
Coinductive Definition: A Counterpoint to Inductive
Definition

CPSC 509: Programming Language Principles

Ronald Garcia*

28 September 2019
(Time Stamp: 13:06, Monday 9th November, 2020)

1 Introduction

Up to now we have made substantial and effective use of inductive definitions. We have used them to
describe the abstract syntax of our languages, as well as their operational semantics. We’ve used them to
justify equational schemes for defining total functions that map inductively-defined sets to arbitrary other
sets. And, of course, we’ve exploited proof by induction to prove properties of inductively-defined sets,
sometimes of every element of the set, and other times a single element of the set (by ruling out all others).

Indeed, induction is a workhorse of PL Theory, but it is not the only tool at our disposal, nor is it the best
definition and proof method for all situations. During the mid-twentieth century, researchers in computer
science and logic nearly simultaneously came across another definition principle, and corresponding proof
method, that is closely related to induction, but better suited for some circumstances [Sangiorgi, 2009]. This
definition method, viewed as a counterpoint to inductive definitions, has been given the name coinductive.1

These notes introduce coinductive definition and proof by coinduction, and show how they can be used
to quite cleanly define sets and prove properties for which the inductive approach can be awkward.

2 Inductive Definition Without Derivations

As far as mathematical techniques go, coinduction is quite young and still under development, but even a
little bit of it can go a long way. To lead you into understanding it though, I think it helps to first give an al-
ternative introduction to inductive definition and proof that is equivalent to the derivation-based approach
that we’ve covered so far, but makes it easier to show why coinduction really is a counterpoint to induction,
and make clear that neither of them are magical: it’s just set theory in action. Along the way, though, you’ll
ideally get a more transparent understanding of where our principles of induction come from, essentially
by seeing how we could prove them correct.

2.1 Rules Rule

As before, we begin with inductive rules, but what’s interesting here is that we will not use rules to de-
fine derivations. Let’s take as our running example our definition of big-step evaluation for the Boolean
language.

*© 2019 Ronald Garcia.
1In this context and many others in math and logic, the prefix “co-” is short for “counter-”, in contrast to its use in e.g., “cohabit”. It

refers to a recurring and useful phenomenon called duality: that many concepts in mathematics have a “natural” counterpart concept.

1

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

⇓ ⊆ TERM × VALUE

true ⇓ true
(etrue)

false ⇓ false
(efalse)

t1 ⇓ true t2 ⇓ v2
if t1 then t2 else t3 ⇓ v2

(eif-t)

t1 ⇓ false t3 ⇓ v3
if t1 then t2 else t3 ⇓ v3

(eif-f)

As before, each rule represents the set of all of its instances: we combine the rules to form one big set:

R⇓ = (etrue) ∪ (efalse) ∪ (eif-t) ∪ (eif-f).

To review, our usual approach is to use the rule set R⇓ to form the set of derivations DERIV[R⇓], and
appeal to the :: ∈ DERIV[R⇓]→ TERM×VALUE relation (which happens to be a total function) to determine
which judgment a derivation justifies. These in turn help us define our intended set:

(· ⇓ ·) = { 〈t, v〉 ∈ TERM × VALUE | ∃D ∈ DERIV[R⇓].D :: 〈t, v〉 } .

Let’s not do that. Instead let’s do something different that gets us to the same place at the end. We will
use the same rule setR⇓ to define a function on TERM × VALUE subsets S ∈ P(TERM × VALUE).

M[R⇓] : P(TERM × VALUE)→ P(TERM × VALUE)

M[R⇓](S) =

{
〈t, v〉 ∈ TERM × VALUE

∣∣∣∣ ∃ S′

〈t, v〉 ∈ R⇓. S
′ ⊆ S

}
As for DERIV, let’s just call the functionM on the assumption that we know which rule set R⇓ is relevant.
It’s pretty clear that the above is a legitimate function definition so we won’t worry too much about that:
let’s consider its “behaviour”. In essence, given some set of judgments S, it produces the set of judgments
S0 that can be deduced from S using one step of forward reasoning, as embodied by the rules inR⇓.

Let’s consider some equations that this definition justifies:

M(∅) = { 〈true, true〉 , 〈false, false〉 }

Indeed the only rules
S′

〈t, v〉where S′ ⊆ ∅ are the “axioms”, where S′ = ∅.

M({ 〈false, true〉 }) = { 〈true, true〉 , 〈false, false〉 }∪
{ 〈if false then false else t3, true〉 ∈ TERM × VALUE | t3 ∈ TERM }

Since ∅ ⊆ { 〈false, true〉 }, we get all the elements of M(∅) plus some extras, justified by instances of the
(eif-t) rule where t1 = t2 = false and v2 = true: any term t3 will do! These extras are ludicrous, but what do
you expect, we started with a ludicrous assumption: garbage-in garbage-out!

