleisen et al. 2018; Felleisen et al. 2015;
Tobin-Hochstadt et al. 2011). Rather than writing the language as a closed set of features, a language
is a collection of individual features open to extension. We implement the features by embedding
into a common host language, then we can use the module system to export, import, extend,
redefine and mix the features into a desired language. If we’re careful about how we design the
embedding, we can easily support interoperability and extension. The above implementation is not
particularly careful. We completely redefine set!, so we’re unable to interoperate with Racket’s
set!, and registers are only embedded as part of set!, not as their own feature, so do not work
correctly in other contexts. We explore a better implementation in the rest of the paper.
Language-oriented programming in Racket has been used to implement general-purpose lan-

guages such as Typed Racket (Tobin-Hochstadt and Felleisen 2008, 2011) and domain-specific

Macro-embedding Compiler Intermediate Languages in Racket 5

languages such as Scribble (Flatt et al. 2009). However, these canonical examples are high-level
languages.
This approach is not obviously suited to macro-embedding assembly language, with its global

state, labeled code, and unstructured control flow. However, Racket’s language-extension facilities—
namely the module system, the static interposition points, run-time interposition features, macros
designed for extension, and eval parameterized by a namespace—support this use case and our
engineering constraints well. All interpreters share a single ∼600 LOC file that implements the
embedding. The embedding is largely modular, so individual language features can be changed
once, locally, for all languages, with some exceptions. Embedding most high-level features is
straightforward by borrowing from Racket. Embedding into a shared host language simplifies
implementing intermediate languages, where low- and high-level features blend together.
This language-oriented approach has added benefits beyond achieving our engineering goals.

It simplifies using the intermediate languages in Racket’s toolchain (such as the REPL and IDE)
and enables interoperating with Racket (useful for in-class demonstrations and typesetting notes).
Trying to define macros locally and compositionally—instead of, e.g., analyzing, transforming, or
executing a whole program—exposed some bad design decisions in our intermediate languages,
enabling us to improve the languages.
In this article, we walk through the design and implementation of embedding key interesting

language features, and of the interfaces to our interpreters. We describe which parts of the Racket
language-extension API are particularly useful, and discuss limitations in our current design,
implementation, and Racket abstractions.

The implementation of our embedding can be installed locally using the following command.2

raco pkg install https://github.com/cpsc411/cpsc411-pub.git?path=cpsc411-lib#hashlang-x64

We typeset all interactive examples run in a REPL in a grey box, with a language name indicating
in which language the examples must be run. Typeset code that does not appear in a box is an
excerpt from the implementation of the languages, is not expected to run on its own, and may be
simplified to elide irrelevant details. Most of these excerpts are from a single file, found online at
https://github.com/cpsc411/cpsc411-pub/blob/hashlang-x64/cpsc411-lib/cpsc411/langs/base.rkt.

2 X64
We start with the embedding of the lowest-level features from x64, in particular, global state
(registers and memory), pointer arithmetic, and labels and jumps. These features are present not
only in the target language, but in many of the intermediate languages.

The syntax of our target language, a parenthesized subset of x64, is given below.

p F (begin effect ...)
effect F (set! addr word32) | (set! reg word64) | (set! reg1 (binop reg1 word32))

| (set! reg1 (binop reg1 addr)) | (with-label label effect) | (jump trg)
| (compare reg opand) | (jump-if relop label)

reg F rsp | rbp | rax | ... | r12 | r13 | r14 | r15
addr F (reg + int32) | (reg + reg) | (rbp - int32)

word32 F int32 | label | reg
word64 F word32 | int64 | addr
opand F int64 | reg

trg F reg | label

2The software is archived at https://doi.org/10.5281/zenodo.7051910.

https://github.com/cpsc411/cpsc411-pub/blob/hashlang-x64/cpsc411-lib/cpsc411/langs/base.rkt
https://doi.org/10.5281/zenodo.7051910

6 William J. Bowman

Every program is a sequence of statements, which have a one-to-one correspondence with some
x64 instruction. Labels must be symbols whose string representation is accepted by the assembler.
The displacement- and index-mode offsets in addresses must be divisible by 8, as we assume all
addresses are word aligned. We use the small-code model, so labels are 32-bit words. The register
operand of a binary operation must be the same on the right-hand side and the left-hand side, to suit
x64, but we duplicate the operand in our syntax to simplify the interpretation of set! expressions
as a Racket set!.

Our run-time system follows various conventions from the System V ABI3, which we introduce
as they become relevant. The program must also end by jumping to the special done label with the
result in the register rax.

We can write everyone’s favourite function, factorial, in #lang cpsc411/hashlangs/base (the
language that exposes the majority of the macro embedding on which all the interpreters are based)
as follows.

> (begin
(set! r15 5)
(set! r14 1)
(with-label fact
(compare r15 0))

(jump-if = end)
(set! r14 (* r14 r15))
(set! r15 (+ r15 -1))
(jump fact)
(with-label end
(set! rax r14))

(jump done))
120 #lang cpsc411/hashlangs/base

Programs in this #lang are embedded into Racket, so we can interoperate at run time, although
these interoperability semantics are not well documented nor the primary goal.

> (require (only-in racket/base displayln define))
> (displayln rax)
120
> (define (fact x)

(begin
(set! r15 x)
(set! r14 1)
(with-label fact
(compare r15 0))

(jump-if = end)
(set! r14 (* r14 r15))
(set! r15 (+ r15 -1))
(jump fact)
(with-label end
(set! rax r14))

(jump done)))

3https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

Macro-embedding Compiler Intermediate Languages in Racket 7

> (fact 6)
720 #lang cpsc411/hashlangs/base

2.1 Registers
Registers should be modelled as global variables, provided by the language. However, Racket does
not allow a variable provided by a module to be modified by another module using set!, so we
cannot define registers as in (define rax (void)). We could define the registers in the user’s
module by non-hygienically introducing them in #%module-begin (the module-level interposition
point), but breaking hygiene is complicated and fragile so should be avoided, and introducing
module-level state that is supposed to be global doesn’t allow interoperation with Racket.
Instead, we define each register as a box. The box is exported, and the contents of the box is

modified instead of the variable itself. Normally, a user creates a box as in (define x (box 0)),
assigns to a box using (set-box! x 1), and dereferences a box explicitly using (unbox x). To
embed registers as boxes, we want to transparently transform any use of set! on a register, and
any use of a register, into one of these operations.

