
Modeling Programming Languages Formally

CPSC 509: Programming Language Principles

Ronald Garcia*

8 January 2014
(Time Stamp: 16:41, Wednesday 16th September, 2020)

This course focuses on the design and analysis of programming languages. One of our key tools for
this endeavor will be mathematics, though not in the sense of arithmetic or calculus, like you see in high
school or early university studies. Instead we dive deeper into the foundations of mathematics: we appeal
to logic and set theory. These topics often appear in undergraduate discrete mathematics courses or theory
of computation courses for computer science students. Don’t worry too much if you haven’t taken one of
these courses, we’ll build up the necessary material as we go along. In fact, if you have been exposed to
logic and set theory before, I recommend that you pay close attention, because our approach is likely be
quite different than you were previously taught.

We model programs as mathematical objects in set theory, and programming languages as sets of pro-
grams and their meanings. In these notes, we start small: ridiculously small. Our first programming
language, though basic, gives us an opportunity to introduce a substantial number of important concepts.
We’ll build on these concepts for the remainder of the course.

A side-note: below, a variety of mathematical machinery (e.g., sets, propositions, and proofs) is intro-
duced without much explanation. Don’t be frightened: we cover these in more depth as we proceed. I
expect that students come from a variety of backgrounds, so we take the time to explain concepts in detail
and get you up to speed. My goal is to expose you to the material early and then work to improve your
understanding in class and through exercises.

1 How Do We Model Programming Languages Mathematically?

Consider the following transcript of interacting with an extremely simplistic programming language, which
we’ll call Vapid version 0.0

Vapid Programming Language v0.0

> 1
2
> 2
1

This language has only two programs: 1, and 2. The next version of this language, Vapid version 1.0, adds
a new program, 3:

> 3

However this program doesn’t ever produce an answer: it just hangs. This is different from trying to run,
say 4:

*© 2014 Ronald Garcia.

1



Modelling Languages Time Stamp: 16:41, Wednesday 16th September, 2020

> 4
Error: bad program.

While 3 is a well-formed program with defined behaviour—nontermination—4 is not a program whatsoever,
so has no defined behaviour.

Our last version of Vapid, version 2.0, adds one last program, 5 (we skip 4 because that’s a terrible name
for a program, amiright? ,):

>5
Exception

Wait a second! If I try to run 4 I get that it’s a bad program, but if I run 5 I get an exception: what’s
the difference?!? Good question! It’s hard to tell the difference (except for the message) in an interpreter,
because it simultaneously:

• Decides if the program is well-formed (i.e., a legal, meaningful, program)

• Evaluates it to produce some observable result.

We can more easily see the difference between these two behaviours if we write a compiler for Vapid 2.0.
We’ll call it vcc. The relevant interactions then look like this:

home > vcc -o one one.vpd
home > ./one
2
home > vcc -o two two.vpd
home > ./two
1
home > vcc -o three three.vpd
home > ./three
ˆC
home > vcc -o four four.vpd
four.vpd:1:1: error: bad program
4
home > ./four
-bash: ./four: No such file or directory
home > vcc -o five five.vpd
home > ./five
Exception

The vcc Vapid compiler separates checking for well-formedness from execution. Here we see that
every program in Vapid 2.0 compiles successfully and runs. However, the purported program 4 stored
in four.vpd does not compile because it is not meaningful: that is to say, it’s not a well-formed Vapid
program. The program 5, on the other hand compiles fine, but it throws an exception. That’s it’s meaning!

Hopefully these examples, even in such a vapid context, can give you an idea of some of the subtleties
that arise (and that you as a PL theorist must keep in mind) when building and analyzing models of pro-
gramming languages, whether you are designing a whole new language, or analyzing an existing language
that appears in the wild (and there are plenty of untamed languages out there!).

