
Environment-Passing Semantics and Variable Scoping

CPSC 509: Programming Language Principles

Ronald Garcia*

24 February 2014

TFL: A Tiny Functional Language

Our basis language in these notes is a tiny functional language we’ll call TFL. It builds on the call-by-value
language of procedures by adding a let construct.

x ∈ VAR, n ∈ Z, t ∈ TERM, v ∈ VALUE, PGM = { t ∈ TERM | FV (t) = ∅ }
t ::= x | n | t t | λx.t | let x = t in t | t + t
v ::= n | λx.t

Here is a big-step semantics for TFL.
⇓ ⊆ PGM × VALUE

n ⇓ n (num) t1 ⇓ n1 t2 ⇓ n2
t1 + t2 ⇓ n

(plus) n = n1 + n2 λx.t ⇓ λx.t (lambda)

t1 ⇓ λx.t11 t2 ⇓ v2 [v2/x]t11 ⇓ v
t1 t2 ⇓ v

(app)
(λx.t2) t1 ⇓ v

let x = t1 in t2 ⇓ v
(let)

The (lambda) rule says “to evaluate a lambda, just return it: you’re done”. The (app) rule for applications
evaluates the operator t1, expecting a lambda abstraction λx.t11 as the result, and evaluates the operand
t2, expecting a value v2, and then substitutes v2 into the body of the operator (i.e. t11). For the let rule, we
“cheat”, and just define let in terms of lambda abstractions and application: this makes explicit the close
relationship between variable binding and procedure application. How would you write an equivalent
rule for let directly? The direct approach is more typical: I do it as above just to make the point that we can
reasonably define some language features in terms of others, and doing so codifies the language designer’s
intent, but the resulting reasoning principles are not always what you want by default.

The evaluator for this semantics looks similar to the evaluator for small-step semantics:

OBS = {procedure } ∪ Z
eval : PGM → OBS

eval(t) = procedure if t ⇓ λx.t0
eval(t) = n if t ⇓ n.

Figure 1 presents derivation tree for evaluating the following program:

let x = 7
in let plusx = λy.y + x

in plusx 3

*© Ronald Garcia.

1

V
ariable

Scoping
Tim

e
Stam

p:16:42,W
ednesday

16
th

Septem
ber,2020

λx.let plusx = λy.y + x
in plusx 3

⇓ λx.let plusx = λy.y + x
in plusx 3

7 ⇓ 7

λplusx.plusx 3 ⇓ λplusx.plusx 3 λy.y + 7 ⇓ λy.y + 7

λy.y + 7 ⇓ λy.y + 7 3 ⇓ 3

3 ⇓ 3 7 ⇓ 7

3 + 7 ⇓ 10

(λy.y + 7) 3 ⇓ 10

(λplusx.plusx 3) λy.y + 7 ⇓ 10

let plusx = λy.y + 7
in plusx 3

⇓ 10(
λx.let plusx = λy.y + x

in plusx 3

)
7 ⇓ 10

let x = 7
in let plusx = λy.y + x

in plusx 3

⇓ 10

Figure 1: TFL Derivation of a simple program’s evaluation

Page
2

Variable Scoping Time Stamp: 16:42, Wednesday 16th September, 2020

Thinking about Scope

The language definition above is very succinct and explains how function calls pass arguments to functions
in terms of substitution [v/x]t, which is defined as a mathematical function outside of the operational se-
mantics. This is a concise and clear specification, but it’s not particularly helpful if we want to understand
other kinds of variable lookup. To enable a discussion of different varible scoping disciplines, we now
consider a different model of the TFL language.

Here we use a mechanism, called an environment. An environment is a finite partial function from
variables to denotable objects, which in this case are values:1

ρ ∈ ENV = VAR
fin
⇀ DO

DO = VALUE

The smallest environment is the empty one ∅, and given an environment ρ we use the notation ρ[x 7→ v] to
represent the environment that either extends (if x 6∈ dom(ρ)) or differs from (if x ∈ dom(ρ)) ρ regarding its
mapping for x:

·[· 7→ ·] : ENV × VAR × VALUE → ENV

ρ[x 7→ v](y) = v if y = x

ρ[x 7→ v](y) = ρ(y) otherwise.