Thankfully, Racket’s set! was designed with extension in mind. It cooperates with any identifier
that is defined as a variable-like transformer using make-variable-like-transformer. Such
macros have two definitions attached: one that is used when they appear on their own (like a
reference to a variable), and one that is used by set! during macro expansion when the variable-like
macro appears on the left-hand side of a set!. For example, the definition of the register rax is
given below.

(define _rax (box (void)))

(define-syntax rax
(make-variable-like-transformer
#`(unbox _rax)
(lambda (stx)
(syntax-parse stx
[(set! _ v)
#`(set-box! _rax v)]))))

For each register, we create two definitions: a run-time representation, and a compile-time
transformer for references of and assignments to the surface syntax name for the register. The
run-time representation is prefixed by an underscore, and is defined as a box, initialized either
to (void) or a value define by the run-time system. The compile-time transformer uses make-
variable-like-transformer to transform references, using the first argument, and assignments,
using the second argument.

When the defined syntax, rax in this case, appears as a reference on its own and not in operator
position, the transformer unconditionally expands to the first argument, in this case generating the
syntax object representing the run-time expression (unbox _rax).
When the syntax appears as the left-hand side of a set!, the expander delegates to the second

argument of make-variable-like-transformer to expand the entire set! expression. We know
that the syntax of the expression must be (set! rax v) for this transformer to be called, and we
only need the syntax of v. We rewrite the syntax (set! rax v) to the syntax object representing
the run-time expression (set-box! _rax v).

Now, all references to rax as a variable implicitly expand to (unbox _rax), and all instances of
(set! rax v) expand to (set-box! _rax v). Further, the embedding of this register is local—we
only define the language feature rax, and did not need to modify any existing definitions.

8 William J. Bowman

make-variable-like-transformer is not necessary to implement registers, but is a useful
abstraction of the pattern, and is already designed to cooperate with set!. We could alternatively
redefine set!, as we did in Section 1, but using variable-like transformers instead means we can
implement the register as its own feature, separate from set!, isolating the embedding of the
register rather than spreading it across two definitions (the register as a reference, and a separate
extension of set!).

2.2 Memory and Pointer Operations
To model memory, we create two vectors: stack and memory. Similar to registers, we must extend
the behaviour of set! to support setting memory addresses, and define the interpretation of
dereferencing addresses. Unfortunately, since addresses of the form (rbp - offset) are compound
rather than identifiers, we cannot use make-variable-like-transformer. This suggests the need
for a new abstraction, which we return to in Section 6.

We start with the stack, since it has more structure. The stack pointer is required to live in rbp4,
and this register is only allowed to be used in a particular, stack-like manner, specified by the
compiler. rbp can be decremented by a word-aligned integer-literal offset. Its value can be read
directly, or a value can be read from it at a word-aligned offset. The stack pointer starts at the very
end of the stack, and stack allocation should grow backwards towards the front.

Like with other registers, we create a box _rbp to hold the current stack pointer. However, unlike
the other registers, we define rbp as a custom macro, rather than as a variable-like transformer.

(define-syntax (rbp stx)
(syntax-parse stx
[:id
#'(unbox _rbp)]

[(rbp (∼datum -) offset:integer)
#`(vector-ref stack (- (unbox _rbp) offset))]))

The first clause only matches when rbp appears by itself as an identifier, not in operator position,
and binds no pattern variable. The second clause matches rbp in operator position, followed by
a displacement-mode offset, indicated by the literal symbol - and an integer literal. Referencing
rbp in non-operator position produces the current stack pointer, but the syntax (rbp - offset)
(when not used as the left-hand side of a set!) dereferences the address at the current stack pointer
minus the offset.

> (require (only-in racket/base vector-length))
> (vector-length stack)
12960
> (rbp - 0)
'uninit
> rbp
12959
> (rbp + 0)
eval:10:0: rbp: expected the literal symbol `-'
at: +
in: (rbp + 0)

> (rbp - rax)
eval:11:0: rbp: expected integer

4Actually, it holds the frame base pointer, but we haven’t introduced the frame yet, so they’re the same for now.

Macro-embedding Compiler Intermediate Languages in Racket 9

at: rax
in: (rbp - rax) #lang cpsc411/hashlangs/base

When dereferencing the address at (rbp - 0), we get an uninitialized value (since we never
set that address). But when referencing rbp, we get the address of the end of the stack. Other
syntax for rbp is invalid. We have not spent much effort on error reporting yet, but syntax-parse
occassionally makes good error reporting easy.
This macro is only used when the address appears as a value; we implement assigning to the

stack separately. The implementation for assignment to the stack is entirely in set!, which must
detect what kind of left-hand side is being used, and expand depending on the kind of address.
There are three cases in set! for stack addresses: the stack pointer is incremented, the stack

pointer is updated, or some stack address is assigned.

(define-syntax (set! stx)
(syntax-parse stx
; Stack pointer increment
[(set! (∼literal rbp) (binop (∼literal rbp) v))
#`(set-box! _rbp (binop rbp v))]

; Stack pointer update
[(set! (∼literal rbp) v)
#`(set-box! _rbp v)]

; Stack slot update
[(set! ((∼literal rbp) - offset) v2)
#`(vector-set! stack (- (unbox _rbp) offset) v2)]

....))

This definition uses the syntax class ∼literal to match only when the left-hand side is or
includes the bound identifier rbp; these clauses are only triggered when set! is used with the
stack pointer, not an arbitrary other register. The first two cases only use rbp as the left-hand side,
so could be supported by make-variable-like-transformer. These clauses expand to update
rbp, modifying the current stack pointer. The third clause uses a compound left-hand side. Since
we need this compound left-hand side (as well as the earlier compound dereferences), we cannot
use make-variable-like-transformer, and must spread our implementation of rbp between
set! and a custom tranformer for rbp. The final clause expands to modify a location on the stack,
computed as the current stack pointer minus the offset.

> (set! (rbp - 0) 5)
> (rbp - 0)
5 #lang cpsc411/hashlangs/base

To implement the heap, we use another vector, called memory. Unlike the stack, memory addresses
can end up in any register, so we cannot implement the register as its own transformer or special
case any particular register like we did with rbp. Instead, we must detect the general form of the
address operands in the implementation of set!. There are two cases to consider: assigning to
memory (the left-hand side has the form (reg binop offset)), or reading from memory (the
right-hand side has the form (reg binop offset)). In each case, we generate an instruction using
either vector-set! or vector-ref accessing memory at the location base plus or minus the offset.