1.1 Semantics for the Vapids

The two languages Vapid 0.0 and Vapid 1.0 give us a chance to introduce the basic mathematical framework
for specifying languages.1 We specify these languages in three parts:

1Make no mistake about it: two “different versions of the same language” are not technically the same, though they are likely
related. In general, precisely characterizing the relationships between them can be a challenge.

Page 2



Modelling Languages Time Stamp: 16:41, Wednesday 16th September, 2020

1. A set of legal (i.e. well-formed) programs;

2. A set of possible observable results;

3. A mapping from programs to observable results, which we’ll call its evaluator.

Let’s dive right in! Here is a definition of the Vapid 0.0 language in this framework:

PGM = { 1, 2 }
OBS = { 1, 2 }
eval : PGM → OBS
eval(1) = 2
eval(2) = 1

The entire collection, or set, of programs includes exactly 1 and 2. To express that, we give an extensional
definition of the set, where we just state the extent—fancy word for “members”—of the set. Vapidly enough,
the set of observables is identical to the set of programs, since both are specified using the same mathemat-
ical description { 1, 2 }. However, for the sake of the humans who will read this spec, we use the names OBS
and PGM as synonyms for { 1, 2 }. Those synonyms have no new mathematical meaning: they refer to the
same set. But we use both names to communicate our intent to humans, who need to understand what
concepts our set-theoretic model is trying to communicate.2

Since there are a finite number of programs, we can immediately define its evaluator equationally: we
first specify that it is a function, stating the domain PGM and codomain3 OBS of the desired function. Then we
state two equations that we would like our function to satisfy. Conveniently enough, these two equations
are sufficient to describe a single unique function that has the stated domain and codomain. In this case,
we could have given an equivalent extensional definition, literally writing down the input-output pairs of
the function like a table. This kind of definition makes it quite evident that the eval function, in fact any
set-theoretic function, is just a set of pairs:

eval = { 〈2, 1〉 , 〈1, 2〉 } .

Every eval function you see in this course (in fact every set-theoretic function whatsoever!) will literally
be such a lookup table of pairs. However, we cannot always define them extensionally, especially if the
domain of the function has an infinite number of elements. More on that later.

The Vapid 1.0 language is not much different:

PGM = { 1, 2, 3 }
OBS = { 1, 2,∞}
eval : PGM → OBS
eval(1) = 2
eval(2) = 1
eval(3) =∞

Once again we model the evaluator as a function again, adding a new program 3, and representing the
possibility of nontermination with the observable ∞. With these new definitions, PGM 6= OBS since the
sets no longer comprise the same elements (which, don’t forget, are also sets). Think back to our earlier
interactions with Vapid 1.0, and compare the status of 3, which is a program, to that of 4, which is not in
the set PGM so not a well-formed progam in this language.

It’s worth noting that in many works of PL theory, you might see the same language modeled as follows:

PGM = { 1, 2, 3 }
OBS = { 1, 2 }
eval : PGM ⇀ OBS
eval(1) = 2
eval(2) = 1
eval(3) undefined

2Often, that human is ourself several days, or hours, later.
3short for “counter-domain.” The prefix“co-” appears a lot in mathematics in this way.

Page 3



Modelling Languages Time Stamp: 16:41, Wednesday 16th September, 2020

In this rendition, the definition of the eval function once again uses the equations from Vapid 0.0. The key
difference is that 3 is a program now, but the evaluator is undefined for it, rather than mapping it to∞. In
fact, given the definition of PGM here, the three eval “equations” are again equivalent to the extensional
definition eval = { 〈2, 1〉 , 〈1, 2〉 } . The difference here is that we treat eval as having a larger domain than
is reflected in its elements. In short, 3 is now a program but it’s observable result is “undefined” so eval is
a partial function, meaning that it may not be defined for its entire domain. In this case, it is not defined
for 3. This is indicated using a harpoon ⇀. We will prefer to model our evaluators as total functions, but
we will use partial functions for other aspects of our language models. See the corresponding notes on sets
and logic to learn more about total and partial functions.