Let’s make a further observation, based on the first example above.M(∅) yields the set of all judgments
that could be justified with a derivationD of height one: just axioms. With a little thought, we could see that
M2(∅) ≡ M(M(∅)) produces the set of all judgments that could be justified by a derivation D of height
two or less. The “or less” part comes because ∅ ⊆ M(∅) so the corresponding rules are still in play. We
could keep iterating this process over and over, and eachMn(∅) would give us the set of all judgments that
can be justified with a derivation of height n or less. Since every derivation that we consider for inductive
definitions has finite height,2 we can prove that:

⇓ =
⋃
n∈N

Mn(∅).

2Technically there is such thing as an inductive definition justified by a derivation of infinite height, but it is still “bounded” by
something called an ordinal number, which you can think of as a number on steroids. We won’t be delving into that crazy town in this
class, so worry not!

Page 2

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

Mathematically,
⋃

n∈N Mn(∅) is shorthand notation for the expression:⋃
{S ∈ P(TERM × VALUE) | ∃n ∈ N. S = Mn(∅) } ,

which is justified by the axiom schema of separation and the axiom of union.
This is one of those examples of crazy set-theoretic gymnastics sometimes necessary to get stuff done.

What’s crazy about this? Well, first we can prove the following theorem, which will be important shortly.

Proposition 1 (M is monotone with respect to ⊆). If S1 ⊆ S2 thenM(S1) ⊆M(S2)

To summarize the above property, we usually say thatM is monotone with respect to⊆. This proposition
leads to another immediately relevant theorem:

Corollary 1. If n1 < n2 thenMn1(∅) ⊆Mn2(∅)
Proof Sketch. This is a consequence of ∅ ⊆ M(∅) and monotonicity ofM.

So here’s the thing: ifMn(∅) for every bigger n contains all of the elements ofMm(∅) for any smaller m,
then why the heck are we taking the union of all of them?!?...that’s to say, why don’t we just take the biggest
one and be done with it? Well the answer is because there is no biggest natural number!. So instead, we play
this reindeer game where we collect the set of all sets Mn(∅), because the rules of the game say we can,
and then we take their union, also because the rules of the game say we can, and that gives us what you
might call the limit of the sequence of expanding sets Mn(∅). Look, I don’t make the rules, so don’t shoot
the messenger!

Okay: to recap we now we have two different but equivalent ways of describing the set inductively
defined by the rulesR⇓:

1. The set of all judgments justified by derivations DERIV[R⇓]

2. The union of setsMn[R⇓](∅) for all n ∈ N.

Now it’s time for a third equivalent definition. Take heart though, this next definition will also use
M[R⇓], but it’s not as obvious, at least to me, that this one is equivalent, but it will be especially useful for
rigorously justifying our principles of proof by induction.

We start with a definition. A set S ⊆ TERM × VALUE is called M-forward-closed if M(S) ⊆ S. The
justification for the name “closed” is an analogy with a subfield of mathematics called topology, about
which we don’t presently give a hoot, so don’t worry about the name, just the property. Let’s examine it
in turn. Basically if a set S isM-closed, then any attempt to justify new judgments by applying inductive
rules to elements of S will just get you judgments that you already had: elements of S! If you think of
“closed” as “self-contained”, then the name makes a bit of sense. The “forward” part, introduced, I think,
by the computer scientist Davide Sangiorgi, will become relevant when we get to coinduction.

Ok, so if we think back to our original definition of ⇓, then we would expect that from judgments of
⇓ we cannot use inductive rules to introduce any new judgments, because we already picked based on all
derivations. We don’t expect to be able to derive anything more. So intuitively, we can guess, rightfully,
that ⇓ is M-forward-closed. However, other sets are M-forward-closed too. For example, the entire set
TERM×VALUE is vacuouslyM-forward-closed because it necessarily contains any subset of itself (including
itself). And there are probably others. But ⇓ is special: it’s the “smallest”M-closed set!

Proposition 2. ⇓ =
⋂
{S ∈ P(TERM × VALUE) | M(S) ⊆ S } .

This is our third inductive definition of ⇓ in terms of the rule-set R⇓. I’m not going to prove it here, but
the rough intuition comes from our second definition of ⇓. We know that ∅ (M(∅), and as we iterate, it
keeps getting bigger and bigger and bigger, and we only stop where we get something such thatM(⇓) ⊆ ⇓
which is a real turnaround! So, to put things loosely, how could there be any smallerM-closed set? In fact,
sinceM(⇓) ⊆ ⇓ and ⇓⊆M(⇓) we immediately deduce thatM(⇓) = ⇓.

Often people like to focus on the fact that an inductively-defined set is the least fixed point ofM, i.e. the
least set S such thatM(S) = S, but it’s actually more important that it is the leastM-forward-closed set.
In fact, that property is fundamental to our principles of induction!