(begin-for-syntax
(define-syntax-class addr-op
(pattern (∼or (∼datum +) (∼datum -))))

10 William J. Bowman

(define-syntax-class not-rbp
(pattern (∼not (∼literal rbp)))))

(define-syntax (set! stx)
(syntax-parse stx
....
; Assign to memory
[(set! (base:not-rbp op:addr-op offset) value)
#`(vector-set! memory (op base offset) value)]

; Read from memory
[(set! v1:id (base:not-rbp op:addr-op offset))
#`(r:set! v1 (vector-ref memory (op base offset)))]

; Else use Racket's set!
[(set! v1 v2)
#`(r:set! v1 v2)]))

We use two syntax classes, which extend the pattern language of syntax-parse, to detect the
index-mode operand. The base must not be the identifier bound to the stack pointer register, and
there should be an address operator (either the literal syntax + or -) between the base and the offset.
We reimport Racket primitives that get redefined by our embedding with the prefix r:, so r:set!
refers to Racket’s implementation of set!.

> (vector-length memory)
10000
> (vector-ref memory 0)
'unalloced
> (set! (r12 + 0) 5)
> (set! rax (r12 + 0))
> rax
5
> (vector-ref memory 0)
5 #lang cpsc411/hashlangs/base

By default, our run-time system puts a pointer to unallocated heap memory in r12, which the
compiler uses to implement allocation.

2.3 Labels and Jumps
We model labelled instructions as procedures with no arguments that are immediately called, and
jumps as procedure calls that must not return.

All statements appear under a begin. To implement labels, we redefine begin to transform the
sequence of instructions into a letrec, binding each label to a procedure.

This definition is the first we’ve seen that uses syntax quasiquotation with unquoting. The syntax
unquote #, splices into a syntax template a value computed by running a compile-time expression.
This works analogously to unquote , over quasiquoted lists `. Similarly, syntax splicing unquote
#,@ splices a list of values into the template.

(begin-for-syntax
(define (labelify defs effects)
(match effects

Macro-embedding Compiler Intermediate Languages in Racket 11

['() (values defs '())]
[(cons effect effects)
(syntax-parse effect
#:literals (with-label begin)
[(with-label label effect)
(let-values ([(defs effects^)

(labelify defs (cons #'effect effects))])
(values
(cons #`[label (lambda () (r:begin #,@effects^))] defs)
(list #`(jump label))))]

[(begin effects1 ...)
(labelify defs (append (attribute effects1) effects))]
[effect
(let-values ([(defs effects^) (labelify defs effects)])
(values defs #`(effect #,@effects^)))])])))

(define-syntax (begin stx)
(let-values ([(defs effects) (labelify '() (cdr (syntax->list stx)))])
#`(letrec #,defs (r:begin #,@effects))))

The macro begin does not immediately pattern match on its input, but deligates to a compile-
time procedure labelify. This procedure takes the list of statement as syntax objects (created by
converting the syntax object to a list of syntax objects using syntax->list), without the leading
begin operator (dropped by calling cdr). The procedure traverses the list of instructions (cons
effect effects), collecting a list of definitions to bind with letrec and a list of instructions
to execute in the body of the letrec. When effect is a labeled instruction (with-label label
effect^), we create a binding for a procedure definition #`[label (lambda () (begin effects^
...))], where effects^ are the instructions that remain after recursively labeling the rest of the
list of effect, starting with the labelled one, (cons #'effect^ effects). We prepend the new
definitions to those returned by the recursive call, and replace the instruction sequence with a jump
to the new definition (list #`(jump label)). When we encounter a nested begin, we prepend
all the instructions in the body to the current effects and recur. All other instructions are left in
place. At the end of the loop, we bind all the labels in the scope of the list of instructions, expanding
to (roughly) #`(letrec (defs ...) (r:begin effects^ ...)).
To embed conditional jumps, we create a mutable eq?-comparable hash table mapping each

comparison procedure to a flag. The compare instruction is modelled as a procedure, which updates
each flag using each comparison procedure, and jump-if jumps when the comparison procedure’s
flag is set.

(define flags
(make-hasheq
`((,!= . #f) (,= . #f) (,< . #f) (,<= . #f) (,> . #f) (,>= . #f))))

(define (compare v1 v2)
(for-each (lambda (cmp) (hash-set! flags cmp (cmp v1 v2)))

(list != = < <= > >=)))

(define (jump-if cmp-proc d) (when (hash-ref flags cmp-proc) (d)))

12 William J. Bowman

This implementation uses each procedure pointer as a key in the table. This can be fragile, as the
pointer for a procedure can be unpredictable, but this local use should not be a problem. We could
avoid the fragility with extra indirection, using symbols as keys in the flag table and mapping those
symbols to the correct procedure, or use eval. However, in either case, jump-if would need to
be a macro that quotes ones of its arguments. The other solutions also introduce more code and
indirection to reason about.
The implementation of jumps assumes that jumps never return. To ensure they never return,

we rely on the program always explicitly exiting by jumping to done, as required by the run-time
system. To implement done, we store an escape continuation at the start of the module, and done
invokes that continuation, ending the whole computation with the value of rax. The return-address
register is initialized to done, so intermediate languages that implement procedures that follow the
calling convention also exit properly.

(define exit-cont (box (lambda _ (r:error "halt not initialized"))))

(define (done) ((unbox exit-cont) (unbox _rax)))

(define-syntax (boundary stx)
(syntax-parse stx
[(_ term)
#`(let/ec k

(set-box! exit-cont k)
term)]))

The boundary form must be installed around any term that uses labels and jumps. The boundary
is implicitly installed around terms at the module level. We must instead use let/cc around
interactive terms via #%top-interaction (the interposition point that lets our language be used
from Racket’s REPL) since the continuation lives past the local scope during REPL interactions. The
boundary form is also exposed to enable Racket interoperability. Without an explicit boundary,
terms may not return to Racket properly. The boundary is similar to the interoperability semantics
by Patterson et al. (2017) enabling inline typed assembly in a typed functional language. Their
semantics enable the value of the return register to flow to the function language when the halt
instruction is delimited by an explicit boundary term.