Comparing these two plausible models of Vapid 1.0—one using total functions and one using partial
functions—you could say that each has its benefits and shortcomings. The total-function model forces us to
provide a definition for every possible program; in contrast, the partial function model lets us simply leave
out programs that don’t terminate. On the other hand, the total-function model forces us to account for all
programs: we need not worry that we accidentally defined some program to diverge (fancy word for “not
terminate”) by simply forgetting to define it. As language semantics get more complex, this becomes a real
problem (we’ll see this later). As such, we’ll prefer the total-function models in this class: they force us to
be precise and clear (but more long-winded) about our intent.

1.1.1 Terminology: Syntax and Semantics

In real languages, where there are more than 3 programs, we resort to more sophisticated tools to describe
the set of programs. This is especially true when there are an infinite number of programs: we surely can’t
list them all extensionally! Instead, we describe them in terms of a repeating phrase structure. We call this
structure the syntax of programs.

Similarly, given more complex and possibly infinite sets of programs, we must resort to more compli-
cated means of defining their evaluator, usually in terms of the syntax of programs (plus some extra bits as
the language gets more sophisticated). We call this general structured description of behaviour the semantics
of the language. Semantics is just a fancy word for “meaning”.

Sometimes you will see papers, books, etc. refer to static semantics and dynamic semantics of a language.
In general dynamic semantics refers to the behaviour of programs (what I call “semantics” above). Static
semantics typically refers to some aspects of what I call “syntax” above: those things that determine what
counts as a legal program. However there are some subtleties involved which make the term “static seman-
tics” make some sense. We’ll get into that later in the course. For these notes I will stick with “syntax” and
“semantics” as described above.

Exercise 1. Write a formal model of Vapid 2.0. Even if you think you get the idea in the abstract, I rec-
ommend writing it down so that you have some practice writing down all of the details from scratch by
yourself.

2 How do we Reason about our Models?

Now we have precise formal models of some programming languages: whoop-dee-doo! Or rather, what
do we do with them? Well, one of the key things we can do is reason (formally) about the properties of
programs in our language, and the language itself!

First, let’s prove a property of a single program. Brace yourself:

Proposition 1. eval(2) = 1.

Proof. According to the definition of eval , the function must satisfy the equation eval(2) = 1.

First proof of the course, let’s celebrate! Now, that may not have involved much work, but in the general
case, determining the result of a program is quite important. This is one way that we can help validate that
our implementation of the language is correct. There are plenty of arguments on the internet about what
some program in some language would do, based on “well my implementation does this, so that’s what it

Page 4



Modelling Languages Time Stamp: 16:41, Wednesday 16th September, 2020

should do,” rather than appealing to a formal definition of the language to figure out whether there might
be an inconsistency between the spec and the implementation.4

Now that we’ve proven a property of a single program in a language, let’s prove a property of the entire
language.

Proposition 2. There is (i.e., there exists) a Vapid 1.0 program that diverges.5.

Proof. Consider the program 3. Then according to its definition, eval(3) =∞, which represents divergence.

This proof is a little different from the previous one. The statement of the theorem says essentially
that “somewhere out there, in the great big world of programs, there’s a program that runs forever.” To
prove this statement, we offer up a program and then show that, yes indeed, it diverges! In the proof of
Proposition , we could just follow our noses (i.e., consult eval ) and be done. In this case, we needed some
human insight to find a candidate program that satisfies the property, and then prove that it does. This
is the typical structure of an existence proof...we pull the witness for the proof—the object that satisfies the
property—essentially out of thin air, at least as far as the proof itself is concerned. In practice we may have
first done a bunch of work on the side (i.e. check out all the programs, make hunches and throw them at
the Vapid interpreter, read tea leaves, etc.), but that empirical work doesn’t show up in the proof.

Now let’s prove a property of all programs in a language. Technically for each of our semantics, we are
on the hook to prove that it fully defines the language, that is, it gives meaning to each and every program.
Let’s do so for one of them:

Proposition 3. In Vapid 1.0, eval is a total function from PGM to OBS.