Proposition 3 (Principle of Monotone Induction for ⇓). Let S ⊆ TERM × VALUE. ThenM(S) ⊆ S implies
⇓ ⊆ S.

Page 3

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

2.2 Recovering Rule-based Induction Principles

Huh: what does Prop 3, a tiny and somehwat opaque proposition, have to do with the induction principles
we have been using up to now? It’s not immediately obvious, but given this weird property of M, set
containment, and sets, we can prove our earlier principles correct!

To demonstrate, let’s calculate the principle of rule induction for t ⇓ v from the principle of monotone
induction. Suppose that P is a property of term-value pairs 〈t, v〉. Then we can construct the set S[P] of
pairs that satisfy P as follows.

S[P] = { 〈t, v〉 ∈ TERM × VALUE | P (t, v) }

Well then, we would know that P (t, v) holds for all 〈t, v〉 ∈ ⇓ if and only if ⇓ ⊆ S[P]. By our principle of
monotone induction, it suffices to show that M(S[P]) ⊆ S[P], which expands to
∀ 〈t, v〉 ∈ TERM × VALUE. 〈t, v〉 ∈ M(S[P]) =⇒ 〈t, v〉 ∈ S[P], which in turn expands to
∀ 〈t, v〉 ∈ TERM × VALUE. 〈t, v〉 ∈ M(S[P]) =⇒ P (t, v) Now, we could use this principle directly to prove
things, but doing so is kind of clunky. Our rule-based principles, on the other hand, give some guiding
structure and scaffolding to our proofs. Plus they may be better suited to intuitive understanding. So let’s
recover those rule-based principles!

Rule-structuredM Our next step to recovering our beloved rule-based induction principle is to decom-
pose the definition of M into separate parts that expose the independent contribution of each inductive
rule.

M[R⇓](S) =

{
〈t, v〉 ∈ TERM × VALUE

∣∣∣∣ ∃ S′

〈t′, v′〉 ∈ R⇓. t = t′ ∧ v = v′ ∧ S′ ⊆ S

}

=

{
〈t, v〉 ∈ TERM × VALUE

∣∣∣∣ ∃ ∅
〈true, true〉 ∈ R⇓. t = true ∧ v = true ∧ ∅ ⊆ S

}
∪
{
〈t, v〉 ∈ TERM × VALUE

∣∣∣∣ ∃ ∅
〈false, false〉 ∈ R⇓. t = false ∧ v = false ∧ ∅ ⊆ S

}

∪

 〈t, v〉 ∈ TERM × VALUE

∣∣∣∣∣∣∣
∃
{ 〈t1, true〉 , 〈t2, v2〉 }
〈if t1 then t2 else t3, v2〉

∈ R⇓.

t = if t1 then t2 else t3 ∧ v = v2 ∧ { 〈t1, true〉 , 〈t2, v2〉 } ⊆ S

∪

 〈t, v〉 ∈ TERM × VALUE

∣∣∣∣∣∣∣
∃
{ 〈t1, false〉 , 〈t3, v3〉 }
〈if t1 then t2 else t3, v3〉

∈ R⇓.

t = if t1 then t2 else t3 ∧ v = v3 ∧ { 〈t1, false〉 , 〈t3, v3〉 } ⊆ S

Since the definition ofM simply collects term-value pairs that can be justified by the input set S according
to the rule instances, we can break that collection process up according to the rules as above. Here we
have taken liberty to abbreviate the existential notation in our set comprehensions. Here is an example of
unpacking it:

∃
{ 〈t1, true〉 , 〈t2, v2〉 }
〈if t1 then t2 else t3, v2〉

∈ R⇓. Q(t1, t2, t3, v2) ≡

∃t1, t2, t3 ∈ TERM, v2 ∈ VALUE, R ∈ R⇓. R =
{ 〈t1, true〉 , 〈t2, v2〉 }
〈if t1 then t2 else t3, v2〉

∧Q(t1, t2, t3, v2).

The unpacking above is quite systematic, just to show that there’s no magic involved. However, the
resulting conditions are more complicated than they need to be, so let’s simplify further. We’ll exploit a
straightforward property of set comprehensions (which is easy to prove based on the axiom schema of
separation).

Proposition 4. (∀x ∈ X.P (x) ⇐⇒ Q(x)) =⇒ {x ∈ X | P (x) } = {x ∈ X | Q(x) }

Page 4

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

In words, this means that we can always replace the condition of a set comprehension with any equiv-
alent logical predicate and still end up with a definite description of the same set. We can exploit this to
simplify each set comprehension above, in particular by proving that the condition on membership in R⇓
is redundant, e.g.,

Proposition 5.