> (define (f1 x)
(begin (set! rax x) (jump done))
(displayln "After boundary")
rax)

> (f1 5)
5
> (define (f2 x)

(boundary
(begin (set! rax x) (jump done)))

(displayln "After boundary")
rax)

> (f2 5)
After boundary
5 #lang cpsc411/hashlangs/base

Macro-embedding Compiler Intermediate Languages in Racket 13

The boundary term delimits the halt continuation used for the run-time system. A better imple-
mentation might use delimited countinuations explicitly.

3 INTERMEDIATE LANGUAGE ABSTRACTIONS AND METADATA
While interpreting the low-level abstractions is one major challenge, another major challenge occurs
at the various intermediate language points where source-like abstractions must interoperate with
target-like abstractions. Two examples that make interesting use of Racket’s macro system are
abstract locations and frame variables. We provide a grammar for one of the intermediate languages
that includes these features.

p F (module info (define label info tail) ... tail)
info F ((assignment ((aloc rloc) ...)))

frame F (aloc ...)
tail F (jump trg loc ...) | (begin effect ... tail)

effect F (set! loc triv) | (set! loc1 (binop loc1 opand)) | (begin effect ... effect)
opand F int64 | loc

triv F opand | label
loc F rloc | aloc
rloc F reg | fvar
trg F label | loc

In this intermediate language, themodule and procedure definitions are annotated withmetadata
info describing where abstract locations have been assigned so far. The assignment is a map from
abstract locations to physical locations, which is updated in stages during register allocation as
variables are assigned either to register or frame locations, depending on various factors.

Prior to register allocation, each language uses abstract locations aloc, which are variables
uniquely (within the scope of a procedure) identified by their name, but whose physical location is
handled by the compiler. Abstract locations look like an arbitrary variable name followed by a "."
and a numeric suffix, such as x.1 in (set! x.1 5). In the intermediate languages during (as it takes
several nanopasses to complete) and just after register allocation, some or all abstract locations
should be aliases for physical locations. However, prior to register allocation and when not yet
assigned, abstract locations must act like undeclared local variables. Being able to run programs in
these intermediate states between register allocation nanopasses enables tests to fail early.
In many intermediate languages, we abstract away from the stack per se, and expose frame

variables. Frame variables allow most of the compiler to avoid some tedium when dealing with
stack locations. A frame variable is an identifier named "fv" with a numeric suffix, such as the
fv1 in (set! fv1 5). Frame variables are allocated in the enclosing procedure’s stack frame in
the word-sized slot indicated by the suffix. For example, fv1 is roughly equivalent to (rbp - 8).
However, the exact location on the stack depends on the details of how procedures and frames
are implemented; rbp normally points to the base of the enclosing procedure’s stack frame, but
changes during a non-tail call to point to the callee’s frame. The intermediate languages must map
frame variables to stack locations, so that explicit stack manipulation implicitly manipulates frame
variables and procedure calling conventions are interpreted correctly.

For abstract locations, we can use make-variable-like-transformer if the abstract location
has been assigned a physical location. However, themacromust be locally bound, not globally bound,
so we use let-syntax instead of define-syntax. If an abstract location has not been assigned
a physical location, we must also bind it in a local scope. We use a local analysis implemented
with local-expand (which enables a macro to locally change expansion order) to detect abstract

14 William J. Bowman

locations that appear in set! and bind them as local variables during expansion.5 We can implement
frame variables using make-variable-like-transformer, although we must break hygiene to get
them globally bound. However, we must also keep track of some uses of the frame base pointer rbp
to provide a consistent interpretation of frame variables, so this implementation must interoperate
at run time with assignments to rbp.

3.1 Abstract Locations
By default, Racket does not let us assign to an undefined variable, so (set! x.1 5) is invalid if
x.1 is not in scope.

> (set! x.1 5)
set!: assignment disallowed;
cannot set variable before its definition
variable: x.1
in module: top-level

> (define x.1 (void))
> (set! x.1 5) #lang racket

We could tell Racket to do it anyway, but the scope of the assigned variable may be unexpected.

> (compile-allow-set!-undefined #t)
> y.2
y.2: undefined;
cannot reference an identifier before its definition
in module: top-level

> (set! y.2 5)
> y.2
5
> (let () (set! z.3 5))
> z.3
5 #lang racket

Abstract locations can be freely generated by the compiler and have no defined or sequential
pattern, so we cannot create them ahead of time like we do registers and frame variables. Abstract
locations are not global variables; they are unique to a procedure’s scope. Two procedures can refer
to x.1, and those are different variables. As we see in the grammar, programs do not declare what
abstract locations are in scope. So allowing set! to undefined variables would not implementat
abstract locations correctly.
We must first bind abstract locations. We want to avoid writing an explicit traversal over the

entire program. This would require either fixing the syntax, which we don’t want to do since we
want to reuse this solution across many languages, or writing an abstract tree traversal, which
is silly since we already have a macro expander. We implement an analysis by locally changing
expansion order to fully expand an expression that references abstract locations, and instrumenting
set! to collect the set of abstract locations that appear on the left-hand side during expansion. This
is sufficient since programs must be well defined—an abstract location must be assigned before it is
referenced.

5This analysis would be unnecessary if the intermediate language declared local variables, suggesting a better language
design.

Macro-embedding Compiler Intermediate Languages in Racket 15

The analysis form do-bind-locals is defined below, accompanied by some compile-time defini-
tions for collecting a scope-aware set of identifiers.

(begin-for-syntax
(require syntax/id-set racket/set)
(define gathered-locals (mutable-free-id-set))

(define (reset-locals!)
(set-clear! gathered-locals))

(define (collect-local! id)
(set-add! gathered-locals id))

(define (get-locals)
(set->list gathered-locals)))

(define-syntax (do-bind-locals stx)
(syntax-parse stx
[(_ body except ...)
(reset-locals!)
(define b (local-expand #'body 'expression '()))
#`(let (#,@(for/list ([l (get-locals)]

#:unless (set-member? (immutable-free-id-set
(attribute except))
l))

#`[#,(syntax-local-introduce (format-id #f "∼a" l)) (void)]))
#,b)]))

We wrap the body of any scope-introducing form, particularly define andmodule, with do-
bind-locals. The possibly empty sequence #'(except ...) declares a set of variables that
should not be bound, such as abstract locations that have been assigned physical locations. We
first fully expand the body using local-expand. During this local expansion, all assigned abstract
locations are collected into the set gathered-locals. Each is bound within the scope of the fully
expanded body b, using format-id with #f to clear the original scope from the identifier, and
using syntax-local-introduce to bind it in the current scope.