We’ll prove this two different ways: first an easy way, to show how sets inherit properties, then a more
structured way, to demonstrate a more structured proof. Here’s the easy proof:

Proof. Since eval : PGM → OBS, then it must be total.

Our definition of eval begins with eval : PGM → OBS, which means that we are choosing the unique
element from the set of total functions from PGM to OBS that satisfies the given set of equations. So if our
purported definition is in fact a definition at all (more on that later), then we know that eval is a function
and it’s total (as well as the domain, codomain, and a few equations that it satisfies). To motivate our
second proof, suppose that we had instead written eval : PGM ⇀ Obs. In that case, we would be choosing
from among the partial functions that satisfy our equation, so we would not get totality for free, but would
instead really have to prove it. Even though we “know” intuitively that it’s total simply by inspecting the
definition, that gestalt knowledge can be boiled down to a series of precise formal observations from which
we can deduce totality. Let’s explicitly prove totality, that the evaluator is defined for every input program.
The “function” part of “total function” establishes that the language is deterministic, but we’ll ignore that
for now because we can (,). Let’s state the totality proposition more precisely, and then prove it:

Proposition 4. For every p ∈ PGM, there is some o ∈ OBS such that eval(p) = o.6

Proof. Suppose p ∈ Pgm. Then we proceed by cases on p ∈ Pgm.
Case (p = 1). Consider the observable 2 ∈ OBS. Then eval(1) = 2.
Case (p = 2). Consider the observable 1 ∈ OBS. Then eval(2) = 1.
Case (p = 3). Consider the observable∞ ∈ OBS. Then eval(3) =∞.

4I say inconsistency because in the real world, which one is right/wrong is a social problem, not a technical problem. Throughout
the course, we’ll conveniently assume that our formal semantics is the gold standard, but when reverse-engineering a formal semantics
from a language without one, for example, that stance is almost surely the wrong one to take.

5In formal notation, ∃p ∈ PGM.eval(p) = ∞.
6Formally, ∀p ∈ PGM. ∃o ∈ OBS. eval(p) = o.

Page 5



Modelling Languages Time Stamp: 16:41, Wednesday 16th September, 2020

Phew! Here we proved the theorem by exhaustively considering each and every program and then
showed that we could evaluate each one.

Now notice the structure of the proposition: “for every ... there is some ... such that ... .” And compare
that to the structure of the proof: “suppose ... consider ... then ... .”

It turns out that these two structures line up:

1. the “for every ...” part of the proposition matches up with the “suppose ...”part of the proof;

2. the “there is some ...” part of the proposition matches up with the “consider ...” part of the proof.

What about the “proceed by cases” part of the proof? That part can be matched up with the structure of
our definition of PGM. One of the main themes of this course is that the structure of your definitions affects the
structure of your reasoning (about the defined objects).

In this case, an extensional definition of programs (i.e., defining PGM by explicitly listing the elements
of the set) licenses us with the ability to prove things about all programs by explicitly reasoning about each
individual program (checking each one). We can state this reasoning principle in a more general form. In
this way we have a general reasoning principle for proving properties that hold of all Vapid 1.0 programs:

Proposition 5 (Principle of Cases on p ∈ PGM). Let P be a property of vapid programs p ∈ PGM.
Then if P (1), P (2), and P (3), then P (p) holds for all p ∈ PGM.7

We’re not going to prove this proposition, because that goes a bit too “low-level” for our purposes (let’s
not spend the whole course “programming in mathematical machine language!”). But I hope that you can
believe that it’s true and that in principle it could be proven by appealing to the rules of logic and the
axioms of set theory.

In the proof of totality above, we used exactly this general principle, but specialized it to our problem:

P (p) ≡ ∃o ∈ OBS.eval(p) = o.