∀S ∈ P(TERM × VALUE), 〈t, v〉 ∈ TERM × VALUE.∃ { 〈t1, true〉 , 〈t2, v2〉 }
〈if t1 then t2 else t3, v2〉

∈ R⇓.

t = if t1 then t2 else t3 ∧ v = v2 ∧ { 〈t1, true〉 , 〈t2, v2〉 } ⊆ S

⇐⇒

∃t1, t2, t3 ∈ TERM, v2 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v2 ∧ 〈t1, true〉 ∈ S ∧ 〈t2, v2〉 ∈ S.

This proposition and analogous propositions for each condition let us further simplify our rule-structured
definition ofM:

M[R⇓](S) = { 〈t, v〉 ∈ TERM × VALUE | t = true ∧ v = true }
∪ { 〈t, v〉 ∈ TERM × VALUE | t = false ∧ v = false }

∪
{
〈t, v〉 ∈ TERM × VALUE

∣∣∣∣ ∃t1, t2, t3 ∈ TERM, v2 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v2 ∧ 〈t1, true〉 ∈ S ∧ 〈t2, v2〉 ∈ S.

}
∪
{
〈t, v〉 ∈ TERM × VALUE

∣∣∣∣ ∃t1, t2, t3 ∈ TERM, v3 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v3 ∧ 〈t1, false〉 ∈ S ∧ 〈t3, v3〉 ∈ S.

}

FromM forward-closure to Rule-based Induction Finally, we can in several steps unpack our sufficient
condition for ⇓⊆ S[P], namely:

∀ 〈t, v〉 ∈ TERM × VALUE. 〈t, v〉 ∈ M[R⇓](S[P]) =⇒ P (t, v)

into a rule-based induction principle that we can recognize. This will take us a couple of steps. First, let’s
expand 〈t, v〉 ∈ M[R⇓](S[P]):

〈t, v〉 ∈ M[R⇓](S[P]) ⇐⇒ (t = true ∧ v = true) ∨
(t = false ∧ v = false) ∨(
∃t1, t2, t3 ∈ TERM, v2 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v2 ∧ P (t1, true) ∧ P (t2, v2)

)
∨(

∃t1, t2, t3 ∈ TERM, v3 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v3 ∧ P (t1, false) ∧ P (t3, v3)

)
.

Second, we can expand and exploit the tautologies (A∨B) =⇒ C ⇐⇒ (A =⇒ C)∧ (B =⇒ C) and
(∀x.A(x) ∧B(x)) ⇐⇒ ((∀x.A(x)) ∧ (∀x.B(x))) to distribute the expansion of our condition to form:

(∀ 〈t, v〉 ∈ TERM × VALUE. 〈t, v〉 ∈ M[R⇓](S[P]) =⇒ P (t, v))

⇐⇒ (∀ 〈t, v〉 ∈ TERM × VALUE. (t = true ∧ v = true) =⇒ P (t, v)) ∧
(∀ 〈t, v〉 ∈ TERM × VALUE. (t = false ∧ v = false) =⇒ P (t, v)) ∧(
∀ 〈t, v〉 ∈ TERM × VALUE.

(
∃t1, t2, t3 ∈ TERM, v2 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v2 ∧ P (t1, true) ∧ P (t2, v2)

)
=⇒ P (t, v)

)
∧(

∀ 〈t, v〉 ∈ TERM × VALUE.

(
∃t1, t2, t3 ∈ TERM, v3 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v3 ∧ P (t1, false) ∧ P (t3, v3)

)
=⇒ P (t, v)

)
.

Page 5

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

Finally, we can simplify this conjunction of four propositions, exploiting the (generalization of the) tau-
tology

(∀z.(∃x, y. z = f(x) ∧Q(x, y)) =⇒ D(z)) ⇐⇒ (∀x, y.Q(x, y) =⇒ D(f(x)))

to get our final form:

M[R⇓](S[P]) ⊆ S[P]

⇐⇒ P (true, true) ∧
P (false, false) ∧
(∀t1, t2, t3 ∈ TERM.∀v2 ∈ VALUE.

P (t1, true) ∧ P (t2, v2) =⇒ P (if t1 then t2 else t3, v2)) ∧
(∀t1, t2, t3 ∈ TERM.∀v3 ∈ VALUE.

P (t1, false) ∧ P (t3, v3) =⇒ P (if t1 then t2 else t3, v3)).

Phew! The latter part of this last bi-implication is exactly the requirements of the principle of rule induction
for t ⇓ v. In short, we just have to show for each rule instance (say, by covering one entire rule at a time) that
the rule-instance preserves the property P from premises to conclusions (taking account of side-conditions
where necessary to constrain the rule instances). That’s basically a direct reading of our principles of in-
duction! Notice how the instances of P (t, v) that we typically view as “induction hypotheses” arise in
this proposition: they came from the fact that establishing M[R⇓](S[P]) ⊆ S[P] involves presuming that
〈t, v〉 ∈ M[R⇓](S[P]) in the expansion of the definition of ⊆. This becomes especially relevant when we
later discover that proofs by coinduction do not have a corresponding notion of “coinduction hypothesis”
that you get to exploit. Instead they have what you might call “coinduction obligations” that you must
fulfill!