To collect the abstract locations, we make a modification to set!.

(define-syntax (set! stx)
(syntax-parse stx
; Read from memory
[(set! v1:id (base:not-rbp op:addr-op offset))
; Collect used abstract location
(when (aloc? (syntax->datum #'v1))
(collect-local! #'v1))

#`(r:set! v1 (vector-ref memory (op base offset)))]
; Else use Racket's set!
[(set! v1 v2)
; Collect used abstract location
(when (aloc? (syntax->datum #'v1))

16 William J. Bowman

(collect-local! #'v1))
#`(r:set! v1 v2)]))

Abstract locations are written to either when reading from memory, or when the set! does
not involve a memory address at all. In both cases, if the left-hand side is an abstract location, we
collect it.

For an abstract location that is already assigned a physical location, we exclude it from binding in
do-bind-locals and instead make it a variable-like transformer to its assigned physical location.
For interpreting programs, it isn’t necessary to redirect abstract locations to their assigned physical
location. However, doing so aids debugging by triggering failing tests earlier. If a bug occurs in
one of the register allocation nanopasses, the interpretation of the program changes as soon as the
metadata changes, and not only once the program text has been rewritten to replace all abstract
locations with their assigned physical locations.

To implement these assigned abstract locations, we use the following compile-time procedures.
make-aloc-transformer is an abstraction of make-variable-like-transformer for abstract
locations that have been assigned the physical location rloc, and bind-assignments generates
bindings based on the metadata info for the program tail.

(begin-for-syntax
(define (make-aloc-transformer rloc)
(make-variable-like-transformer
rloc
(lambda (stx)
(syntax-parse stx
[(set! bla v)
#`(r:set! #,rloc v)]))))

(define (bind-assignments info tail)
#`(let-syntax #,(for/list ([assignments (dict-ref info 'assignment '())])

(with-syntax ([aloc (car assignments)]
[rloc (cadr assignments)])

#`[aloc (make-aloc-transformer #'rloc)]))
#,tail)))

bind-assignments is unusal in that it generates syntax with new macro definitions, i.e., with
new compile-time code that must be further expanded. We use let-syntax to bind each abstract
location as a local macro. This is important since the same abstract location can appear in multiple
scopes. Being defined as a macro, reads and writes to the abstract location are statically rewritten
to the physical location that has been assigned. The call to make-aloc-transformer appears as
syntax, not as a value spliced into the syntax. We generate a call to the compile-time procedure
instead of inlining the make-variable-like-transformer call in the syntax template to avoid
code duplication. If t were inlined in the syntax template, the code would be duplicated during
expansion time, allocating a new closure for each binding, and causing performance problems
during macro expansion.

This helper is used in the implementations of scope-introducing forms with attached metadata,
such as in the following.

(define-syntax (module stx)
(syntax-parse stx
[(_ info defs ... body)

Macro-embedding Compiler Intermediate Languages in Racket 17

(define info-dict (infostx->dict #'info))
#`(boundary

(begin
#,(bind-assignments

info-dict
#`(local [defs ...]

(do-bind-locals tail
#,@(get-info-bound-vars info-dict))))))]))

We see the implicit insertion of the boundary mentioned earlier. First bind-assignments binds
any abstract locations that have been assigned, then do-bind-locals locally expands the body
and binds all other abstract locations. This order doesn’t matter, since do-bind-locals excludes
binding based on the info metadata.

3.2 Frame Variables
The intermediate languages contain an unbounded number of global frame variables corresponding
to locations on the current procedure’s stack frame. Frame variables have the form "fvn", where n
is some natural number.
The first challenge is binding all these variables. We cannot bind an unbounded number of

variables apriori. For the moment, we cheat: we bind an arbitrary large number, 1620, of them.6
We discuss alternatives in Section 6.

To bind them, we break hygiene, using syntax-local-introduce to bind frame variables in the
right scope, as we don’t want to list out all 1620 of them in the interpreter. We bind each frame
variable to a macro that performs the offset calculation into the stack.

(begin-for-syntax (define CURRENT-FVARS 1620))

(define-syntax (define-fvars! stx)
(syntax-parse stx
[(_)
#`(begin

#,@(for/list ([i (in-range 0 CURRENT-FVARS)])
(with-syntax ([fvar (syntax-local-introduce

(format-id #f "fv∼a" i))]
[offset (* i 8)])

#`(define-syntax fvar (make-fvar-transformer offset)))))]))

(define-fvars!)

The define-fvars! form generates frame variables 0 through 1619, and binds each to a make-
fvar-transformer (introduced shortly) at the offset corresponding to its index into the frame.
We use format-id with #f, indicating no scope, to create the identifier then use syntax-local-
introduce to prevent the macro from introducing a fresh scope. (We thought that providing stx as
the lexical context on the identifier would have avoided the use of syntax-local-introduce, but
that doesn’t seem to be the case.) As before, we define and call make-fvar-transformer rather
than inline it in the syntax template.

6We would have choosen 42, but needed more than about 50, as students did use about 50 frame variables in some test
programs. This number is similar to 42, but large enough.

18 William J. Bowman

make-fvar-transformer is a wrapper around make-variable-like-transformer that per-
forms the offset calculation into the stack, and otherwise behaves like rbp.

(begin-for-syntax
(define (make-fvar-transformer frame-offset)
(with-syntax ([stack-index #`(- (unbox _rbp) (+ (unbox current-fvar-offset)

#,frame-offset))])
(make-variable-like-transformer
#`(vector-ref stack stack-index)
(lambda (stx)
(syntax-parse stx
[(set! _ v) #`(vector-set! stack stack-index v)]))))))

The offset for a frame variable is in two parts: the offset given by the statically known index
on the frame variable, plus a dynamic offset determined by the run-time modifications to the
frame base pointer rbp. The expression (unbox current-fvar-offset) occurs under the syntax
template, generating a run-time calculation, while frame-offset is an compile-time value spliced
into the template. In the intermediate languages, rbp is modified by a constant offset when a new
frame is allocated for a non-tail call, moving the frame base pointer to point to the callee’s frame.
But a frame variable might be referenced, after this, as an argument for the call, and must refer to
the caller’s frame. The stack-index calculates the offset into the stack in this situation, using the
value current-fvar-offset which is updated whenever rbp is incremented.

As an example, consider the following low-level implementation of a non-tail call.