Notice how our definition of environment update uses equations that talk not about what ρ[x 7→ v]
equals, but rather the equational properties of applying ρ[x 7→ v] to variables. This is a perfectly fine equa-
tional definition of the ·[· 7→ ·] function itself.

Lexical (a.k.a. Static) Scoping

We’ll now define an environment-passing semantics for TFL, which is a semantics that, instead of using
substitution, stores variable bindings in the environment. This semantics, like the one for IMP, is defined
using pairs:

(· ` · ⇓ ·) ⊆ ENV × Λ× VALUE

The environment-passing semantics for TFL follow:

ρ ` x ⇓ ρ(x)
(var)

ρ ` n ⇓ n (num) ρ ` t1 ⇓ n1 ρ ` t2 ⇓ n2
ρ ` t1 + t2 ⇓ n

(plus) n = n1 + n2

ρ ` λx.t ⇓ (λx.t, ρ)
(lambda)

ρ1 ` t1 ⇓ (λx.t11, ρ2) ρ1 ` t2 ⇓ v2 ρ2[x 7→ v2] ` t11 ⇓ v
ρ1 ` t1 t2 ⇓ v

(app)

ρ ` (λx.t2) t1 ⇓ v
ρ ` let x = t1 in t2 ⇓ v

(let)

There are a few things to notice about these semantics. First off, the result of evaluating a lambda
abstraction is now a pair of that abstraction and the environment that it¡ was evaluated in. Given a pair
(λx.t, ρ), the environment ρ must be defined for all the free variables of λx.t. Thus, the pair represents a
closed lambda abstraction, and for this reason it is called a closure. In this semantics, closures are among
our values.

v ::= n | (λx.t, ρ) where FV (λx.t) ⊆ dom(ρ)

1“Denote” is just a fancy word for “stands for”. Denotable objects are thus the objects in the language that variables are allowed to
stand for. What is allowed as a denotable object is a design decision. For instance, I may only want to allow variables to hold numbers
and never functions. Such a language is more like Pascal than like Haskell.

Page 3

Variable Scoping Time Stamp: 16:42, Wednesday 16th September, 2020

The (app) rule also changes to account for closures and the avoidance of substitution. Now, evaluating
the operator t1 results in a closure, and rather than substituting the result v2 of the operand into the body t1,
the body t11 is evaluated as-is, but in an environment that extends the closure environment ρ2 with a bind-
ing for x. The environment ρ2 accounts for all the free variables in λx.t, providing variable bindings that
would have been immediately substituted into λx.t in the previous semantics. Extending the environment
takes the place of performing a substitution.

Another important item of note. For these semantics we need not consider α-equivalent terms! Now that
we do not perform substitution, we can simply rely on the environment to keep track of concrete variables.
In short, environments obviate need for lexical scoping.

We can reason about which variable reference goes with which variable binding exactly as we did in
the other semantics for TFL, and it’s pretty straightforward. This kind of variable scoping is called static
scoping, because we can discern what variable binding a variable refers to simply by looking at the initial
program. That is to say, we can determine variable scope statically (i.e. without running the program).

How would the evaluation derivation in Figure 1 change if it ended with the following judgment?

∅ `

let x = 7
in let plusx = λy.y + x

in plusx 3

 ⇓ 10

Dynamic Scoping

We now consider a new variant of the TFL language, which we’ll call TFLdyn. This language is dynamically
scoped which means that variable references are resolved using the “most recent” binding of that variable
in the dynamic extent of evaluation. Ideally we can unpack what this means by considering the semantics
themselves.