Note that we can also use this approach to motivate our principles of induction on derivations: let P
be a property of derivations D :: 〈t, v〉. Then we can construct the analogous set S[P] of pairs 〈t, v〉 that
correspond to derivations which satisfy P as follows.

S[P] = { 〈t, v〉 ∈ TERM × VALUE | ∃D ∈ DERIV[R].D :: 〈t, v〉 ∧ P (D) }

In short, our third characterization of inductively defining ⇓ using R serves as the source of our principles
of proof by induction. The structure of our reasoning principles is determined by the structure of our
definitions.

To summarize, we have not one, not two, but three different definite descriptions of ⇓ in terms of induc-
tive rulesR, all of which we count as “inductive definition”:

1. the set of all judgments justified by derivations D ∈ DERIV[R] (call this proof-theoretic, taking deriva-
tions as proofs). This one lets us use derivations as scaffolding for reasoning about inductive defini-
tions;

2. the set of all judgments justified by iteratively applyingM[R] to ∅ until we reach a fixed point (this is
called Kleene iteration after the same dude who brought you regular expressions). This one lets us see
induction as the process of progressively building up derivations;

3. the leastM[R]-forward-closed set (call thisM-forward-closure-based definition). This one most directly
justifies our proof techniques;

Phew! I recommend that you play with these different definitions: grab your favourite neighborhood
inductive definition, use it to produce a monotoneM function, see what happens when you throw things
at it, and see if you can derive the principle of induction from the closure-based definition of the set.

Page 6

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

Shallow Reasoning Principles We saw above that from the principle of monotone induction we could
deduce our usual principle of induction. It turns out that we can also deduce our most basic forward and
backward reasoning principles. They derive from two properties of ⇓ that we previously established:

Proposition 6.

1. M[R⇓](⇓) ⊆⇓;

2. ⇓⊆M[R⇓](⇓);

Together, these two properties ensure that ⇓ is a fixed point ofM[R⇓], but each separately can be un-
packed: forward-closedness implies a set of forward reasoning principles:

M[R⇓](⇓) ⊆⇓ ⇐⇒
∀〈t, v〉 ∈ TERM × VALUE. 〈t, v〉 ∈ M[R⇓](⇓) =⇒ 〈t, v〉 ∈ ⇓ ⇐⇒

∀ 〈t, v〉 ∈ TERM × VALUE. (t = true ∧ v = true) ∨
(t = false ∧ v = false) ∨(
∃t1, t2, t3 ∈ TERM, v2 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v2 ∧ 〈t1, true〉 ∈ ⇓ ∧ 〈t2, v2〉 ∈ ⇓

)
∨(

∃t1, t2, t3 ∈ TERM, v3 ∈ VALUE.

t = if t1 then t2 else t3 ∧ v = v3 ∧ 〈t1, false〉 ∈ ⇓ ∧ 〈t3, v3〉 ∈ ⇓.

)
=⇒ 〈t, v〉 ∈ ⇓ ⇐⇒

(〈true, true〉 ∈ ⇓) ∧
(〈false, false〉 ∈ ⇓) ∧(
∀t1, t2, t3 ∈ TERM, v2 ∈ VALUE.

〈t1, true〉 ∈ ⇓ ∧ 〈t2, v2〉 ∈ ⇓ =⇒ 〈if t1 then t2 else t3, v2〉 ∈ ⇓

)
∧(

∀t1, t2, t3 ∈ TERM, v3 ∈ VALUE.

〈t1, false〉 ∈ ⇓ ∧ 〈t3, v3〉 ∈ ⇓ =⇒ 〈if t1 then t2 else t3, v3〉 ∈ ⇓

)
.

while backward-closedness implies a set of backward reasoning principles (the variant that does not make
any distinctions). I encourage you to work out the details for practice.

2.3 A Simpler Example

To get more comfortable with this machinery, we now inductively define a finite set. This will give us
something that we can wrap our small brains around without too much trouble.

Let U = { a, b, c, d, e, f, g }, and consider the following inductive definition.
I ⊆ U

a
a b
f

a
b

c
d

d
c

g
e

I have not bothered with the “∈ I” syntactic sugar here for two reasons: first the set is contrived, but
more importantly, we will eventually use the same set of rules to define a different subset of U .

Okay, let’s call the set of rules Rg so it has a name, and we can use the induced functionMg =M[Rg]

Page 7

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

to calculate the contents of I.

