Proving that something is false

CPSC 509: Programming Language Principles

Ronald Garcia*

29 January 2013 (**Time Stamp**: 20:05, Tuesday 13th October, 2020)

So far in class we have mostly been proving that something is true, for example that "There is a program in Vapid1 with undefined result."

Sometimes, we want to prove that something is *not* true though, for example, "There is no Vapid 0 program with undefined result." Proving something of the form "not P" is common, so we should make sure we understand how to do that.

Suppose I have some proposition *P*. I may want to prove that "P is false" or "not P." In symbolic notation, this is written

 $\neg P$.

To prove something of this form, the standard practice is to prove that "If P is true then *absurdity* follows." In logic, we represent absurdity¹ with the symbol \bot , which is typically given the name "bottom." So for our purposes, $\neg P$ is just an abbreviation for $P \Rightarrow \bot$. The intuition is that if P is true then something is really broken in the world.

Though we haven't explicitly stated it before, there are a lot of things that we already know are not true, meaning that they imply \perp . For instance, we know that the atom true is not the same as the atom false. In our typical mathematical notation we write this as

true \neq false

But this is shorthand for

 \neg (true = false) (i.e., "it is not the case that true = false.")

and *that* is shorthand for

 $(true = false) \Rightarrow \bot$ (i.e., "if true = false then the world is broken.")c

We can use knowledge of this proposition to prove that something is false about our language of Boolean Expressions:

Proposition 1. true # false.

Rewriting this symbolically, we are proving that \neg (true \Downarrow false), i.e., that (true \Downarrow false) $\Rightarrow \bot$. We are proving an implication and we already know how to do that: assume the premise and use that to prove the conclusion.

Proof. Suppose that true \Downarrow false. By inversion on $t \Downarrow v$, we that for all values v, if true $\Downarrow v$ then v = true. Specializing this for our assumption, it follows that false = true. But that's absurd (i.e., we apply (true = false) $\Rightarrow \bot$ to deduce absurdity \bot).

Thus we've proven that it's absurd that true \Downarrow false or rather true \Downarrow false $\implies \bot$.

^{*© 2013} Ronald Garcia.

¹You may have heard the word "contradiction" as a synonym for absurdity. For technical reasons I'm avoiding that word, and I also want to assure you that what I am about to demonstrate is *not* "proof by contradiction."