> (define identity (lambda () (begin (set! rax fv0) (jump r15))))
> (begin

(set! fv0 41)
(set! fv1 1)
(set! rbp (- rbp 16))
(return-point l
(begin
(set! r15 l)
(set! fv2 fv0)
(jump identity)))

(set! rbp (+ rbp 16))
(set! r10 fv1)
(set! rax (+ rax r10))
(jump done))

42 #lang cpsc411/hashlangs/base

We perform a non-tail call to identity with the argument 41, which is passed on the stack
instead of in a register. We also have one variable live across the call, fv1. return-point expands
to, essentially, let/cc, and represents the start of a non-tail call that returns to the continuation l.
All frame variables are relative to the caller’s frame. However, the frame is allocated just before the
non-tail call, so the references to fv0 would be to some uninitialized memory on the callee’s frame
if we did not correct the interpretation of frame variables with respect to frame allocation. This
requires expanding fvars to include a dynamic calculation into the stack.

We modify the earlier definition of set! to keep track of current-fvar-offset as follows.

(define-syntax (set! stx)

Macro-embedding Compiler Intermediate Languages in Racket 19

(syntax-parse stx
; Stack pointer increment
[(_ (∼literal rbp) (binop (∼literal rbp) v))
#`(begin

(set-box! current-fvar-offset (binop (unbox current-fvar-offset) v))
(set-box! _rbp (binop rbp v)))]

....))

Any time the stack pointer is adjusted, we generate a run-time update to current-fvar-offset
to cooperate with the implementation of frame variables, in addition to the run-time modification
of the stack pointer.

4 CUSTOM PROCEDURES
So far, we primarily used Racket’s macro system for compile-time interposition on syntactic forms
to implement our embedding. However, one feature relies on impersonators (Strickland et al. 2012),
a feature for run-time interposition on some datatype.
Our compiler implements procedures as a tagged datatype that stores its arity, to implement

dynamic checks, and as a closure, so the label is stored with the values of all variables free in the
procedure’s body. This requries a different procedure interface than Racket’s to support additional
operations in intermediate languages. But, we would like our procedures to expand to Racket
procedures, so application continues to work as expected, and so we can interpret each language
primitive as Racket’s equivalent procedure.
To impersonate a procedure, Racket provides impersonate-procedure, which takes an under-

lying procedure implementation, an optional wrapper around the result, and a list of optional
properties that attach additional information to the procedure. Our implementation of procedures
is given below.

(define (make-procedure label arity env-size)
(impersonate-procedure label #f

proc-label:prop label
proc-env:prop (make-vector env-size)
proc-arity:prop arity))

In the compiler, procedure datatypes are built from this primitive form make-procedure. The
label is an assembly label to the code for the procedure (modelled as a Racket procedure). The
arity describes the arity of the procedure from the user’s perspective, i.e., the number of parameters
the user specified in the definition. The env-size declares the size of the procedure’s environment.
We embed our procedures as a Racket procedure impersonator, implemented by the underlying
label, with three properties attaching information needed by intermediate language interfaces to
procedures.

We define the impersonater properties below.

(define-values (proc-label:prop proc-label:prop? unsafe-procedure-label)
(make-impersonator-property 'procedure-label))

(define-values (proc-env:prop proc-env:prop? unsafe-procedure-env)
(make-impersonator-property 'procedure-env))

(define-values (proc-arity:prop proc-arity:prop? unsafe-procedure-arity)
(make-impersonator-property 'procedure-arity))

20 William J. Bowman

(define (unsafe-procedure-ref p i)
(vector-ref (unsafe-procedure-env p) i))

(define (unsafe-procedure-set! p i v)
(vector-set! (unsafe-procedure-env p) i v))

Each impersonator property takes a name as a symbol, and returns three values: the property,
a predicate identifying the property, and an accessor which retrieves the value of the property
from an impersonator to which the property is attached. We also define the interface for updating
the procedure’s environment. In the compiled output, the environment is part of the procedure’s
contiguous representation in memory with the label and arity, but in our embedding, we attach it
separately as a vector.

Racket already supports introspecting on a procedure’s arity using procedure-arity. However,
in our embedding, the arity from Racket’s perspective is that of the underlying implementation (i.e.
the arity of the label), which differs from the arity of the original procedure. In the intermediate
languages, a procedure takes itself as an argument to have access to its environment. We therefore
need the arity from the user’s perspective, to provide our own implementation of procedure-arity
that is correct with respect to the user’s perspective.

For example, belowwe define an intermediate language program that corresponds to the compiled
output of the procedure (let ([y 21]) (lambda (x) (+ x y))), then call it, and inspect its
arity.

> (require (only-in racket/base [lambda r:lambda]
[procedure-arity r:procedure-arity]))

> (define foo
(make-procedure (r:lambda (c x) (+ x (unsafe-procedure-ref c 0))) 1 1))

> (unsafe-procedure-set! foo 0 21)
> (call foo foo 21)
42
> (unsafe-procedure-arity foo)
1
> (r:procedure-arity foo)
2 #lang cpsc411/hashlangs/base

The procedure is created using make-procedure. The embedded representation of a label is a
Racket procedure. The original procedure has one parameter, and has one variable in its environment.
A low-level call to the procedure explicitly passes the procedure itself as the first argument, and
then the arguments corresponding to the parameters. Variables that were free in the body are
now explicitly read from the procedure’s environment. We can see from r:procedure-arity that
Racket believes this procedure has arity 2, but using the accessor defined by our impersonator
property, we get the correct (for the source language definition of the procedure) 1.

Impersonators are crucial to both reusing, but also extending, existing run-time datatypes.

5 INTERFACE DETAILS: INTERPOSITIONS AND EVAL
In most of the intermediate languages, the interpretation of syntax stays the same. However,
eventually we add tagged datatypes and must reinterpret earlier primitives. For example, in the
low-level languages, + is the 64-bit twos-complement addition.

Macro-embedding Compiler Intermediate Languages in Racket 21

> (require cpsc411/machine-ints)
> (+ (max-int 64) #b0)
9223372036854775807
> (+ (max-int 64) #b1)
-9223372036854775808 #lang cpsc411/hashlangs/base

But, after we add tagged data, the surface-language + is defined on 61-bit tagged integers.
Intermediate languages further in the pipeline implement this in terms of the 64-bit +.