M0
g(∅) = ∅

M1
g(∅) =Mg(∅) = { a }

M2
g(∅) =Mg({ a }) = { a, b }

M3
g(∅) =Mg({ a, b }) = { a, b, f }

M4
g(∅) =Mg({ a, b, f }) = { a, b, f }

M5
g(∅) =Mg({ a, b, f }) = { a, b, f }

...

Conveniently enough, iteratingMn
g (∅) converges in 3 steps, and

I =
⋃
n∈N

Mn
g (∅) = { a, b, f }

Yes we still take the union of all iterations, even if almost all (infinity) of them are the same!
Now let’s consider theMg-forward-closed sets:3

{S ∈ P(U) | Mg(S) ⊆ S } =
{
{ a, b, f } , { a, b, e, f } , { a, b, c, d, f } , { a, b, e, f, g } ,
{ a, b, c, d, e, f } , { a, b, c, d, e, f, g }

}
.

From here we can calculate that

I =
⋂
{S ∈ P(U) | Mg(S) ⊆ S } = { a, b, f } .

Well, that’s comforting: both definitions describe the same set, as expected.

3 Coinduction by example

Let’s take our previous simple example of an inductive definition I and twist it a bit. The result, we’ll
eventually find, is a coinductively-defined set.

One way to define I inductively is to iteratively applyMg to the empty set, and then take the union of all
the sets you get. That’s cool, but what if instead we iteratively applyMg to the universe U? Let’s see:

M0
g(U) = U

M1
g(U) =Mg(U) = { a, b, c, d, e, f }

M2
g(U) =Mg({ a, b, c, d, e, f }) = { a, b, c, d, f }
M3

g(U) =Mg({ a, b, c, d, f }) = { a, b, c, d, f }
M4

g(U) =Mg({ a, b, c, d, f }) = { a, b, c, d, f }
...

This process looks a lot like our inductive definition, but it’s a bit twisted around. We start with the
biggest set that we can, and for any universe U of judgments, we have n1 < n2 =⇒ Mn2(U) ⊆ Mn1(U).
Since iterating gets progressively smaller, we can define the “limit” of this process as:

C =
⋂
n∈N
Mn

g (U).

Funky set we’ve got there! Continuing with our efforts, let’s see what happens if we flip around the idea
ofMg-forward-closedness. Call a set S ⊆ U Mg-backward-closed if S ⊆Mg(S). WhereasMg-closed meant

3Yes I am lazy and wrote a program to compute this!

Page 8

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

that applying rules to the elements of a set can only justify existing elements of the set,Mg-backward-closed
roughly means that every element of S is immediately justified by other elements of S (possibly including that
very element itself).

Okay, let’s look at theMg-backward-closed sets:4

{S ∈ P(U) | S ⊆Mg(S) } =
{
∅, { a } , { a, b } , { d, c } , { a, c, d } ,
{ a, b, f } , { a, b, c, d } , { a, b, c, d, f }

}
.

The Mg-backward-closed sets are quite different from the Mg-forward-closed sets! I think one of my
favourites among them is { d, c }, especially if you look at the rules that cause them to immediately justify
one another:

c
d

d
c

Hmm, if I were to try and build derivation trees out of these rules, I’d end up in two infinite regresses:

...
d
c
d
c
d

...
c
d
c
d
c

It’s like we’re going in circles! Hold that thought!
Earlier we defined I by taking the intersection of the Mg-forward-closed sets. Now let’s keep being

twisty by taking the union of theMg-backward-closed sets which, lo and behold, gives us C again!

C =
⋃
{S ∈ P(U) | S ⊆Mg(S) } = { a, b, c, d, f }

We can confirm, and this is no coincidence, that C is the greatestMg-backward-closed function.
Notice thatMg(C) = C: we can argue that this is the greatest fixed point ofMg , in contrast to I being

its least fixed point. To summarize, I ⊆ U is the set inductively defined by the rules Rg and C ⊆ U is the set
coinductively defined byRg . So with every set of rules you get not one, but two set definitions. Whether you
want the second one at all is a different story, but you can have it if you so choose.

3.1 Proof by Coinduction

Earlier, we motivated our principles of proof by induction by seeing how they arise from characterizing
an inductively-defined set as the leastM[R]-forward-closed set. Analogously, we get a proof principle for
coinduction. Let’s state the specific one for our set C.

Proposition 7 (Principle of Monotone Coinduction for C). Let S ⊆ U . Then if S ⊆Mg(S) then S ⊆ C.

It’s worth taking some time to compare this statement to Prop. 3. That proposition gives sufficient
conditions for proving that an inductively-defined set is a subset of some other set, which we often define to
represent some property of interest, especially when we want to prove that every element of an inductively-
defined set has the property. However, bear in mind that our backward-reasoning lemmas are degenerate
instances of induction, and they only prove a property for particular elements of the inductively-defined
set. Such is the versatility of proof by induction.