Where ≡ basically means “is a macro that expands to”. Here P does not represent a set, like OBS does, and
it’s not a variable representing an element of a set, like o, but rather it is a placeholder for a statement in
logic (about sets) that needs an argument (in this case p) to complete it. This distinction is a bit subtle, and
we’ll get into it more later.

Later when we have languages with an infinite number of programs, this kind of reasoning will not
work (we’ll get hungry well before we finish checking each one).

In this particular example, it’s a single step of reasoning in each case to find the observable result of each
program, and that’s great: the broader implications of our language design are right before us. In fact, the
structure of eval ’s definition gives plenty of guidance to language implementors. If you squint your eyes a
bit, you will see hiding in the proof of Proposition 4 a recipe for implementing an interpreter for Vapid.

We’ll see this deep connection between deduction (i.e., systematic formal8 proof via symbol-pushing by
a human computer) and computation (i.e., symbol-pushing as performed by a mechanical computer) come
up again and again, even as our languages become less vapid.

Now consider how we used eval . We defined eval a couple of ways: using equations, and explicitly
listing the set of pairs. Within the proof, we took advantage of the equations. Thus the structure of the
definition mattered here too. For illustration, let’s consider how a proof by cases might have looked if we
used the “set of pairs” definition of eval :

Case (p = 1). Then eval(1) = n means that 〈1, n〉 ∈ eval for some n. By definition of eval , 〈1, 2〉 ∈ eval so
eval(1) = 2.

This proof case is in some ways pedantic, but it’s useful to get some sense of how the structure of the
two equivalent definitions can lead to slightly different steps of deduction. We’ll clarify this more later in
cases where the difference is less subtle.

So to summarize, for this proposition we proved a property of all programs (that they all evaluate) by
reasoning over all programs, and in each case we take advantage of the equations that we used to define

7Formally, P (1) ∧ P (2) ∧ P (3) =⇒ ∀p ∈ PGM. P (p).
8Here the word “formal” refers to “forms”, as in symbols written on paper, not tuxedos and ball gowns. So “formal logic” is just

another way of saying symbolic logic: deduction via symbol-pushing. Nothing fancy here!

Page 6



Modelling Languages Time Stamp: 16:41, Wednesday 16th September, 2020

eval . Let’s take a step back and reconsider this idea of proving a property of all programs. We could prove
other properties of all programs in roughly the same way, but substituting a different property into our
reasoning.

We will spend a lot of time in this course defining models (as sets) using various formalisms, and then
exploiting general-purpose reasoning principles that we get “for free” from those definitions to deduce
properties of those sets. We’ll see some more interesting examples of this kind of reasoning very soon.

In informal practice, we take the general proof principles that arise from definitions of mathematical
objects for granted much of the time, but when our reasoning gets more complicated, being aware of these
principles and their explicit structure can help you write precise proofs, and catch bugs in your definitions
and theorems! One of my old professors used to say “your theorems are the unit tests of your definitions.”
This is a good analogy, except that properly stated theorems are complete: If the proof is a correct proof of the
theorem, then you know the proposition is true. With test cases, unless you cover all possible cases—which
you often can’t—then there’s still room for bugs.9

To summarize, once we have a formal model of a programming language (or really ANY complex
system in computer science), we can exploit the structure of our definition to develop general-purpose rea-
soning principles and use those to establish once and for all properties of interest. Some properties, like the
result of evaluating one program, can serve as a source of test-cases for an existing implementation. Other
properties, like the fact that all programs produce results, can guide the development of an implementation
in the first place, and finally properties, like the existence of a diverging program, can tell us important
things about the general nature of a language as a whole.

We will see more examples of these ideas in action, especially in the context of language semantics that
are complex enough that the models and propositions are significantly more interesting and less vapid.

9Mind you proving things correct can be quite costly compared to testing, so there is a significant productivity tradeoff here. And
sometimes it’s just hard to figure out what the write proposition would even be!

Page 7


	How Do We Model Programming Languages Mathematically?
	Semantics for the Vapids
	Terminology: Syntax and Semantics


	How do we Reason about our Models?