The environment-passing semantics for TFLdyn follow:

ρ ` x ⇓ ρ(x)
(var)

ρ ` n ⇓ n (num)
ρ ` t1 ⇓ n1 ρ ` t2 ⇓ n2

ρ ` t1 + t2 ⇓ n
(plus)

where n = n1 + n2

ρ ` λx.t ⇓ λx.t
(lambda)

ρ1 ` t1 ⇓ λx.t11 ρ1 ` t2 ⇓ v2 ρ1 [x 7→ v2] ` t11 ⇓ v
ρ1 ` t1 t2 ⇓ v

(app)

ρ ` let x = t1 in t2 ⇓ v
ρ ` (λx.t2) t1 ⇓ v

(let)

The differences between the dynamically scoped and statically scoped semantics are highlighted above.
Most importantly, the evaluation rule for lambda abstractions now drops the environment and simply
returns the lambda abstraction itself. In contrast to the original TFL semantics, though, this lambda ab-
straction may have free variables, and they need to be resolved somehow. This phenomenon is central to
why scoping has become dynamic.

In any case, values have now reverted to being numbers or lambda abstractions.

v ::= n | λx.t

Because of this, the rule for function application also changes. Now, there is no longer a second environment
ρ2. Instead, the body t11 of the operator is evaluated using the environment ρ1 that exists when the function
is being applied, not the one that existed when the function was created. This has massive implications for the
runtime behavior of the language.

Consider a slight variation on our earlier programming example:

let x = 7
in let plusx = λy.y + x

in let x = 3
in plusx 3

Page 4

Variable Scoping Time Stamp: 16:42, Wednesday 16th September, 2020

In the TFL language, the result is the same as before, 10, because the value of x in the body of plusx is
resolved statically to be 7 (If you are not sure, run it in the substitution-based semantics).

In the TFLdyn language, however, the value of x ends up being looked up in the environment that exists
at the point where plusx is called. Looking at this code, we can see that x is bound to 3 at the point in the
program when this call happens. Thus, x is found to be 3, and the result of the computation is 6.

Dynamic scope can be difficult to reason about. It’s not always obvious which variable binding will be
in scope when a variable is looked up. To give you some flavor of how evaluation proceeds, consider the
evaluation of the following program (Figure 2).

(λx.(λx.λy.x + y) 5 3) 7

This program is similar to translating away the let expressions in the following program:

let x = 7
in let x = 5

in let y = 3
in x + y

but they are not quite the same in a critical way. Try translating this program’s let expressions away by hand.
How does the result compare to the prior program?

Under static scoping (i.e. TFL), our let-less program evaluates to 8, but under dynamic scoping (i.e.
TFLdyn) the result is altogether different. Observe how currying causes the binding of x to 5 to be lost,
leaving only the binding of x to 7 when it is time to look up x’s value.

Harking back to our earlier discussion of alpha-equivalence, we once again do not consider α-equivalent
terms. In the case of lexical scoping, they were not needed. In the case of dynamic scoping, they don’t even
work! That is to say, changing the name of a bound variable can change the meaning of the program if the
language has dynamic scoping. In fact, this is why dynamic scoping is considered such a bad idea: local
decisions about variable names have global implications. There is no encapsulation of variable-naming
decisions.

Page 5

V
ariable

Scoping
Tim

e
Stam

p:16:42,W
ednesday

16
th

Septem
ber,2020

ρ0 ` (λx.(λx.λy.x + y) 5 3) ⇓ (λx.(λx.λy.x + y) 5 3) ρ0 ` 7 ⇓ 7

ρ1 ` t3 ⇓ t3 ρ1 ` 5 ⇓ 5 ρ2 ` λy.x + y ⇓ λy.x + y

ρ1 ` (λx.λy.x + y) 5 ⇓ λy.x + y ρ1 ` 3 ⇓ 3

ρ3 ` x ⇓ 7 ρ3 ` y ⇓ 3

ρ3 ` x + y ⇓ 10

ρ1 ` (λx.λy.x + y) 5 3 ⇓ 10

ρ0 ` (λx.(λx.λy.x + y) 5 3) 7 ⇓ 10

ρ0 = ∅
ρ1 = ρ0[x 7→ 7] = (x 7→ 7)