The principle of coinduction at first glance looks weird. It shows how to prove that the coinductively-
defined set is a superset of some set of interest. So what’s the use of that? Well, this setup is particularly
useful when a property is defined coinductively. For instance, we’ll see that for a language like IMP, we can
define divergence (i.e., nontermination) coinductively and then use the principle of coinduction to prove
that some subset of command configurations all diverge. Make no mistake, sometimes coinduction is also
useful for defining sets of objects, especially “infinite” or “cyclic” objects of interest. For now we won’t go

4More programming: program, program, program!

Page 9

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

there since it’s not our primary concern at the moment. But in general both induction and coinduction are
useful for defining sets of objects and properties-as-sets. Which approach is better (if either) will depend
on the problem at hand.

As with our earlier example of ⇓, let’s use our inductive rules to transform Prop. 7 into a form that
exposes the logical structure of the rules used to define C. First, unpack the definition of M, expanding
subset conditions into elementhood ones on the fly:

M(S) = { a }∪
{ s ∈ S | s = a ∧ a ∈ S ∧ b ∈ S }∪
{ s ∈ S | s = b ∧ a ∈ S }∪
{ s ∈ S | s = d ∧ c ∈ S }∪
{ s ∈ S | s = c ∧ d ∈ S }∪
{ s ∈ S | s = e ∧ g ∈ S } .

Now, use this to elaborate S ⊆M(S)

S ⊆M(S) ⇐⇒
∀s ∈ S. s = a ∨

(s = f ∧ a ∈ S ∧ b ∈ S) ∨
(s = b ∧ a ∈ S) ∨
(s = d ∧ c ∈ S) ∨
(s = c ∧ d ∈ S) ∨
(s = e ∧ g ∈ S).

This suffices to give us:

Proposition 8 (Principle of Rule Coinduction for C). Let S ⊆ U . Then S ⊆ C if for every s ∈ S one of the
following holds:

1. s = a;

2. s = f and { a, b } ⊆ S;

3. s = b and a ∈ S;

4. s = d and c ∈ S;

5. s = c and d ∈ S;

6. s = e and g ∈ S.

The structure of this principle of coinduction is quite different than the principle of induction, which we
state here for the corresponding inductively-defined set, even if we ignore the set-versus-property differ-
ence.

Proposition 9 (Principle of Rule Induction for x ∈ I). Let P be some property of elements u ∈ U . Then P (x)
holds for all x ∈ I if:

1. P (a);

2. P (a) and P (b) imply P (f).

3. P (a) implies P (b).

4. P (c) implies P (d).

5. P (d) implies P (c).

Page 10

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

6. P (g) implies P (e).

Okay comparison time.

1. Notice that in the principle of induction, the universal quantifier is over the inductively defined set
I, and appears in the conclusion of the proposition. In contrast, in the principle of coinduction, the
universal quantifier is over elements of the chosen set S, and appears in the premise.

2. Notice that the components of the principle of induction are conjunctions, so can be proven com-
pletely independently as lemmas. In contrast, the principle of rule coinduction universally quantifies
over set elements S (which can each be handled independently, at least in principle), but the clauses
are disjunctions, so must be dealt with as an ensemble for each set S element (we must show that one
of the cases holds).

3. Notice how each clause of induction is an implication (possibly vacuous) while each clause of coin-
duction is a conjunction.

All of these differences make it hard to relate the two principles to one another in a straightforward
way. The coinductive clauses do not induce “coinduction hypotheses” the way that the induction clause
implications do. Instead you have a set S of what I might call “co-theses”, a set of peer elements, which
simultaneously support the proof of their containment in the coinductive set. Furthermore, each clause of
the principle of coinduction comes with (zero or more) “coinduction obligations:” elements that must also
be in the set S in order to justify the presence of the particular element under scrutiny.

Despite these wild differences, the principles of monotone induction and monotone coinduction expose
a close relationship between these two reasoning principles. Such is the mystery of proof by coinduction.5

Before we move on, let’s prove a (fantastically obviously true) theorem using coinduction. The point
here is not to learn some profound fact about C, but rather to better understand the structure of a proof by
coinduction.

Proposition 10. c ∈ C.

Proof. By coinduction on C. Let S = { c, d }, and consider each element s ∈ S in turn.
Case (s = c). Then d ∈ S, so this case holds.
Case (s = d). Then c ∈ S, so this case holds.

Thus, S ⊆ C which implies c ∈ C.

Notice how this proof went through. First, it wasn’t enough to just work with S = { c }: we also needed
to consider d so as to meet c’s coinduction obligation. Luckily c in turn meets d’s coinduction obligation, so
the two support each other (think back to the “cycling” infinite regress derivations from earlier). In general,
a proof by coinduction involves examining each element of your set of “co-theses” S, possibly grouped by
some aggregate structure, and then proving that for each case, the coinduction obligations are met.