> (require cpsc411/machine-ints)
> (+ (max-int 61) #b0)
1152921504606846975
> (+ (max-int 61) #b1)
-1152921504606846976 #lang cpsc411/hashlangs/v7

Racket’s module systemmakes importing the existing embedding, redefining +, and exposing only
the new implementation easy. In fact, it is no different from extending Racket with an embedding
of x64 features; the same features that make embedding x64 into Racket easy make extending our
x64 embedding easy.

We essentially define a module like the following.

(module tagged-+ racket
(require (except-in "base.rkt" +)

cpsc411/machine-ints
(rename-in racket [define r:define]))

(provide (all-from-out "base.rkt")
+)

(r:define + (curry twos-complement-add 61)))

We import everything from the base embedding, except +. Then, we export all the base definitions
we imported, and export our new 61-bit two’s complement version of +. The new module can then
be used as a language. This is the language-oriented approach to building a new interpreter.
While using these embedded languages in the REPL and as a #lang is useful, recall that our

original goal was to write interpreters. The embedded language provides an interpretation of the
programs, but we have not yet defined an interpreter, i.e., a function that consumes the syntax of
the program and returns the result.
To do this, we reuse eval, which takes a representation of program syntax (either as a syntax

object or as a quoted list) and evaluates it. In Racket, however, eval also takes an optional second
argument, specifying the namespace in which to evaluate the program. We can use this to specify
evaluating the program in our language, rather than in Racket.

> (require cpsc411/machine-ints)
> (define (base-eval x)

(local-require cpsc411/hashlangs/base)
(eval x (module->namespace 'cpsc411/hashlangs/base)))

> (define (v7-eval x)
(local-require cpsc411/hashlangs/v7)
(eval x (module->namespace 'cpsc411/hashlangs/v7)))

> (base-eval `(+ ,(max-int 64) 0))
9223372036854775807

22 William J. Bowman

> (base-eval `(+ ,(max-int 64) 1))
-9223372036854775808
> (v7-eval `(+ ,(max-int 61) 0))
1152921504606846975
> (v7-eval `(+ ,(max-int 61) 1))
-1152921504606846976 #lang racket

Now, when we need an interpreter for one of the intermediate languages, we wrap eval with
the namespace derived from the module that embeds the right set of features. To expose all the
right identifiers, we still did have to do that about 126 times, though.

This method of implementing our interpreters has some limitations. Since almost all the features
of all the languages are implemented in a single module, invalid programs have an interpretation.
For example, we managed to evaluate the expression `(+ ,(max-int 64) 0), although in none of
the grammars above is that considered a program.

We separate the implementation of the interpreters from validating the input programs. We use
a DSL to generate PLT Redex (Felleisen et al. 2009; Klein et al. 2012) grammar definitions from our
typeset language grammars. We then use Redex’s redex-match to generate predicates for checking
that terms are syntactically well formed for each language; the p non-terminal defines a valid
program in the language.
As an example, consider the languages involved in adding tagged data. Similar to the previous

grammar, in Section 3, the surface language requires programs to be a module with optional
top-level procedure definitions and a top-level expression. Since expressions are over tagged data,
integer literals are restricted to 61 bits.

> (require cpsc411/langs/v7 cpsc411/machine-ints)
> (exprs-lang-v7? `(+ ,(max-int 64) 0))
#f
> (interp-exprs-lang-v7 `(+ ,(max-int 64) 0))
-1
> (exprs-lang-v7? `(module (call + ,(max-int 61) 0)))
#t
> (interp-exprs-lang-v7 `(module (call + ,(max-int 61) 0)))
1152921504606846975 #lang racket

The expression `(+ ,(max-int 64) 0) is invalid, since this language requires an explicit call
form to call a procedure, and because the language only supports 61-bit integer literals. But the
interpreter happily does something anyway. It is useful to expose this unsafe interface to discuss
things such as undefined behaviour, but we may want to expose another interface to warn the user
that a test failed because the program was syntactically invalid, and not because the behaviour
changed.

We can combine the interpreter and these predicates at our desired interface to ensure that our
interpreters only receive well-formed terms, using contracts (Findler and Felleisen 2002). Below,
we attach the predicate as a contract to the interpreter as it is exported from the module checked-
interp-v7. The previous, uncontracted implementation is still available from the original module.
The contract requires the input to the interpreter to satsify the predicate exprs-lang-v7?, and
output from the interpreter to be a 61-bit integer.

> (module checked-interp-v7 racket
(require cpsc411/langs/v7 cpsc411/compiler-lib)

Macro-embedding Compiler Intermediate Languages in Racket 23

(provide (contract-out
[interp-exprs-lang-v7 (-> exprs-lang-v7? int61?)])))

> (require 'checked-interp-v7)
> (interp-exprs-lang-v7 `(+ ,(max-int 64) 0))
interp-exprs-lang-v7: contract violation
expected: exprs-lang-v7?
given: '(+ 9223372036854775807 0)
in: the 1st argument of

(-> exprs-lang-v7? int61?)
contract from: checked-interp-v7
blaming: program
(assuming the contract is correct)
at: eval:6:0

> (interp-exprs-lang-v7 `(module (call + ,(max-int 64) 0)))
interp-exprs-lang-v7: contract violation
expected: exprs-lang-v7?
given: '(module (call + 9223372036854775807 0))
in: the 1st argument of

(-> exprs-lang-v7? int61?)
contract from: checked-interp-v7
blaming: program
(assuming the contract is correct)
at: eval:6:0

> (interp-exprs-lang-v7 `(module (call + ,(max-int 61) 0)))
1152921504606846975 #lang racket

The error message isn’t precise since the predicate we use in the contract is naïvely generated,
but it does tell a user whose test fails that the problem is an invalid source program provided to the
interpreter, rather than a compiler pass producing a valid a program that runs to an unexpected
result.

6 DISCUSSION
We presented an extended case study of language-oriented design to macro-embed a family of
compiler intermediate languages into Racket. The same abstractions used to implement new general-
purpose languages and various high-level DSLs prove equally useful for low-level languages and
exposing a family of languages quickly.

