Summary of Proof Techniques

To prove a goal of the form:

- 1. $P \rightarrow Q$:
 - (a) Assume P is true and prove Q.
 - (b) Prove the contrapositive; that is, assume that Q is false and prove that P is false.
- $\frac{2}{2}$ -P:

(a) Reexpress as a positive statement.

(b) Use proof by contradiction; that is, assume that P is true and try to reach a contradiction.

3. $P \wedge Q$:

Prove P and Q separately. In other words, treat this as two separate goals: P, and Q.

4. $P \lor Q$:

(a) Use proof by cases. In each case, either prove P or prove Q.

(b) Assume P is false and prove Q, or assume Q is false and prove P.

5. $P \leftrightarrow Q$:

Prove $P \rightarrow Q$ and $Q \rightarrow P$, using the methods listed under part 1.

6. $\forall x P(x)$:

Let x stand for an arbitrary object, and prove P(x). (If the letter x already stands for something in the proof, you will have to use a different letter for the arbitrary object.)

7. $\exists x P(x)$:

Find a value of x that makes P(x) true. Prove P(x) for this value of x.

- 8. $\exists ! x P(x)$:
 - (a) Prove $\exists x P(x)$ (existence) and $\forall y \forall z((P(y) \land P(z)) \rightarrow y = z)$ (uniqueness).
 - (b) Prove the equivalent statement $\exists x (P(x) \land \forall y (P(y) \rightarrow y = x)).$

9. $\forall n \in \mathbb{N}P(n)$:

- (a) Mathematical Induction: Prove P(0) (base case) and $\forall n \in \mathbb{N}(P(n) \rightarrow P(n+1))$ (induction step).
- (b) Strong Induction: Prove $\forall n \in \mathbb{N}[(\forall k < nP(k)) \rightarrow P(n)].$

To use a given of the form:

- 1. $P \rightarrow Q$:
 - (a) If you are also given P, or you can prove that P is true, then you can conclude that Q is true.
 - (b) Use the contrapositive: If you are given or can prove that Q is false, you can conclude that P is false.
- 2. . P:

(a) Reexpress as a positive statement.

(b) In a proof by contradiction, you can reach a contradiction by proving P.

3. $P \wedge Q$:

Treat this as two givens: P, and Q.

- 4. $P \lor Q$:
 - (a) Use proof by cases. In case 1 assume P is true, and in case 2 assume Q is true.
 - (b) If you are also given that P is false, or you can prove that P is false, you can conclude that Q is true. Similarly, if you know that Q is false you can conclude that P is true.
- 5. $P \leftrightarrow Q$:

Treat this as two givens: $P \rightarrow Q$, and $Q \rightarrow P$.

6. $\forall x P(x)$:

You may plug in any value, say a, for x, and conclude that P(a) is true.

7. $\exists x P(x)$:

Introduce a new variable, say x_0 , into the proof, to stand for a particular object for which $P(x_0)$ is true.

8. $\exists ! x P(x)$:

Introduce a new variable, say x_0 , into the proof, to stand for a particular object for which $P(x_0)$ is true. You may also assume that $\forall y \forall z ((P(y) \land P(z)) \rightarrow y = z)$.

Techniques that can be used in any proof:

1. Proof by contradiction: Assume the goal is false and derive a contradiction.

2. Proof by cases: Consider several cases that are *exhaustive*, that is, that include all the possibilities. Prove the goal in each case.

306