ρ2 = ρ1[x 7→ 5] = (x 7→ 5)

ρ3 = ρ1[y 7→ 3] = (x 7→ 7, y 7→ 3)

Figure 2: Derivation of Evaluation in TFLdyn

Page
6

Variable Scoping Time Stamp: 16:42, Wednesday 16th September, 2020

Reduction Semantics for Dynamic Scoping

The environment-passing semantics in the last section were inspired by early implementations of languages
like LISP2, which got environments wrong, and ended up with dynamic scoping. The Scheme program-
ming language corrected this design issue, taking inspiration from Church’s lambda calculus as well as
Carl Hewitt’s Actor Model from the PLANNER programming language.

An easier way to understand dynamic scoping is to look at it as a stack-based lookup discipline. In
particular, we can write a reduction semantics for dynamic scoping that produces the same results as the
environment-based semantics, but that makes it far easier to trace what’s going on. Technically we should
prove that the two semantics are equivalent, but let’s save that for another day: for now examples may help
you get the idea.

The reduction semantics for the language follows. We start with the evaluation contexts:

E ∈ ECTXT
E ::= � | E[� t] | E[v �] | E[let x =� in t] | E[let x = v in �] | E[� + t] | E[v +�]

Now we have evaluation contexts for let expressions: we will not be defining them in terms of λ. In
fact, we will essentially do the reverse. Also, unlike previous reduction semantics with let, this one allows
evaluation in the body of the let expression. In essence, the let binding captures the value of a variable in the
context, which is our representation of the “dynamic scope” of any variable reference.

Our notions of reduction follow:

n1 + n2 n1 + n2

(λx.t) v let x = v in t
let x = v in E[x] let x = v in E[v] x /∈ BV (E)

let x = v1 in v2 v2

The first notion of reduction is typical, but from there things differ. Function application is now con-
verted into let binding. This is how a variable binding is stored in the context for later lookup while evalu-
ating the function body t.

The third rule is where the magic happens. Now that evaluation contexts can go inside the bodies
of let expressions, it’s possible to arrive at a free variable x. The behaviour of this operation is to find the
innermost let binding for x and make a copy of the value that is bound to it. To capture the idea of innermost
binding, we require a function on evaluation contexts that checks what variables are bound by the context:

BV : ECTXT → P(VAR)
BV (�) = ∅

BV (E[� t]) = BV (E)

BV (E[v �]) = BV (E)

BV (E[let x =� in t]) = BV (E)

BV (E[let x = v in �]) = BV (E) ∪ {x }

In essence, the third notion of reduction includes the context surrounding the variable reference, mean-
ing that this term could be huge depending on how big E is. This is quite different from the big-step rule
for variable references, which appeals to an environment.

Finally, when a value v2 is produced in the context of a let binding, then the let is no longer needed, so
it is popped off of the context (i.e., “runtime stack”!) and the value propagates up.

Now let’s consider our example program from earlier under this model.

2And, sadly, the current implementation of Emacs Lisp, though there is now an option to enable lexical scoping for a buffer!

Page 7

Variable Scoping Time Stamp: 16:42, Wednesday 16th September, 2020

(λx.(λx.λy.x + y) 5 3) 7

−→ let x = 7 in (λx.λy.x + y) 5 3

−→ let x = 7 in (let x = 5 in λy.x + y) 3

−→ let x = 7 in (λy.x + y) 3

−→ let x = 7 in let y = 3 in x + y

−→ let x = 7 in let y = 3 in 7 + y

−→ let x = 7 in let y = 3 in 7 + 3

−→ let x = 7 in let y = 3 in 10

−→ let x = 7 in 10

−→ 10

The key reduction step is the third one, which removes the x = 5 binding from the context. Then looking
up x later yields 7.

Page 8