The full implementation differs slightly from what we described, although the typeset interactive
examples all run as above. The main difference a reader might notice is that global state, such as
registers and memory, are implicitly reset at module boundaries, except during REPL interactions.
Resetting global state makes interoperability with Racket more difficult, but simplifies our testing
framework.
Aside from the engineering benefits of the embedding, one persistant thought during this

experience is that the implementation by local, compositional macro-embedding essentially forces
us to construct a compositional model of the language, in a way that writing a recursive interpreter
does not. This view of constructing-a-model-as-implementation has been beneficial in helping us
understand the semantics of the languages and identifying weaknesses. Invariably, when we cannot
find an easy local embedding, one of two things is going on: either the language is poorly designed,
or we don’t understand the language as well as we thought we did. One instance that stood out and

24 William J. Bowman

is discussed earlier is our implementation of abstract locations, which requires inverting expansion
order and performing an analysis. This analysis felt unnecessary, and upon reflection, we realized
the compiler already had the binding information we were trying to reconstruct, but threw it away.
If we redesigned the intermediate languages to declare the scope of abstract locations, this would
improve our embedding, but also have pedagogical benefits for the course—students are often
confused about the scope of abstract locations, and of course they are when no form explicitly
declares their scope. A similar thought occurs about frame variables; instead of doing either an
analysis or binding an arbitrary number of them a priori, wouldn’t it be better if we could embed a
new variable-like form? If the syntax were (fv 1) instead of fv1, and variable-like forms could
be compound rather than just identifiers, then embedding frame variables would be as easy as
registers.

During this project, we struggled in a couple of places that suggest the need for new abstractions.
The primary one discussed in this article is the use of a more general definition of variable

by set!, so that addresses like (rbp - 0) can be interpreted as assignable. We seem to need
a generalization of make-variable-like-transformer that supports a variable-like expression,
that can appear either as an identifier or as an operator. Such "variables" could be referenced as
expressions, or appear as the left-hand side of a set! to indicate assignment. Then addresses could
be macro-embedded modularly, like registers, although because registers in operator position would
be part of an address, such an implementation would interact with the embedding of registers.
The abstraction should be a simple extension of set!. Although this feature is desirable in our
implementation, it is unclear whether it would have more general use. As is, set! implements
multiple cross-cutting functionality, and is the least modular aspect of our implementation.
One headache not discussed in this article is the transition from a module language to a

#lang. Any module can easily be interpreted as an s-expression-based language, with its ex-
ported identifiers forming the language. For example, the module defining our macro embedding is
cpsc411/langs/base; to use it as a language we need only start a language line with #lang s-
exp cpsc411/langs/base. However, excluding the s-exp meta-language to get a language that
has the same status as #lang racket takes work. We must create a particular file and module struc-
ture for each language. As a result, we only create two honest-to-goodness #langs, and normally
use #lang s-exp cpsc411/langs/base instead. This kind of boilerplate outside the linguistic
abstractions is in opposition to The Racket Manifesto (Felleisen et al. 2015), although we don’t
know how to improve it.

7 ACKNOWLEDGEMENTS
For their time and thoughtful feedback on this paper, I gratefully acknowledge the anonymous
reviewers, Jonathan Chan, Yanze Li, Nico Ritschel, Eric Conlon, and Ivan Beschastnikh. I owe
many thanks to Andy Keep, Roshan James, and R. Kent Dybvig for teaching me compiler design
and implementation, and providing the course notes on which the design of these intermediate
languages are based. Thanks also to Ron Garcia, Lily Bryant, Justin Hu, Yuchong Pan, Benjamin
Lerner, and David Ewert for providing support and feedback on this project. Finally, I owe a big
thank you to all the students of UBC’s CPSC 411 for testing and reporting bugs in this software.

BIBLIOGRAPHY
Ryan Culpepper. Fortifying macros. Journal of Functional Programming (JFP) 22(4-5), pp. 439–476, 2012.
Ryan Culpepper and Matthias Felleisen. Fortifying macros. In Proc. International Conference on Functional

Programming (ICFP), 2010.

Macro-embedding Compiler Intermediate Languages in Racket 25

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT Redex. 2009.
https://mitpress.mit.edu/9780262062756/semantics-engineering-with-plt-redex/

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay Mccarthy,
and Sam Tobin-Hochstadt. A Programmable Programing Language. Communications of the ACM 61(3), pp.
62–71, 2018. https://cacm.acm.org/magazines/2018/3/225475-a-programmable-programming-language/
fulltext

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay A. McCarthy,
and Sam Tobin-Hochstadt. The Racket Manifesto. In Proc. SNAPL, 2015.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In Proc. International
Conference on Functional Programming (ICFP), 2002.

Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble: Closing the Book on Ad Hoc Documentation
Tools. In Proc. International Conference on Functional Programming (ICFP), 2009.

Abdulaziz Ghuloum. An Incremental Approach to Compiler Construction. In Proc. Scheme Workshop, 2006.
http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf

Andrew W. Keep and R. Kent Dybvig. A nanopass framework for commercial compiler development. In Proc.
International Conference on Functional Programming (ICFP), 2013.

Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew Flatt, Jay A.
McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and Robert Bruce Findler. Run your research: on the
effectiveness of lightweight mechanization. In Proc. Symposium on Principles of Programming Languages
(POPL), 2012.

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. FunTAL: Reasonably Mixing a
Functional Language with Assembly. In Proc. International Conference on Programming Language Design
and Implementation (PLDI), 2017. http://www.ccs.neu.edu/home/amal/papers/funtal.pdf

T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. Chaperones and
impersonators: run-time support for reasonable interposition. In Proc. Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2012.

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed scheme. In Proc.
Symposium on Principles of Programming Languages (POPL), 2008.

Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementation of Typed Scheme: From Scripts
to Programs. CoRR abs/1106.2575, 2011. http://arxiv.org/abs/1106.2575

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias Felleisen. Languages
As Libraries. In Proc. International Conference on Programming Language Design and Implementation
(PLDI), 2011.

https://mitpress.mit.edu/9780262062756/semantics-engineering-with-plt-redex/
https://cacm.acm.org/magazines/2018/3/225475-a-programmable-programming-language/fulltext
https://cacm.acm.org/magazines/2018/3/225475-a-programmable-programming-language/fulltext
http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf
http://www.ccs.neu.edu/home/amal/papers/funtal.pdf
http://arxiv.org/abs/1106.2575

	Abstract
	1 Introduction
	2 x64
	2.1 Registers
	2.2 Memory and Pointer Operations
	2.3 Labels and Jumps

	3 Intermediate language abstractions and metadata
	3.1 Abstract Locations
	3.2 Frame Variables

	4 Custom Procedures
	5 Interface details: interpositions and eval
	6 Discussion
	7 Acknowledgements
	Bibliography