As a side-note, you could imagine taking a lazy approach to figuring out what S to use: start with
S = { c }, and keep adding obligations to it and checking them on an as-needed basis. In this particular
example, that would work out fine, and has a feel of “cacheing” obligations. Sometimes, however, you
truly have an infinite set of elements S, and you need to recognize that a priori in order to complete the
proof. These observations have implications for automated theorem proving!

Finally, note that since C is a fixed point ofMg , just like I, that both sets share related properties:

1. Mg(I) ⊆ I and I ⊆Mg(I).

2. Mg(C) ⊆ C and C ⊆ Mg(C);

As a direct result, both sets can be shown to satisfy the same shallow forward and backward reason-
ing properties! So it’s the deep properties, the principles of induction and coinduction respectively, that
differentiate the reasoning tools we have at our disposal for each kind of definition.

5More broadly, this points to the mystery of duality.

Page 11

Coinduction Time Stamp: 13:06, Monday 9th November, 2020

3.2 Coinductive Definition With Derivations

So far we have reviewed our original approach to inductive definition, using derivations, then introduced
two other approaches, and exploited both of the latter to provide two notions of coinductive definition. In
both cases, switching from induction to coinduction involved “twisting” things, replacing subsets with su-
persets, or intersection with unions, or iteration starting from nothing to iteration starting from everything.
This notion of twisting is often called duality, much like intersection is seen as dual to union in set theory,
and conjunction is seen as dual to disjunction in logic. My take on coinduction is that it’s just a twisted
form of induction, but because we are not used to defining things this way it is a bit foreign.6

Now we will come full circle and talk about how coinductive definitions can be justified by derivations.
First I’ll give the punch-line, and then I’ll try to explain: an element of a coinductively-defined set is any
object that can be can be justified by a derivation of finite or infinite height! If you think about it, this sort
of jives with our attempt to prove (inductively) that an infinite looping program big-steps, only to find that
we keep going up and up and up and never come back down. Now that phenomenon will be accepted as
a derivation for a coinductive definition.

To me the iterative notions of inductive and coinductive definition are most helpful here. Let’s start with
inductive. As described earlier, we can conceive of the iterationMn(∅) as iteratively building finite-height
derivations of height n, starting at the axioms and working their way down. In principle there can be lots
of finite-height derivations of different height for the same judgment. In our simple example that doesn’t
happen.

Looking at things from the other direction, we can conceive of the iterations Mn(U) as an attempt to
build both complete and incomplete derivations of judgments from the bottom up. Whenever a judgment
disappears at some iteration, we have “proven” that no derivation of it is possible: it’s been “voted off the
island”. Sometimes, on the other hand, as with say a ∈ U , we can build a closed proof bottom-up in
one step, and that’s the only derivation that we can build. At every iteration n > 1, we essentially keep
producing the same height-1 derivation. On the other hand, in our interesting case { d, c }, iterating on that
withMg keeps building up towers of partial proofs that never lead to a refutation of membership, nor do
they close off at the top. “In the limit” we end up with an infinite derivation for c and another for d. Note
that in this case we can represent these two derivations as a system of equations on derivations:

D1 =
D2

d
c
, D2 =

D1
c
d

The system of equations itself is “cyclic”, but it is meant to be interpreted as constraints on the structure
of a possibly infinite derivation tree. You may see stated in the literature that coinductive derivations are
cyclic. Not so much. They can literally be infinite, and infinitely changing. But they can also have a regular
structure that is finitely represented (e.g., by a system of equations). When that finite representation looks
cyclic, it represents something that is infinite but with a discernable pattern. This is exactly analogous to
how regular expressions can describe infinite repetitive (not cyclic) strings. It’s also analogous to how a set
of recursive equations can definitely describe a function.

With this, we can define the set of finite and infinite derivation trees D ∈ DERIV?[R] and say that

C = {x ∈ U | ∃D ∈ DERIV?[R].D :: x }

References

X. Leroy and H. Grall. Coinductive big-step operational semantics. Inf. Comput., 207(2):284–304, Feb. 2009.
ISSN 0890-5401.

D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst., 31(4):15:1–
15:41, May 2009. ISSN 0164-0925.

6The great mathematician and early computer pioneer John Von Neumann is quoted to have once said “In mathematics you don’t
understand things. You get used to them.” I try not to be quite so pessimistic, but. . .

Page 12

	Introduction
	Inductive Definition Without Derivations
	Rules Rule
	Recovering Rule-based Induction Principles
	A Simpler Example

	Coinduction by example
	Proof by Coinduction
	Coinductive Definition With Derivations

